Natural Language Processing

Classification I
Dan Klein – UC Berkeley
Classification
Classification

- **Automatically make a decision about inputs**
 - Example: document → category
 - Example: image of digit → digit
 - Example: image of object → object type
 - Example: query + webpages → best match
 - Example: symptoms → diagnosis
 - ...

- **Three main ideas**
 - Representation as feature vectors / kernel functions
 - Scoring by linear functions
 - Learning by optimization
Some Definitions

INPUTS

X_i

close the ____

CANDIDATE SET

$\mathcal{Y}(x)$

{door, table, ...}

CANDIDATES

y

table

TRUE OUTPUTS

y^*

door

FEATURE VECTORS

$f(x, y) \begin{bmatrix} 0 & 0 & 1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \end{bmatrix}$

$x_1 = \text{"the"} \land y = \text{"door"}$

"close" in $x \land y = \text{"door"}$

$x_1 = \text{"the"} \land y = \text{"table"}$

y occurs in x
Features
Feature Vectors

- Example: web page ranking (not actually classification)

\[x_i = \text{“Apple Computers”} \]

\[
\mathbf{f}_i(x_i) = [0.3 \ 5 \ 0 \ 0 \ \ldots]
\]

\[
\mathbf{f}_i(x_i) = [0.8 \ 4 \ 2 \ 1 \ \ldots]
\]
Sometimes, we think of the input as having features, which are multiplied by outputs to form the candidates

\[
x \quad \text{... win the election ...}
\]

\[
\text{“f(x)”} \quad \begin{bmatrix} 1 & 0 & 1 & 0 \end{bmatrix}
\]

\[
\text{“win”} \quad \text{“election”}
\]

\[
f(\text{SPORTS}) = [1 \ 0 \ 1 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0]
\]

\[
f(\text{POLITICS}) = [0 \ 0 \ 0 \ 0 \ 1 \ 0 \ 1 \ 0 \ 0 \ 0 \ 0 \ 0]
\]

\[
f(\text{OTHER}) = [0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 1 \ 0 \ 1 \ 0]
\]
Non-Block Feature Vectors

- Sometimes the features of candidates cannot be decomposed in this regular way
- Example: a parse tree’s features may be the productions present in the tree

\[
f(\text{NP VP}) = [1 \ 0 \ 1 \ 0 \ 1]
\]

\[
f(\text{NP VP}) = [1 \ 1 \ 0 \ 1 \ 0]
\]

- Different candidates will thus often share features
- We’ll return to the non-block case later
Linear Models
Linear Models: Scoring

- In a linear model, each feature gets a weight w

$$f(POLITICS) = [0\ 0\ 0\ 0\ 1\ 0\ 1\ 0\ 0\ 0\ 0\ 0\ 0\ 0\ 0]$$

$$f(SPORTS) = [1\ 0\ 1\ 0\ 0\ 0\ 0\ 0\ 0\ 0\ 0\ 0\ 0\ 0\ 0]$$

$$w = [1\ 1\ -1\ -2\ 1\ -1\ 1\ -2\ -2\ -1\ -1\ 1]$$

- We score hypotheses by multiplying features and weights:

$$score(y, w) = w^T f(y)$$

$$f(POLITICS) = [0\ 0\ 0\ 0\ 1\ 0\ 1\ 0\ 0\ 0\ 0\ 0\ 0\ 0\ 0]$$

$$w = [1\ 1\ -1\ -2\ 1\ -1\ 1\ -2\ -2\ -1\ -1\ 1]$$

$$score(POLITICS, w) = 1 \times 1 + 1 \times 1 = 2$$
Linear Models: Decision Rule

- The linear decision rule:

\[
prediction(... \text{win the election} ..., \mathbf{w}) = \arg \max_{y \in \mathcal{Y}(x)} \mathbf{w}^\top f(y)
\]

\[
score(\text{SPORTS}, \mathbf{w}) = 1 \times 1 + (-1) \times 1 = 0
\]

\[
score(\text{POLITICS}, \mathbf{w}) = 1 \times 1 + 1 \times 1 = 2
\]

\[
score(\text{OTHER}, \mathbf{w}) = (-2) \times 1 + (-1) \times 1 = -3
\]

\[
prediction(... \text{win the election} ..., \mathbf{w}) = \text{POLITICS}
\]

- We’ve said nothing about where weights come from
Binary Classification

- Important special case: binary classification
 - Classes are $y=+1/-1$

 $$f(x, -1) = -f(x, +1)$$
 $$f(x) = 2f(x, +1)$$
 - Decision boundary is a hyperplane
 $$\mathbf{w}^\top f(x) = 0$$

Diagram:
- \mathbf{w}
 - BIAS : -3
 - free : 4
 - money : 2

+1 = SPAM
-1 = HAM

$$\mathbf{w}^\top f = 0$$
Multiclass Decision Rule

- If more than two classes:
 - Highest score wins
 - Boundaries are more complex
 - Harder to visualize

\[\text{prediction}(x_i, w) = \arg \max_{y \in \mathcal{Y}} w^T f_i(y) \]

- There are other ways: e.g. reconcile pairwise decisions
Learning
Learning Classifier Weights

- Two broad approaches to learning weights

- Generative: work with a probabilistic model of the data, weights are (log) local conditional probabilities
 - Advantages: learning weights is easy, smoothing is well-understood, backed by understanding of modeling

- Discriminative: set weights based on some error-related criterion
 - Advantages: error-driven, often weights which are good for classification aren’t the ones which best describe the data

- We’ll mainly talk about the latter for now
How to pick weights?

- **Goal:** choose “best” vector \(w \) given training data
 - For now, we mean “best for classification”

- **The ideal:** the weights which have greatest test set accuracy / F1 / whatever
 - But, don’t have the test set
 - Must compute weights from training set

- **Maybe we want weights which give best training set accuracy?**
 - Hard discontinuous optimization problem
 - May not (does not) generalize to test set
 - Easy to overfit

Though, min-error training for MT does exactly this.
Minimize Training Error?

- A loss function declares how costly each mistake is

\[\ell_i(y) = \ell(y, y_i^*) \]

- E.g. 0 loss for correct label, 1 loss for wrong label
- Can weight mistakes differently (e.g. false positives worse than false negatives or Hamming distance over structured labels)

- We could, in principle, minimize training loss:

\[\min_w \sum_i \ell_i \left(\arg \max_y w^\top f_i(y) \right) \]

- This is a hard, discontinuous optimization problem
Linear Models: Perceptron

- **The perceptron algorithm**
 - Iteratively processes the training set, reacting to training errors
 - Can be thought of as trying to drive down training error

- **The (online) perceptron algorithm:**
 - Start with zero weights \(w \)
 - Visit training instances one by one
 - Try to classify
 \[
 \hat{y} = \arg \max_{y \in Y(x)} w^\top f(y)
 \]
 - If correct, no change!
 - If wrong: adjust weights
 \[
 w \leftarrow w + f(y_i^*) \quad \text{and} \quad w \leftarrow w - f(\hat{y})
 \]
Example: “Best” Web Page

\[
w = [1 \quad 2 \quad 0 \quad 0 \quad \ldots]
\]

\[
x_i = “Apple Computers”
\]

\[
f_i() = [0.3 \quad 5 \quad 0 \quad 0 \quad \ldots] \quad w^\top f = 10.3 \quad \hat{y}
\]

\[
f_i() = [0.8 \quad 4 \quad 2 \quad 1 \quad \ldots] \quad w^\top f = 8.8 \quad y_i^*
\]

\[
w \leftarrow w + f(y_i^*) - f(\hat{y})
\]

\[
w = [1.5 \quad 1 \quad 2 \quad 1 \quad \ldots]
\]
Examples: Perceptron

- Separable Case
A data set is separable if some parameters classify it perfectly.

Convergence: if training data separable, perceptron will separate (binary case).

Mistake Bound: the maximum number of mistakes (binary case) related to the margin or degree of separability.
Examples: Perceptron

- Non-Separable Case
Issues with Perceptrons

- **Overtraining**: test / held-out accuracy usually rises, then falls
 - Overtraining isn’t the typically discussed source of overfitting, but it can be important

- **Regularization**: if the data isn’t separable, weights often thrash around
 - Averaging weight vectors over time can help (averaged perceptron)
 - [Freund & Schapire 99, Collins 02]

- **Mediocre generalization**: finds a “barely” separating solution
Problems with Perceptrons

- Perceptron “goal”: separate the training data

\[\forall i, \forall y \neq y^i \quad w^T f_i(y^i) \geq w^T f_i(y) \]

1. This may be an entire feasible space
2. Or it may be impossible
Margin
Objective Functions

- What do we want from our weights?
 - Depends!
 - So far: minimize (training) errors:

\[
\sum_i \text{step} \left(w^T f_i(y_i^*) - \max_{y \neq y_i^*} w^T f_i(y) \right)
\]

- This is the “zero-one loss”
 - Discontinuous, minimizing is NP-complete
 - Not really what we want anyway

- Maximum entropy and SVMs have other objectives related to zero-one loss
Linear Separators

Which of these linear separators is optimal?
Classification Margin (Binary)

- Distance of x_i to separator is its margin, m_i
- Examples closest to the hyperplane are support vectors
- Margin γ of the separator is the minimum m
Classification Margin

- For each example \(x_i \) and possible mistaken candidate \(y \), we avoid that mistake by a margin \(m_i(y) \) (with zero-one loss)

\[
m_i(y) = w^T f_i(y^*_i) - w^T f_i(y)
\]

- Margin \(\gamma \) of the entire separator is the minimum \(m \)

\[
\gamma = \min_i \left(w^T f_i(y^*_i) - \max_{y \neq y^*_i} w^T f_i(y) \right)
\]

- It is also the largest \(\gamma \) for which the following constraints hold

\[
\forall i, \forall y \quad w^T f_i(y^*_i) \geq w^T f_i(y) + \gamma \ell_i(y)
\]
Separable SVMs: find the max-margin w

$$\max_{||w||=1} \gamma$$

$$\ell_i(y) = \begin{cases} 0 & \text{if } y = y_i^* \\ 1 & \text{if } y \neq y_i^* \end{cases}$$

$$\forall i, \forall y \quad w^\top f_i(y_i^*) \geq w^\top f_i(y) + \gamma \ell_i(y)$$

- Can stick this into Matlab and (slowly) get an SVM
- Won’t work (well) if non-separable
Why Max Margin?

- **Why do this? Various arguments:**
 - Solution depends only on the boundary cases, or *support vectors* (but remember how this diagram is broken!)
 - Solution robust to movement of support vectors
 - Sparse solutions (features not in support vectors get zero weight)
 - Generalization bound arguments
 - Works well in practice for many problems

Support vectors
Max Margin / Small Norm

- **Reformulation:** find the smallest w which separates data

Remember this condition?

\[
\max_{\|w\|=1} \gamma \\
\forall i, y \quad w^T f_i(y_i^*) \geq w^T f_i(y) + \gamma \ell_i(y)
\]

- γ scales linearly in w, so if $\|w\|$ isn’t constrained, we can take any separating w and scale up our margin

\[
\gamma = \min_{i, y \neq y_i^*} \frac{[w^T f_i(y_i^*) - w^T f_i(y)]}{\ell_i(y)}
\]

- Instead of fixing the scale of w, we can fix $\gamma = 1$

\[
\min_w \frac{1}{2} \|w\|^2 \\
\forall i, y \quad w^T f_i(y_i^*) \geq w^T f_i(y) + 1 \ell_i(y)
\]
Soft Margin Classification

- What if the training set is not linearly separable?
- *Slack variables* ξ_i can be added to allow misclassification of difficult or noisy examples, resulting in a *soft margin* classifier.
Maximum Margin

- **Non-separable SVMs**
 - Add slack to the constraints
 - Make objective pay (linearly) for slack:

\[
\min_{\mathbf{w}, \xi} \frac{1}{2} ||\mathbf{w}||^2 + C \sum_i \xi_i
\]

\[
\forall i, y, \quad \mathbf{w}^T \mathbf{f}_i(y^*_i) + \xi_i \geq \mathbf{w}^T \mathbf{f}_i(y) + \ell_i(y)
\]

- C is called the *capacity* of the SVM – the smoothing knob

- **Learning:**
 - Can still stick this into Matlab if you want
 - Constrained optimization is hard; better methods!
 - We’ll come back to this later

Note: exist other choices of how to penalize slacks!
Maximum Margin
Likelihood
Linear Models: Maximum Entropy

- **Maximum entropy (logistic regression)**
 - Use the scores as probabilities:
 \[
 P(y|x, w) = \frac{\exp(w^T f(y))}{\sum_{y'} \exp(w^T f(y'))}
 \]
 - Maximize the (log) conditional likelihood of training data
 \[
 L(w) = \log \prod_i P(y^*_i|x_i, w) = \sum_i \log \left(\frac{\exp(w^T f_i(y^*_i))}{\sum_y \exp(w^T f_i(y))} \right)
 \]
 \[
 = \sum_i \left(w^T f_i(y^*_i) - \log \sum_y \exp(w^T f_i(y)) \right)
 \]
Maximum Entropy II

- **Motivation for maximum entropy:**
 - Connection to maximum entropy principle (sort of)
 - Might want to do a good job of being uncertain on noisy cases...
 - ... in practice, though, posteriors are pretty peaked

- **Regularization (smoothing)**

\[
\max_w \sum_i \left(w^T f_i(y_i^*) - \log \sum_y \exp(w^T f_i(y)) \right) - k ||w||^2
\]

\[
\min_w k ||w||^2 - \sum_i \left(w^T f_i(y_i^*) - \log \sum_y \exp(w^T f_i(y)) \right)
\]
Maximum Entropy
Loss Comparison
Log-Loss

- If we view maxent as a minimization problem:

\[
\min_w k||w||^2 + \sum_i - \left(w^T f_i(y_i^*) - \log \sum_y \exp(w^T f_i(y)) \right)
\]

- This minimizes the “log loss” on each example

\[
- \left(w^T f_i(y_i^*) - \log \sum_y \exp(w^T f_i(y)) \right) = -\log P(y_i^*|x_i, w)
\]

- One view: log loss is an upper bound on zero-one loss
Remember SVMs...

- We had a constrained minimization
 \[
 \min_{\mathbf{w}, \xi} \frac{1}{2}||\mathbf{w}||^2 + C \sum_i \xi_i
 \]
 \[
 \forall i, y, \quad \mathbf{w}^T \mathbf{f}_i(y^*_i) + \xi_i \geq \mathbf{w}^T \mathbf{f}_i(y) + \ell_i(y)
 \]

- ...but we can solve for \(\xi_i \)
 \[
 \forall i, y, \quad \xi_i \geq \mathbf{w}^T \mathbf{f}_i(y) + \ell_i(y) - \mathbf{w}^T \mathbf{f}_i(y^*_i)
 \]
 \[
 \forall i, \quad \xi_i = \max_y \left(\mathbf{w}^T \mathbf{f}_i(y) + \ell_i(y) \right) - \mathbf{w}^T \mathbf{f}_i(y^*_i)
 \]

- Giving
 \[
 \min_{\mathbf{w}} \frac{1}{2}||\mathbf{w}||^2 + C \sum_i \left(\max_y \left(\mathbf{w}^T \mathbf{f}_i(y) + \ell_i(y) \right) - \mathbf{w}^T \mathbf{f}_i(y^*_i) \right)
 \]
Hinge Loss

- Consider the per-instance objective:

$$\min \ k ||w||^2 + \sum_i \left(\max_y \left(w^T f_i(y) + \ell_i(y) \right) - w^T f_i(y_i^*) \right)$$

- This is called the “hinge loss”
 - Unlike maxent / log loss, you stop gaining objective once the true label wins by enough
 - You can start from here and derive the SVM objective
 - Can solve directly with sub-gradient decent (e.g. Pegasos: Shalev-Shwartz et al 07)
Max vs “Soft-Max” Margin

- **SVMs:**
 \[
 \min_w k\|w\|^2 - \sum_i \left(w^T f_i(y_i^*) - \max_y \left(w^T f_i(y) + \ell_i(y) \right) \right)
 \]
 You can make this zero

- **Maxent:**
 \[
 \min_w k\|w\|^2 - \sum_i \left(w^T f_i(y_i^*) - \log \sum_y \exp \left(w^T f_i(y) \right) \right)
 \]
 ... but not this one

- **Very similar! Both try to make the true score better than a function of the other scores**
 - The SVM tries to beat the augmented runner-up
 - The Maxent classifier tries to beat the “soft-max"
Loss Functions: Comparison

- **Zero-One Loss**
 \[\sum_i \text{step} \left(\mathbf{w}^T \mathbf{f}_i(y_i^*) - \max_{y \neq y_i^*} \mathbf{w}^T \mathbf{f}_i(y) \right) \]

- **Hinge**
 \[\sum_i \left(\mathbf{w}^T \mathbf{f}_i(y_i^*) - \max \left(\mathbf{w}^T \mathbf{f}_i(y) + \ell_i(y) \right) \right) \]

- **Log**
 \[\sum_i \left(\mathbf{w}^T \mathbf{f}_i(y_i^*) - \log \sum_y \exp \left(\mathbf{w}^T \mathbf{f}_i(y) \right) \right) \]
Separators: Comparison
Conditional vs Joint Likelihood
Example: Sensors

Reality

<table>
<thead>
<tr>
<th>Raining</th>
<th>Sunny</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- $P(+,+,r) = 3/8$
- $P(-,-,r) = 1/8$
- $P(+,+,s) = 1/8$
- $P(-,-,s) = 3/8$

NB Model

- **Raining?**
 - M1
 - M2

NB FACTORS:
- $P(s) = 1/2$
- $P(+) | s) = 1/4$
- $P(+) | r) = 3/4$

PREDICTIONS:
- $P(r,+,+) = (1/2)(3/4)(3/4)$
- $P(s,+,+) = (1/2)(1/4)(1/4)$
- $P(r|+,+) = 9/10$
- $P(s|+,+) = 1/10$
Example: Stoplights

Reality

<table>
<thead>
<tr>
<th>Lights Working</th>
<th>Lights Broken</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>(P(g, r, w) = \frac{3}{7})</td>
<td>(P(r, r, b) = \frac{1}{7})</td>
</tr>
<tr>
<td>(P(r, g, w) = \frac{3}{7})</td>
<td></td>
</tr>
</tbody>
</table>

NB Model

Working?

- **NS**
- **EW**

NB FACTORS:

- \(P(w) = \frac{6}{7} \)
- \(P(r \mid w) = \frac{1}{2} \)
- \(P(g \mid w) = \frac{1}{2} \)
- \(P(b) = \frac{1}{7} \)
- \(P(r \mid b) = 1 \)
- \(P(g \mid b) = 0 \)
Example: Stoplights

- What does the model say when both lights are red?
 - \(P(b, r, r) = (1/7)(1)(1) = 1/7 = 4/28 \)
 - \(P(w, r, r) = (6/7)(1/2)(1/2) = 6/28 = 6/28 \)
 - \(P(w | r, r) = 6/10! \)

- We’ll guess that \((r, r)\) indicates lights are working!

- Imagine if \(P(b)\) were boosted higher, to 1/2:
 - \(P(b, r, r) = (1/2)(1)(1) = 1/2 = 4/8 \)
 - \(P(w, r, r) = (1/2)(1/2)(1/2) = 1/8 = 1/8 \)
 - \(P(w | r, r) = 1/5! \)

- Changing the parameters bought accuracy at the expense of data likelihood