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Unsupervised Tagging

Unsupervised Tagging?

= AKA part-of-speech induction
= Task:
= Raw sentences in
= Tagged sentences out
= Obvious thing to do:
= Start with a (mostly) uniform HMM
= Run EM
= |nspect results

EM for HMMs: Process

Alternate between recomputing distributions over hidden variables (the
tags) and reestimating parameters

Crucial step: we want to tally up how many (fractional) counts of each
kind of transition and emission we have under current params:

count(w,s) = Y P(t; = s|lw)

W= w

count(s — §') = SN P(tio1 =s,t; = s'lw)
A

Same quantities we needed to train a CRF!

Merialdo: Setup

= Some (discouraging) experiments [Merialdo 94]

= Setup:
= You know the set of allowable tags for each word
= Fix k training examples to their true labels
= Learn P(w|t) on these examples
= Learn P(t|t,t,) on these examples

= On n examples, re-estimate with EM

= Note: we know allowed tags but not frequencies

Merialdo: Results

Number of lagged sentences used for the initial model
T 0 100 2000 5000 10000 20000 all

Iter Correct tags (% words) after ML on 1M words
0 770 900 954 92 966 969 970
1  BL5 926 958 963 966 6.7 968
2 B18 930 957 961 9.3 964 96.4
3 830 931 954 958 96.1 G962 96.2
4 B40 930 952 955 95.8 96.0 96.0
5 848 929 951 954 95.6 958 95.8
6 853 928 949 952 955 956 95.7
7 B58 928 @47 u5] 95.3 955 95.5
B 861 927 946 950 95.2 954 95.4
9 863 926 945 949 95.1 953 95.3

10 866 926 944 WS 95.2 95.2
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Latent Variable PCFGs

The Game of Designing a Grammar
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= Annotation refines base treebank symbols to improve
statistical fit of the grammar
= Parent annotation [Johnson '98]

The Game of Designing a Grammar
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= Annotation refines base treebank symbols to improve
statistical fit of the grammar
= Parent annotation [Johnson 98]
= Head lexicalization [Collins “99, Charniak '00]
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= Annotation refines base treebank symbols to improve
statistical fit of the grammar
= Parent annotation [Johnson '98]
= Head lexicalization [Collins ’99, Charniak '00]
= Automatic clustering?

Latent Variable Grammars
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" Learning Latent Annotations

EM algorithm: Forward
= Brackets are known /‘b\
= Base categories are known

= Only induce subcategories
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Just like Forward-Backward for HMMs.

Backward




Refinement of the DT tag

Hierarchical refinement
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‘Hierarchical Estimation Results ~ . Refinement of the, tag
= Splitting all categories equally is wasteful:
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Adaptive Splitting

Adaptive Splitting Results

= Want to split complex categories more

= |dea: split everything, roll back splits which
were least useful
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. Number of Phrasal Subcategories

Number of Lexical Subcategories

ulululslnlsl=lsl=lar=r=1

Il
«
g
2

SETROT

So g
5&5

Learned Splits

= Relative adverbs (RBR):

RBR-0 further lower higher
RBR-1 more less More
RBR-2 earlier Earlier later
= Cardinal Numbers (CD):

CD-7 one two Three
CD-4 1989 1990 1988
CD-11 million billion trillion
CD-0 1 50 100
CD-3 1 30 31
CD-9 78 58 34
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Learned Splits
= Proper Nouns (NNP):
NNP-14 Oct. Nov. Sept.
NNP-12 John Robert James
NNP-2 J. E. L.
NNP-1 Bush Noriega Peters
NNP-15 New San Wall
NNP-3 York Francisco  Street
= Personal pronouns (PRP):
PRP-0 It He |
PRP-1 it he they
PRP-2 it them him
Final Results (Accuracy)
<40 words all
F1 F1
m |Charniak&Johnson ‘05 (generative) 90.1 89.6
z
(o] Split / Merge 90.6 90.1
ron Dubey ‘05 76.3 -
X Split / Merge 80.8 80.1
o Chiang et al. ‘02 80.0 76.6
I
z Split / Merge 86.3 83.4

Still higher numbers from reranking / self-training methods

Efficient Parsing for
Hierarchical Grammars




Coarse-to-Fine Inference

= Example: PP attachment
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Hierarchical Pruning

coarse:

split in two: - [ ne 1] DRe DR ve2

splitin four: . RO DR ]

splitin eight: ... [ ]

Bracket Posteriors
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(no search error)

Other Syntactic Models

Parse Reranking

= Assume the number of parses is very small
.

We can represent each parse T as an arbitrary feature vector ¢(T)
= Typically, all local rules are features
= Also non-local features, like how right-branching the overall tree is
= [Charniak and Johnson 05] gives a rich set of features




[Huang and Chiang 05,

K-Best Pa rSing Pauls, Klein, Quirk 10]

= Lexicalized parsers can be seen as producing dependency trees
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= Each local binary tree corresponds to an attachment in the dependency
graph
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Dependency Parsing
= Pure dependency parsing is only cubic [Eisner 99]
h
i h k h j h k h’

= Some work on non-projective dependencies

= Common in, e.g. Czech parsing

= Can do with MST algorithms [McDonald and Pereira 05]
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Shift-Reduce Parsers

= Parsing
= No useful dynamic programming search
= Can still use beam search [Ratnaparkhi 97]
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Formally, a tree-insertion grammar

Derivational ambiguity whether subtrees were generated atomically
or compositionally

= Most probable parse is NP-complete

TIG: Insertion
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Tree-adjoining grammars

= Start with local trees

= Caninsert structure
with adjunction
operators

= Mildly context-
sensitive

= Models long-distance
dependencies
naturally

= ..aswellasother
weird stuff that CFGs
don’t capture well
(e.g. cross-serial
dependencies)
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TAG: Long Distance
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CCG Parsing

= Combinatory
Categorial Grammar
= Fully (mono-)
lexicalized grammar
Categories encode
argument sequences
Very closely related
to the lambda
calculus (more later)

Can have spurious
ambiguities (why?)
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