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Learning PCFGs




Treebank PCFGs

[Charniak 96]

Use PCFGs for broad coverage parsing
Can take a grammar right off the trees (doesn’t work well):
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Conditional Independence?
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= Not every NP expansion can fill every NP slot
= A grammar with symbols like “NP” won’t be context-free
= Statistically, conditional independence too strong




Non-Independence

" |[ndependence assumptions are often too strong.

All NPs NPs under S NPs under VP
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= Example: the expansion of an NP is highly dependent on the
parent of the NP (i.e., subjects vs. objects).

= Also: the subject and object expansions are correlated!
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Grammar Refinement

= Example: PP attachment
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Grammar Refinement

the noise

= Structure Annotation [Johnson ’98, Klein&Manning '03]
= Lexicalization [Collins ’99, Charniak ’00]
= Latent Variables [Matsuzaki et al. 05, Petrov et al. '06]




Structural Annotation
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» Annotation refines base treebank symbols to
improve statistical fit of the grammar
= Structural annotation
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Typical Experimental Setup

= Corpus: Penn Treebank, WSJ

Training: sections  02-21

Test: section 23

= Accuracy — F1: harmonic mean of per-node labeled
precision and recall.

= Here: also size — number of symbols in grammar.
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Vertical Markovization

Vertical Markov
order: rewrites

depend on past K
ancestor nodes.

(cf. parent
annotation)
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Horizontal Markovization
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Unary Splits

= Problem: unary
rewrites used to
transmute
categories so a
high-probability

rule can be used.

s Solution: Mark
unary rewrite
sites with -U

ROOT
|
S
Y T
NP VP .
| /\
NN VBD NP
Revenue was NP , PP
| | TN
QP , VBG NP
$ 444.9 nullion including  net interest
Annotation F1 Size
Base 77.8 |7.5K
UNARY 78.3 8.0K
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Tag Splits

= Problem: Treebank tags
are too coarse.

= Example: Sentential, PP,
and other prepositions
are all marked IN.

= Partial Solution:
= Subdivide the IN tag.
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if NP VP

NN VBZ

advertisin g works

Annotation F1 Size

Previous 78.3 8.0K

SPLIT-IN 80.3 |8.1K
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‘‘‘‘‘ A Fully Annotated (Unlex) Tree
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Some Test Set Results

Parser LP LR F1 CB 0CB
Magerman 95 |84.9 |84.6 |84.7 |1.26 |56.6
Collins 96 86.3 |85.8 |86.0 [1.14 [59.9
Unlexicalized [86.9 |85.7 [86.3 |1.10 [60.3
Charniak 97 |87.4 |87.5 [87.4 |1.00 |62.1
Collins 99 88.7 |88.6 [88.6 [0.90 |67.1

= Beats “first generation” lexicalized parsers.
= Lots of room to improve — more complex models next.
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Efficient Parsing for
Structural Annotation
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Grammar Projections

Coarse Grammar Fine Grammar
S STROOT
NP VP . NP'S VIS .
PRP VBD ADJP . PRP VBD ADVPVE .
AN I AN
He was right He was right
NP - DT N’ NPAS - DTANP N’[...DT]*NP

Note: X-Bar Grammars are projections with rules like XP > Y X or XP > X’ Yor X’ > X
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Coarse-to-Fine Pruning

For each coarse chart item X[I,J], compute posterior probability:

P (X,%,7) - Pour(X, i, )
P (root,0,n)

< threshold

E.g. consider the span 5to 12:

coarse: NP | VP [ ...

refined:
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/. Computing (Max-)Marginals
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Inside and Outside Scores
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Pruning with A*

= You can also speed up the
search without sacrificing
optimality

= For agenda-based parsers:

= Can select which items to
process first

= Can do with any “figure of
merit” [Charniak 98]

= |f your figure-of-merit is a
valid A* heuristic, no loss of
optimiality [Klein and
Manning 03]

22



A* Parsing

Estimate SX SXL SXLR TRUE
Summary (1,6,NP) (1,6,NP,VBZ) (1,6,NP,VBZ.,*)") (entire context)
s s
V‘li ip s
Best Tree s vBZ NP i_P vez NP s . ~p -hi?P_i___.
. NP VP N NP NP . CC NP Ve PRP VBZ NP
e T | e T—— I e .
IN NP | DT 1 NN VBD DT NNP NNP NNP NNP ‘ ‘ DT 1 NN VBZ NP DT NN
Iﬂwlwlwflf ] ? VBZ [NP| ? ? 9‘ 9‘ ) ﬂl VBZ [NP| , 7 'IJ'IJ'IJ" VEIBZ,PRPVBZDITNlN,
Score —11.3 —13.9 —15.1 —18.1
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Lexicalization
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The Game of Designing a Grammar

-
NP-she VP

| —
PRP VBD NP-noise

| | _
She heard DT NN

| |
the noise

» Annotation refines base treebank symbols to improve
statistical fit of the grammar
= Structural annotation [Johnson '98, Klein and Manning 03]
= Head lexicalization [Collins '99, Charniak '00]
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Problems with PCFGs

S S
//\ /\
NP VP NP VP
DT NNS PP D|T NS “TD /NP\
| ‘ /\ /\ The children ate NP PP
The children VBD NP NP /\ /\
VN \ N DT NN N
ate DT NN with DT NN | | y /\
‘ ‘ ‘ ‘ the cake with DT NN
the cake a spoon ‘ |

a spoon

= |f we do no annotation, these trees differ only in one rule:
= VP VPPP
= NP —> NPPP

= Parse will go one way or the other, regardless of words
= We addressed this in one way with unlexicalized grammars (how?)
= Lexicalization allows us to be sensitive to specific words
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Problems with PCFGs

NP

I

NP CC

Py |

NP PP and
| TN
NNS IN NP
| I I
do gs m NNS
I

houses

NP
NP PP
| /\
NNS
| IN NP
dogs | /l\
n
NP cC NP

| | |
NNS and NNS

houses cats

= \What's different between basic PCFG scores here?

= What (lexical) correlations need to be scored?
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Lexicalized Trees

Add “head words” to
each phrasal node

= Syntactic vs. semantic
heads

= Headship not in (most)
treebanks

= Usually use head rules,
e.g..

= NP:
= Take leftmost NP
= Take rightmost N*
= Take rightmost JJ
= Take right child

= \/P:
= Take leftmost VB*
= Take leftmost VP
= Take left child

5

N

NP VP

DT NN /\
| Vi NP
the lawvyer I
questioned DT NN
| i
the witness
)
S(questioned)
NP(lawyer) VP(questioned)
DT(the) NN(lawyer) ) /\
| | Vt(questioned) NP(witness)
the lawyer |
questioned DT(the) NN(witness)
| |
the witness
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Lexicalized PCFGs?

= Problem: we now have to estimate probabilities like

VP (saw) -> VBD(saw) NP-C(her) NP(today)

= Never going to get these atomically off of a treebank

= Solution: break up derivation into smaller steps

VP (saw) VP (saw) VP (saw) VP (saw)

— — T v

VED (saw) VED (saw) {wp-c( )} VED (saw) NP-C( ) NP ( ) VBD (saw) NP-C(her) NP (today)
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Lexical Derivation Steps

= A derivation of a local tree [Collins 99]

VP (gaw)

/

VBD (saw)

VP (saw)

/

VBD (saw) {wp-c( )}

VP (saw)

el

VBD (saw) NP-C( ) NP( )

VP (saw)

T

VBD (saw) NP-C{her) NP(today)

Choose a head tag and word

Choose a complement bag

Generate children (incl. adjuncts)

Recursively derive children
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Lexicalized CKY

(VP->VBD...NP e)[saw]

/\
(VP->VBD e)[saw] NP[her]

bestScore(X,1,j,h)

it g = i1+1)
return tagScore(X,s[i])
else
return
max max score(X[h]->Y[h] Z[h*]) *
bestScore(Y,i,k,h) *
bestScore(Z,k,j,h”)
max score(X[h]->Y[h*] Z[hD) *
bestScore(Y,i1,k,h?) *
bestScore(Z,k,j,h)
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Efficient Parsing for
Lexical Grammars
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Quartic Parsing

Turns out, you can do (a little) better [Eisner 99]

Gives an O(n?) algorithm
Still prohibitive in practice if not pruned
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Pruning with Beams

= The Collins parser prunes with per-
cell beams [Collins 99]
= Essentially, run the O(n>) CKY

= Remember only a few hypotheses for
each span <i,j>.

= |f we keep K hypotheses at each span,
then we do at most O(nK?) work per
span (why?)

= Keeps things more or less cubic (and in
practice is more like linear!)

= Also: certain spans are forbidden
entirely on the basis of punctuation
(crucial for speed)

h’
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Pruning with a PCFG

= The Charniak parser prunes using a two-pass, coarse-
to-fine approach [Charniak 97+]
= First, parse with the base grammar

» For each X:[i,j] calculate P(X]i,j,s)
= This isn’t trivial, and there are clever speed ups

= Second, do the full O(n>) CKY
= Skip any X :[i,j] which had low (say, < 0.0001) posterior

= Avoids almost all work in the second phase!

= Charniak et al 06: can use more passes
= Petrov et al 07: can use many more passes
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Results

= Some results

= Collins 99 — 88.6 F1 (generative lexical)

= Charniak and Johnson 05 —-89.7 / 91.3 F1 (generative
lexical / reranked)

= Petrov et al 06 —90.7 F1 (generative unlexical)
= McClosky et al 06 —92.1 F1 (gen + rerank + self-train)

" However

= Bilexical counts rarely make a difference (why?)
= Gildea 01 — Removing bilexical counts costs < 0.5 F1
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Latent Variable PCFGs

37



"\ The Game of Designing a Grammar

S
-
NP-1 VP
| —
PRP VBD NP-2
| | —

She heard DT NN
| |
the noise

= Annotation refines base treebank symbols to improve
statistical fit of the grammar
= Parent annotation [Johnson '98]
= Head lexicalization [Collins ’99, Charniak '00]
= Automatic clustering?
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Latent Variable Grammars

S
T N —
NP VP
| il ™
PRP VBD ADJP
I il "W
He was right

Parse Tree T
Sentence ¢

Grammar G

Sg — NPO VP(] ?

5-1 Sy — NP, VP, ?

e R ——, Sy — NP, VP; ?

NP-0 VP-1 -0 Sy — NP, VP, ?

? e ! S; - NP, VP, ?
PRP-1 VBD-0 ADJP-0 o

| ! T S; > NP, VP; ?

He was  right L
NPQ — PRPO ?
- mmmmp NP, —PRP; ?

S-0 e

e ——— e e e
NP-1 VP-1 -0 Lexicon
J — | PRP; — She ?
PRP-0 VBD-0 ADJP-1 PRP; — She ?
| I e,

VBD,; — was ?
VBD,; — was ?
VBD; - was ?

He was right

Derivations ¢ : T Parameters @
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/1, Learning Latent Annotations

Forward

N

EM algorithm:

» Brackets are known
» Base categories are known
» Only induce subcategories

S[X1]
-
NP[X5] VP[X 4] 1X7]
| i /4\ |7 ‘
PRP[X3] VBD[X5] ADJP[X5]
I | —
He was right

Just like Forward-Backward for HMMs.

Backward
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Refinement of the DT tag

DT
the (0.50)
a (0.24)
The (0.08)

P e f’ ‘ "‘“-\.\.*
a (0.61) the (0.80) this (0.39) some (0.20)
the (0.19) The (0.15) that (0.28) all (0.19)
an (0.11) a (0.01) That (0.11) those (0.12)

DT-1 DT2 DT-3  DT-4
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Hierarchical refinement
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that {
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N
1
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- some (0.11)

2 (0.61)
the (0.19)
an (0.11)

the (0.80)
The (0.15)
2 (0.01)

this (0.39)
that (0.28)
That (0.11)

some (0.20)
all (0.19)
those (0.12)
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~"Hierarchical Estimation Results
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43



Refinement of the, tag

= Splitting all categories equally is wasteful:

, (1‘60) , (1.00) , (1.66) , (1.00)
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Adaptive Splitting

= \Want to split complex categories more

» |dea: split everything, roll back splits which

were |least useful

tha FIY S 4
- the (U.04)

S M AN }&u\\
- The (0.09)

a (0.25)

the (0.19)
an (0.11)

206D

a (0.01)
The (0.01)

the (0.96) | [ The (0.93)

A (0.02)
No (0.01)
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Learned Splits

= Proper Nouns (NNP):

NNP-14 Oct. Nov. Sept.
NNP-12 John Robert James
NNP-2 J. E. L.
NNP-1 Bush Noriega Peters
NNP-15 New San Wall
NNP-3 York Francisco  Street

= Personal pronouns (PRP):

PRP-0 It He |
PRP-1 it he they
PRP-2 it them him
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Learned Splits

= Relative adverbs (RBR):

RBR-0
RBR-1
RBR-2

further lower higher
more less More
earlier Earlier later

= Cardinal Numbers (CD):

CD-7
CD-4
CD-11
CD-0
CD-3
CD-9

one two Three
1989 1990 1988
million billion trillion
1 50 100
1 30 31

/8 58 34
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Final Results (Accuracy)

< 40 words all
F1 F1
m |Charniak&Johnson ‘05 (generative) 90.1 89.6
Z
@ Split / Merge 90.6 90.1
I'G?'I Dubey ‘05 76.3 -
A Split / Merge 80.8 80.1
O Chiang et al. ‘02 80.0 76.6
T
=z Split / Merge 86.3 83.4

Still higher numbers from reranking / self-training methods

51



Efficient Parsing for
Hierarchical Grammars
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Coarse-to-Fine Inference

= Example: PP attachment

S

/\
NP VP
‘ /\
PRP
‘ 7?77?77
They
\Y NP PP
| RN RN
raised DT NN IN NP
| | AN

a  point of order
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Hierarchical Pruning

split in eight: ...

coarse: MNP WP | ..

o4



Bracket Posteriors
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1621 min
111 min
35 min

15 min

(no search error)
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