Natural Language Processing

Parsing II

Dan Klein – UC Berkeley

Treebank PCFGs [Charniak 96]

- Use PCFGs for broad coverage parsing
- Can take a grammar right off the trees (doesn't work well):

Model	F1
Baseline	72.0

Conditional Independence?

- Not every NP expansion can fill every NP slot
 - A grammar with symbols like "NP" won't be context-free
 - Statistically, conditional independence too strong

Non-Independence

Independence assumptions are often too strong.

- Example: the expansion of an NP is highly dependent on the parent of the NP (i.e., subjects vs. objects).
- Also: the subject and object expansions are correlated!

Grammar Refinement

Example: PP attachment

Grammar Refinement

- Structure Annotation [Johnson '98, Klein&Manning '03]
- Lexicalization [Collins '99, Charniak '00]
- Latent Variables [Matsuzaki et al. 05, Petrov et al. '06]

The Game of Designing a Grammar

- Annotation refines base treebank symbols to improve statistical fit of the grammar
 - Structural annotation

Typical Experimental Setup

Corpus: Penn Treebank, WSJ

Training: sections 02-21

Development: section 22 (here, first 20 files)

Test: section 23

- Accuracy F1: harmonic mean of per-node labeled precision and recall.
- Here: also size number of symbols in grammar.

Vertical Markovization

 Vertical Markov order: rewrites depend on past k ancestor nodes.
 (cf. parent annotation)

Horizontal Markovization

Unary Splits

 Problem: unary rewrites used to transmute categories so a high-probability rule can be used.

Solution: Mark unary rewrite sites with -U

Annotation	F1	Size
Base	77.8	7.5K
UNARY	78.3	8.0K

Tag Splits

- Problem: Treebank tags are too coarse.
- Example: Sentential, PP, and other prepositions are all marked IN.
- Partial Solution:
 - Subdivide the IN tag.

Annotation	F1	Size
Previous	78.3	8.0K
SPLIT-IN	80.3	8.1K

A Fully Annotated (Unlex) Tree

Some Test Set Results

Parser	LP	LR	F1	СВ	0 CB
Magerman 95	84.9	84.6	84.7	1.26	56.6
Collins 96	86.3	85.8	86.0	1.14	59.9
Unlexicalized	86.9	85.7	86.3	1.10	60.3
Charniak 97	87.4	87.5	87.4	1.00	62.1
Collins 99	88.7	88.6	88.6	0.90	67.1

- Beats "first generation" lexicalized parsers.
- Lots of room to improve more complex models next.

Efficient Parsing for Structural Annotation

Grammar Projections

Coarse Grammar

NP VP .

PRP VBD ADJP .

He was right

Fine Grammar

 $NP \rightarrow DT N'$

 $NP^S \rightarrow DT^NP N'[...DT]^NP$

Note: X-Bar Grammars are projections with rules like $XP \rightarrow YX'$ or $XP \rightarrow X'Y$ or $X' \rightarrow X$

Coarse-to-Fine Pruning

For each coarse chart item X[i,j], compute posterior probability:

$$\frac{P_{\text{IN}}(X, i, j) \cdot P_{\text{OUT}}(X, i, j)}{P_{\text{IN}}(root, 0, n)} < threshold$$

E.g. consider the span 5 to 12:

Computing (Max-)Marginals

Inside and Outside Scores

Pruning with A*

- You can also speed up the search without sacrificing optimality
- For agenda-based parsers:
 - Can select which items to process first
 - Can do with any "figure of merit" [Charniak 98]
 - If your figure-of-merit is a valid A* heuristic, no loss of optimiality [Klein and Manning 03]

A* Parsing

Estimate	SX	SXL	SXLR	TRUE
Summary	(1,6,NP)	(1,6,NP,VBZ)	(1,6,NP,VBZ,",")	(entire context)
Best Tree	S PP , NP VP . IN NP DT JJ NN VBD	S VP VP VP VP VP VP VP	S	
Score	-11.3	-13.9	-15.1	-18.1

The Game of Designing a Grammar

- Annotation refines base treebank symbols to improve statistical fit of the grammar
 - Structural annotation [Johnson '98, Klein and Manning 03]
 - Head lexicalization [Collins '99, Charniak '00]

Problems with PCFGs

- If we do no annotation, these trees differ only in one rule:
 - VP → VP PP
 - NP → NP PP
- Parse will go one way or the other, regardless of words
- We addressed this in one way with unlexicalized grammars (how?)
- Lexicalization allows us to be sensitive to specific words

Problems with PCFGs

- What's different between basic PCFG scores here?
- What (lexical) correlations need to be scored?

Lexicalized Trees

- Add "head words" to each phrasal node
 - Syntactic vs. semantic heads
 - Headship not in (most) treebanks
 - Usually use head rules, e.g.:
 - NP:
 - Take leftmost NP
 - Take rightmost N*
 - Take rightmost JJ
 - Take right child
 - VP:
 - Take leftmost VB*
 - Take leftmost VP
 - Take left child

Lexicalized PCFGs?

Problem: we now have to estimate probabilities like

- Never going to get these atomically off of a treebank
- Solution: break up derivation into smaller steps

Lexical Derivation Steps

A derivation of a local tree [Collins 99]

Choose a head tag and word

Choose a complement bag

Generate children (incl. adjuncts)

Recursively derive children

Lexicalized CKY

```
(VP->VBD...NP •)[saw]
                                                        X[h]
              (VP->VBD •)[saw]
                               NP[her]
                                                      Y[h]
bestScore(X,i,j,h)
  if (j = i+1)
                                                               h'
                                                   h
                                                         k
    return tagScore(X,s[i])
  else
    return
       \max_{k,h',X\rightarrow YZ} score(X[h]->Y[h] Z[h']) *
                bestScore(Y,i,k,h) *
                bestScore(Z,k,j,h')
           max score(X[h]->Y[h'] Z[h]) *
         k,h',X->YZ
                bestScore(Y,i,k,h') *
                bestScore(Z,k,j,h)
```


Quartic Parsing

Turns out, you can do (a little) better [Eisner 99]

- Gives an O(n⁴) algorithm
- Still prohibitive in practice if not pruned

Pruning with Beams

- The Collins parser prunes with percell beams [Collins 99]
 - Essentially, run the O(n⁵) CKY
 - Remember only a few hypotheses for each span <i,j>.
 - If we keep K hypotheses at each span, then we do at most O(nK²) work per span (why?)
 - Keeps things more or less cubic (and in practice is more like linear!)

 Also: certain spans are forbidden entirely on the basis of punctuation (crucial for speed)

Pruning with a PCFG

- The Charniak parser prunes using a two-pass, coarseto-fine approach [Charniak 97+]
 - First, parse with the base grammar
 - For each X:[i,j] calculate P(X|i,j,s)
 - This isn't trivial, and there are clever speed ups
 - Second, do the full O(n⁵) CKY
 - Skip any X :[i,j] which had low (say, < 0.0001) posterior</p>
 - Avoids almost all work in the second phase!
- Charniak et al 06: can use more passes
- Petrov et al 07: can use many more passes

Results

Some results

- Collins 99 88.6 F1 (generative lexical)
- Charniak and Johnson 05 89.7 / 91.3 F1 (generative lexical / reranked)
- Petrov et al 06 90.7 F1 (generative unlexical)
- McClosky et al 06 92.1 F1 (gen + rerank + self-train)

However

- Bilexical counts rarely make a difference (why?)
- Gildea 01 Removing bilexical counts costs < 0.5 F1

The Game of Designing a Grammar

- Annotation refines base treebank symbols to improve statistical fit of the grammar
 - Parent annotation [Johnson '98]
 - Head lexicalization [Collins '99, Charniak '00]
 - Automatic clustering?

Latent Variable Grammars

Learning Latent Annotations

EM algorithm:

- Brackets are known
- Base categories are known
- Only induce subcategories

Just like Forward-Backward for HMMs.

Refinement of the DT tag

Hierarchical refinement

Refinement of the, tag

Splitting all categories equally is wasteful:

Adaptive Splitting

- Want to split complex categories more
- Idea: split everything, roll back splits which were least useful

Number of Lexical Subcategories

Learned Splits

Proper Nouns (NNP):

NNP-14	Oct.	Nov.	Sept.
NNP-12	John	Robert	James
NNP-2	J.	E.	L.
NNP-1	Bush	Noriega	Peters
NNP-15	New	San	Wall
NNP-3	York	Francisco Stree	

Personal pronouns (PRP):

PRP-0	It	He	I
PRP-1	it	he	they
PRP-2	it	them	him

Learned Splits

Relative adverbs (RBR):

RBR-0	further	lower	higher
RBR-1	more	less	More
RBR-2	earlier	Earlier	later

Cardinal Numbers (CD):

CD-7	one	two	Three
CD-4	1989	1990	1988
CD-11	million	billion	trillion
CD-0	1	50	100
CD-3	1	30	31
CD-9	78	58	34

Final Results (Accuracy)

		≤ 40 words	all
		F1	F1
Щ	Charniak&Johnson '05 (generative)	90.1	89.6
ENG	Split / Merge	90.6	90.1
<u> </u>	Dubey '05	76.3	-
GER	Split / Merge	80.8	80.1
	Chiang et al. '02	80.0	76.6
CHN	Split / Merge	86.3	83.4

Still higher numbers from reranking / self-training methods

Coarse-to-Fine Inference

Example: PP attachment

Hierarchical Pruning

Bracket Posteriors

1621 min
111 min
35 min
15 min
(no search error)