
1

1

Manufacture Testing Manufacture Testing
of of

Digital CircuitsDigital Circuits

Prof. K-T Cheng

UC Santa Barbara

Prof. Srinivas Devadas

MIT

Profs. Kurt Keutzer & Sanjit Seshia

Mukul Prasad

University of California

Berkeley, CA

2

Design Process

Design : specify and enter
the design intent

Implement:
refine the

design

through all

phases

Verify:

verify the

correctness of

design and

implementation

2

3

Design Verification

RTL
Synthesis

HDL

netlist

logic
optimization

netlist

Library/
module
generators

physical
design

layout

manual
design

specification

Is the
design

consistent
with the original
specification?

Is what I think I want
what I really want?

4

Implementation Verification

RTL
Synthesis

HDL

netlist

logic
optimization

netlist

Library/
module
generators

physical
design

layout

manual
design

Is the
implementation

consistent
with the original
design intent?

Is what I
implemented

what I
wanted?

a

b

s

q
0

1

d

clk

a

b

s

q
0

1

d

clk

3

5

Manufacture Verification (Test)

RTL
Synthesis

HDL

netlist

logic
optimization

netlist

Library/
module
generators

physical
design

layout

manual
design

Is the
manufactured

circuit
consistent

with the
implemented

design?

Did they
build
what I

wanted?

a

b

s

q
0

1

d

clk

a

b

s

q
0

1

d

clk

6

Testing

Apply a sequence of inputs to a circuit

Observe the output response and compare the
response with a precomputed or “expected”
response

Any discrepancy is said to constitute an error, the
cause of which is a physical defect

FAB

?

a

b

s

q

0

1

d

clk

4

7

Defects and Fault models

Manufacturing defects can manifest in a variety of ways:[See Ch. 5 of
book]

– Bridging
– Contaminants
– Shorts
– Opens
– Transistors stuck-open

These need to be reduced to models:

– Single stuck-at-1, stuck-at-0
– Multiple stuck-at-1, stuck-at-0
– Delay fault models:

• Gate
• Path
• x {hazard-free, hazard-free robust}

Presently:

– single-stuck-at fault model ubiquitous
– some use of delay fault modeling

9

Defect Model: Stuck-At Faults

Any input or internal wire in circuit can be
stuck-at-1 or stuck-at-0

Single stuck-at-fault model: In the faulty
circuit, a single line/wire is S-a-0 or S-a-1

Multiple stuck-at fault model: In the faulty
circuit any subset of wires are S-a-0/S-a-1
(in any combination)

a b
f1

f2

A
B

C
D

5

10

Reduce to Combinational Logic Problem

Scan Flip-flops

Combinational
Logic

add additional state to flip-flops
(15 - 20% area overhead)

inputs outputs

Scan-chain Scan-chain

11

Outline of Topics

• Basics & Terminology

• PODEM technique

• Boolean Satisfiability-based technique

6

12

Test Generation

Choose a fault model, e.g., single stuck-at
fault model

Given a combinational circuit which realizes
the function f(x1, x2, . . . xn), a logical fault
alters it to fαααα (x1, x2, . . . xn)

Inputs detecting αααα are f ⊕⊕⊕⊕ fαααα (= 1)

Interested in one vector

A = (a1, a2, . . ., an) ∈∈∈∈ f ⊕⊕⊕⊕ fαααα

13

Single Stuck-At Faults

A fault is assumed to occur only on a single line.

x1

x2

x3

a

b

G

Z = x1 x2 + x2 x3

a s-a-1 Z = x1 + x2x3

G s-a-1 Z = x2x3

x1

x2

x3

a

b

G

This model is used because it has been found to be
statistically correlated with defect-free circuits

7

14

Activation and Path Sensitization

In order for an input vector X to detect a fault h
s-a-j, j = 0,1 the input X must cause the signal
h in the normal (fault-free) circuit to take the
value j.

The condition is necessary but not sufficient.
Error signal must be propagated to output.

h

f

x
s-a-1x2

x3

x1

x4

To detect h s-a-1,

need x2 + x3 = 0, i.e., x2 x3

15

The faulty signal must be propagated along
some path from its origin to an output

G3

Fault Activation

h
0/1 0/1

0/1
0

1

How to activate the fault?

G1

G5
f

G4
G2

x
x2

x3

x1

x4

8

16

The faulty signal must be propagated along
some path from its origin to an output

G3

Fault Activation

h
0/1 0/1

0/1
0

1

h s-a-1, for h to be 0, need x2 = x3 = 0 (x2 x3)

G1

G5
f

G4
G2

x
x2

x3

x1

x4

17

The error signal must be propagated along
some path from its origin to an output

How to propagate the fault?

G3

Fault Propagation

h
0/1

h s-a-1, for h to be 0, need x2 = x3 = 0 (x2 x3)

G1

G5
f

G4
G2

x
x2

x3

x1

x4

9

18

The error signal must be propagated along
some path from its origin to an output

Only one path G3, G5

In order to propagate an error through AND

gate G3, other input x1 = 1. To propagate
through G5, need G4 = 0, x1 + x4

G3

Fault Propagation

h
0/1 0/1

0/1
0

1

h s-a-1, for h to be 0, need x2 = x3 = 0 (x2 x3)

G1

G5
f

G4
G2

x
x2

x3

x1

x4

19

Single Path Sensitization (SPS)

1. Activate: Specify inputs so as to generate the
appropriate value (0 for s-a-1, 1 for s-a-0) at the
site of the fault.

2. Propagate: Select a path from the site of the
fault to an output and specify additional signal
values to propagate the fault signal along this
path to the output
(error propagation).

3. Justify; Specify input values so as to produce
the signal values specified in (2)
(line justification).

10

20

Sensitization Example

h s-a-1

Activate?

f1

f2

G6

G5

G4
G3

G1

h s-a-1

G2
D
A
B
C

E

x

21

Sensitization Example

h s-a-1

Activate: To generate h = 0, need A = B = C = 1

Propagate?

f1

f2

G6

G5

G4
G3

G1 h

G2
D
A
B
C

E

x

11

22

Sensitization Example

h s-a-1

To generate h = 0, need A = B = C = 1

Have a choice of propagating through G5 or via G6.
Propagating through G5 requires G2 = 1

⇒⇒⇒⇒ A = D = 0 Contradiction

Propagating through G6 requires G4 = 1 ⇒⇒⇒⇒ C = 1, E = 0.

A valid test vector is ABCE

f1

f2

G6

G5

G4
G3

G1 h

G2
D
A
B
C

E

x

23

Line Justification

E s-a-1 ⇒⇒⇒⇒ E = 0

C = D = 1 to propagate through G1.

To propagate through G4, need G2 = G3 = 1

How do we justify these values?

G3

1
G4G2

1

G1
x

0 s-a-1

B
H
A
F

C
D
E

12

24

Line Justification - 2

Attempt to line justify G2 = G3 = 1

G3 = 1 possible if A = F = 1 or B = H = 1

If A = C = 1, then G2 = 0.

G3 = 1 ⇒⇒⇒⇒ B = H = 1

G2 = 1 needs A = 0 or F = 0

Tests are !ABCD!EH, BCD!E!FH

G3

1
G4G2

1

G1
x

0

B
H
A
F

C
D
E s-a-1

25

Existence of a fault does not change the functionality of
a circuit ⇒⇒⇒⇒ redundant fault

f = x1 + x1 x2 f = x1 + x2

A test generation algorithm is deemed complete if it
either finds a test for any fault or proves its
redundancy, upon terminating.

Redundancy

x
s-a-1

x1

x2

f
x1

x2

f

13

26

Completeness of SPS method ?

d s-a-0 ⇒⇒⇒⇒ A = B = 1

Propagate along G3, G6 ⇒⇒⇒⇒ C = 1

G2 = G4 = G5 = 1

For G4 = 1 either G1 = 0 or E = 0

If G1 = 0 fault is not activiated

If E = 0 (B must be 1) ⇒⇒⇒⇒ G5 = 0 Inconsistency

A
B

x
d

s-a-0

f

G2

G6G3

G4

G5

C

E

G1

27

Completeness of SPS? - 2

Propagation along G4, G6 also results in
inconsistencies by symmetric argument

Is there no test?

A
B

x
d

s-a-0

f

G2

G6G3

G4

G5

C

E

14

28

Multiple Path Sensitization

Error propagates down two paths G3, G6 and G4, G6
to output

It’s natural to work backwards (justifying) and
forwards (propagating) from point of fault
activation but this focuses on sensitizing a
single path

Attempting to sensitize a single path will not find a
test for this fault

1

1

1

1

1/0

1

0/1

0/1

1

x
d

s-a-0

f

G2

G6
G3

G4

G5

1/0

29

First notation: D-Algebra/ D-calculus

Need to be able to deal with multiple
“errors” at the inputs to a gate

D represents a signal which has value 1 in
normal circuit, and value 0 in faulty
circuit.

D ≡≡≡≡ 0/1

D, D behave like Boolean variables

D
D

D

D
0

0 D
1

D

D
D

D D
D

0

D
0

0

15

30

Outline of Topics

• Basics & Terminology

• PODEM technique

• Boolean Satisfiability-based technique

31

Podem strategy – Goel (1981)

Podem

– Path Oriented Decision Making

– uses a simplification to avoid the single-path sensitization trap - only
primary inputs are assigned a value

Values are assigned to primary inputs, then propagated forward –
need a compatibility between required value and PI value

Continue to assign PI values one at a time

– Implicate values forward

– check to see if the faulty value has propagated to an output – if so then
you have a test

If at any point there is a conflict between the PIs and

– Exciting the faulty value

– Propagating the faulty value forward

backtrack – but only at the primary inputs, if you have tried all
combinations then halt with failure to find test

16

32

Podem decision procedure

Cf. Fig 5, Goel 1981

backtrack

Assign new PIs

Try a new value on existing PIs

33

Flowchart of Backtrace (not backtrack!)

Cf. Fig 9, Goel 1981

17

34

PODEM Example

Initial objective: (0, G2)

Backtrace to PIs: x2 = 1

Objective: (0, G2)

Backtrace: x3 = 1

Implication: G2 = D

G8 Z

G4

G5

G6

G7

G3

G2

G1

x
s-a-1

x1

x2
x3

x4

D1
1

35

Podem Example – 2a

D-frontier is {G5, G6}

Attempt to propagate through G5

Require x1 = 1

Implication?

G8 Z

G4

G5

G6

G7

G3

G2

G1

x
s-a-1

x1

x2
x3

x4

D1
1
1

18

36

Podem Example – 2b

D-frontier is {G5, G6}

Attempt to propagate through G5

Require x1 = 1

Implication G1 = 0, G4 = 1, G5 = D

G8 Z

G4

G5

G6

G7

G3

G2

G1

x
s-a-1

x1

x2
x3

x4

D1
1
1 D

0

37

Podem Example – 3a

Attempt to propagate D through G8.

Objective (1, G6)

Backtrace to set x4 = 0

Implication produces G3 = 1 G7 = 0 G8 = 1
failed in propagating error

G8 Z

G4

G5

G6

G7

G3

G2

G1

x
s-a-1

x1

x2
x3

x4

D1
1
1 D

0

0
1 0

1

19

38

Podem Example – 3b

Attempt to propagate D through G8.

Objective (1, G6)

Backtrace

G8 Z

G4

G5

G6

G7

G3

G2

G1

x
s-a-1

x1

x2
x3

x4

D1
1
1 D

0

1

1

39

Podem Example - 4

BACKTRACK to most recent assignment x4

Try alternative value x4 = 1

Implication results in G3 = 0, G6 = D, G8 = D

Generated test 1111

G8 Z

G4

G5

G6

G7

G3

G2

G1

x
s-a-1

x1

x2
x3

x4

D1
1
1 D

0

1
0 1

D

1

D

20

40

Status on Podem

Podem approach very successful

At the core of most ATPG systems today

Spawned many additional innovations

– FAN – Fujiwara – sophisticated backtrace

– Socrates – Schulz – learning

But if we had it all to do over …

41

Outline of Topics

• Basics & Terminology

• PODEM technique

• Boolean Satisfiability-based technique

21

42

Another approach to ATPG (Larrabee, 1989)

The ATPG problem

The CIRCUIT-SAT problem

The Boolean Satisfiability (SAT) problem

SAT

CIRCUIT-SAT

ATPG

43

The ATPG problem

Does there exist a value assignment to the primary
inputs which distinguishes the faulted and correct

circuits ?

• A logic circuit

• A fault point

• A fault value

a

b

c

d

e

f

g

h

i
s-a-1

00(1)(1)

00(1)(1)

11

00

00

00

11

11

11
1, −−= asfψ

Circuit C

22

44

The CIRCUIT-SAT problem

Does there exist a value assignment to the
primary inputs which causes the primary output

to assume logic value ‘1’ ?

a

b

c

d

e

f

g

h

i

45

ATPG as a CIRCUIT-SAT problem

a

b

c

d

e

f

g

h

i

1

hf if

t = 1?

ATPG
ψ

C Circuit

Can we find an input value in which the faulty circuit and
the good circuit differ?

23

46

The Boolean Satisfiability (SAT) problem

Given a formula, f :

))()((cbacacba +++++

C
1

C
2

C
3

a=b=c=1

(a,b,c)

(C1,C2,C3)� Comprised of a conjunction (AND) of clauses

� Defined over a set of variables, V

� Each clause is a disjunction (OR) of literals of the
variables V

Example :Example :

Does there exist an assignment of Boolean values to
the variables, V which sets at least one literal in each

clause to ‘1’ ?

47

CIRCUIT-SAT as a SAT problem

A set of clauses representing the functionality of each
gate

A unit literal (i) clause asserting the output to be ‘1’

a

b

c

d

e

f

g

h

i

))()((fcbfcfb ++++

))()((hfahfha ++++

))()((gedgegd ++++

)(i

))()((ighigih ++++

24

48

Algorithm for SAT [DPLL-62]

Is_SAT(f, A)Is_SAT(f, A)

{{

if Eval_1(f, A) return SATif Eval_1(f, A) return SAT

if Eval_0(f,A) return NOT_SAT if Eval_0(f,A) return NOT_SAT

v = Next_Variable(f, A)v = Next_Variable(f, A)

if Is_SAT(f, (A,v=0)) return SATif Is_SAT(f, (A,v=0)) return SAT

if Is_SAT(f, (A,v=1)) return SATif Is_SAT(f, (A,v=1)) return SAT

return UNSATreturn UNSAT

}}

f,A

v

f, (A,v=0) f, (A,v=1)

We have reduced ATPG to SATWe have reduced ATPG to SAT-- but then what?but then what?

Given :Given : CNF formula f(vCNF formula f(v11,v,v22,..,v,..,vkk) , and an ordering) , and an ordering

functionfunction Next_VariableNext_Variable

49

DPLL Algorithm – Unit Clause Rule

�� Unit Literal Unit Literal PropagationPropagation rule (Boolean rule (Boolean

Constraint Propagation, BCP) Constraint Propagation, BCP)

)(cba ++

=

0

=

0

c = 1

25

50

DPLL Algorithm – Pure Literal Rule

...)(+a

...)(+a

...)(+a�

�

�

...

...)(+a

...)(+a

...)(+a

...

�� PurePure--Literal rule:Literal rule: a

Assign a = 1,
Skip a = 0

51

Tegus Performance on Real Circuits

Results :

• Of the 11,000

instances generated,
90% were solved in
less than 1/100th of a
second

• The remaining
exhibited roughly a
cubic growth in
execution time

Why is ATPG easy, inspite of being NP-Complete?

(see paper by Prasad, Chong, Keutzer in the reader)

0.00014x3-0.7065x2+1323.4x-638304

26

52

Current Status on Manufacture Test

Practical approach to test: use scan – achieve 99%+ stuck-at
coverage

Single stuck-at-fault testing for combinational logic is a ``solved
problem’’

– Despite the fact that it is NP-complete

– After 20+ years of research

– Results applied to combinational-equivalence checking

Single stuck-at-fault testing for sequential circuits is an intractable
problem

– Time-frame expansion used in state-space search

Principal research focus is on ATPG for enhanced fault models

– Delay fault testing

Other approaches

– BIST

