
11

1

RetimingRetiming

R. K. R. K. BraytonBrayton, K. , K. KeutzerKeutzer, & S. Seshia , & S. Seshia

UC BerkeleyUC Berkeley

N. Shenoy, SynopsysN. Shenoy, Synopsys

Thanks to A. Thanks to A. KuehlmannKuehlmann, UCB, UCB

2

RTL Design FlowRTL Design Flow

RTL
Synthesis

HDL

netlist

logic
optimization

netlist

Library

physical
design

layout

a

b

s

q
0

1

d

clk

a

b

s

q
0

1

d

clk

Module
Generators

Manual
Design

22

3

Logic OptimizationLogic Optimization

•• Perform a variety of Perform a variety of
transformations and transformations and
optimizationsoptimizations

–– Combinational Combinational
transformationstransformations

•• Technology independentTechnology independent

•• Technology dependentTechnology dependent

–– Sequential transformationsSequential transformations

•• FSM state assignmentFSM state assignment

•• RetimingRetiming

logic
optimization

netlist

netlist

pre-optimized

smaller, faster
less power

Library

a

b

s

q

0

1

d

clk

a

b

s

q

0

1

d

clk

4

Logic Optimization ProblemLogic Optimization Problem

Flip-flops

Combinational
Logic

inputs outputs

33

5

What about the Registers?What about the Registers?

•• Pure combinational optimization can be suboptimal since Pure combinational optimization can be suboptimal since

relations across register boundaries are disregardedrelations across register boundaries are disregarded

•• Optimize a sequential circuit by optimally placing registers. Optimize a sequential circuit by optimally placing registers.

Move register(s) so thatMove register(s) so that

–– clock cycle decreases, or number of registers decreases andclock cycle decreases, or number of registers decreases and

–– inputinput--output behavior is preservedoutput behavior is preserved

•• Also, can combine retiming with combinational optimization Also, can combine retiming with combinational optimization

techniquestechniques

–– Move latches out of the way temporarilyMove latches out of the way temporarily

–– optimize larger blocks of combinationaloptimize larger blocks of combinational

6

Lecture OutlineLecture Outline

•• Why is retiming important?Why is retiming important?

•• Basic Model and AlgorithmsBasic Model and Algorithms

•• Combining with Combinational Combining with Combinational

OptimizationOptimization

44

7

Retiming Retiming -- tradeoffstradeoffs

a

b

6

4

5

4

1

1

1
2

2

2

clock period =

registers =

4

3

2

4

8

Retiming Retiming -- IntroductionIntroduction

•• Move registers Move registers

•• GoalsGoals

–– clock period (minclock period (min--period retiming)period retiming)

–– number of registers (minnumber of registers (min--area retiming)area retiming)

–– number of registers for a target clock period number of registers for a target clock period
(constrained min(constrained min--area retiming)area retiming)

a

b

6

4

6

4

5

4

5

4

1

1

1
2

2

2

clock period =

registers =

4

3

4

3

2

4

2

4

55

9

Importance of RetimingImportance of Retiming

•• Practical sequential optimizationPractical sequential optimization

•• Global optimality for clock period and register Global optimality for clock period and register

positioningpositioning

•• Must for HDL synthesisMust for HDL synthesis

–– lowers dependency on user descriptionlowers dependency on user description

•• Low power strategyLow power strategy

–– decrease #registers with no loss in performancedecrease #registers with no loss in performance

10

Practical Importance of Practical Importance of

RetimingRetiming

0

5

10

15

20

25

30

35

40

45

area

area-ret

delay

delay-ret

66

11

•• Circuit graphCircuit graph

–– gategate

–– wirewire

–– environmentenvironment

Retiming Retiming -- Problem DefinitionProblem Definition

1

1
2

2

vertex

2
1

edge

1
h

1

1

host vertex and host edges

a

b
1

1

2

2

z

V = set of gates

E = set of edges

d(v) – delay of gate (vertex), d(v) ≥≥≥≥≥≥≥≥ 0

w(e) – # of registers on edge e, w(e) ≥≥≥≥≥≥≥≥ 00

12

Circuit RepresentationCircuit Representation

Example: Example: CorrelatorCorrelator

CircuitCircuit

δδδδδδδδ(x, y) = 1 if x=y(x, y) = 1 if x=y
0 otherwise0 otherwise

Operation delayOperation delay

δδδδδδδδ 33

+ 7+ 7

•• Every cycle in Graph has at least one register i.e. Every cycle in Graph has at least one register i.e.

no combinational loops.no combinational loops.

00

33 33

00

00
00

00
22

GraphGraph

77

aa bb

++

δδδδδδδδ δδδδδδδδ

HostHost

77

13

PreliminariesPreliminaries

•• For a path p: VFor a path p: V00→→→→→→→→

•• Clock cycleClock cycle

∑

∑
−

=

=

=

=

1

0

0

)()(

)()(

k

i

i

k

i

i

ewpw

vdpd endpoints) (includes

)}({max
0)(:

pdc
pwp =

=

For For correlatorcorrelator c = 13c = 13

Path with Path with

w(p)=0w(p)=000

33 33

00

00
00

00
22

77

14

•• Movement of registers from input to output of a Movement of registers from input to output of a

gate or vice versagate or vice versa

•• Does not affect gate functionalitiesDoes not affect gate functionalities

•• A mathematical formulation: A mathematical formulation: RetardationRetardation

–– r: V r: V →→→→→→→→ Z, an integer vertex labelingZ, an integer vertex labeling

–– wwrr(e(e) =w(e) + r(v)) =w(e) + r(v) -- r(u) for edge e= (u,v)r(u) for edge e= (u,v)

Basic OperationBasic Operation

Retime by 1Retime by 1

Retime by Retime by --11

88

15

•• Thus in the example, r(u) = Thus in the example, r(u) = --1, r(v) = 1, r(v) = --1 results in1 results in

•• For a path p: sFor a path p: s→→→→→→→→t, t, WWrr(p(p) = w(p) + r(t)) = w(p) + r(t) -- r(s)r(s)

•• RetimingRetiming

–– r: Vr: V→→→→→→→→Z, an integer vertex labelingZ, an integer vertex labeling

–– wwrr(e(e) = w(e) + r(v)) = w(e) + r(v) -- r(u) for edge e= (u,v)r(u) for edge e= (u,v)

–– A retiming r is legal if A retiming r is legal if wwrr(e(e)) ≥≥≥≥≥≥≥≥ 0, 0, ∀∀∀∀∀∀∀∀ ee∈∈∈∈∈∈∈∈EE

Basic OperationBasic Operation

vvuu
00

33 33

00

00
00

00
22

77

vvuu
00

33 33

00

11
11

00
11

77

16

Retiming Retiming -- AssumptionsAssumptions

•• Each loop in circuit contains at least one registerEach loop in circuit contains at least one register

•• Circuit uses single clock and edgeCircuit uses single clock and edge--triggered triggered

elements (identical skew)elements (identical skew)

•• Gate delay is constant (and nonGate delay is constant (and non--negative)negative)

•• Registers are ideal (setRegisters are ideal (set--up, drive independent of up, drive independent of

load)load)

•• Any powerAny power--up state of the design can be safely up state of the design can be safely

handled by the environment (initial state handled by the environment (initial state

assumption)assumption)

99

17

Retiming Retiming -- FormulationFormulation

•• Assign integers to each vertex so that objective Assign integers to each vertex so that objective

is metis met

•• Valid retiming constraintsValid retiming constraints

a b
e

w (e) = w(e)
r

r(b)

+ r(b)

r(a)

- r(a)

a b
e

w (e) = w(e)
r

> 0> 0

a b

p

w (p) = w(p) + r(b) - r(a)
r

18

Retiming for Minimum Clock CycleRetiming for Minimum Clock Cycle

–– Problem StatementProblem Statement: (Minimum cycle time): (Minimum cycle time)

–– Given G(V, E, d, w), find a Legal retiming r so that Given G(V, E, d, w), find a Legal retiming r so that

(A(A))

is minimizedis minimized

–– 2 important matrices2 important matrices

•• Register weight matrixRegister weight matrix

•• Delay matrixDelay matrix

(B)(B)

)}({max
0)(:

pdc
pWp r ====

====

}:)(min{),(vupwvuW
p→=

)},()(,:)(max{),(vuWpwvupdvuD
p ====→→→→====

1),(),(≥≥≥≥⇒⇒⇒⇒>>>> vuWcvuD

1010

19

Retiming for Minimum Clock CycleRetiming for Minimum Clock Cycle

WW
V0 V1 V2 V3V0 V1 V2 V3

V0V0
V1V1
V2V2
V3V3

0 2 2 20 2 2 2
0 0 0 00 0 0 0
0 2 0 00 2 0 0
0 2 2 00 2 2 0

C C ≤≤≤≤≤≤≤≤ αααααααα ⇔⇔⇔⇔⇔⇔⇔⇔ ∀∀∀∀∀∀∀∀p, if d(p) p, if d(p) >>>>>>>> αααααααα then w(p) then w(p) ≥≥≥≥≥≥≥≥ 11
i.e. for the clock cycle to be less than i.e. for the clock cycle to be less than αααααααα there must be there must be

a latch in the patha latch in the path

DD
V0 V1 V2 V3V0 V1 V2 V3

V0V0
V1V1
V2V2
V3V3

0 3 6 0 3 6 1313
1313 3 6 3 6 1313
10 1310 13 3 3 1010
7 7 10 1310 13 77

V2V2v1v1

v0v0 00

33 33

00

00
00

00
22

77

W W –– register path weight matrix,register path weight matrix,

min # of registers on all pathsmin # of registers on all paths

between u and vbetween u and v

D D –– path delay matrix, max delaypath delay matrix, max delay

among all paths between u and v among all paths between u and v

with W(u,v) registerswith W(u,v) registers

20

Conditions for RetimingConditions for Retiming

•• Suppose we need to check if a retiming exists for a clock cycle Suppose we need to check if a retiming exists for a clock cycle αααααααα

•• Legal retiming: Legal retiming: wwrr(e(e)) ≥≥≥≥≥≥≥≥ 0 for all e. Hence 0 for all e. Hence

wwrr(e(e) = w(e) + r(v)) = w(e) + r(v) -- r(u) r(u) ≥≥≥≥≥≥≥≥ 0 or0 or

r (u) r (u) -- r (v) r (v) ≤≤≤≤≤≤≤≤ w (e)w (e)

•• For all paths p: u For all paths p: u →→→→→→→→ v such that d(p) v such that d(p) ≥≥≥≥≥≥≥≥ αααααααα, we require , we require wwrr(p(p)) ≥≥≥≥≥≥≥≥ 11

–– ThusThus

)()()(

)()()(

)]()()([

)()(1

0

1

1

0

1

0

urvrpw

vrvrpw

vrvrew

ewpw

k

iii

k

i

k

i

irr

−+=
−+=

−+=

=≤

+

−

=

−

=

∑

∑

Or take the least w(p) (tightest constraint) Or take the least w(p) (tightest constraint) r(u)r(u)--r(v) r(v) ≤≤≤≤≤≤≤≤ W(u,v)W(u,v)--11

i.e. there are many paths i.e. there are many paths p,p, choose the choose the p p that gives tightest constraintthat gives tightest constraint

Note: we just need to apply it to (u, v) such that D(u,v) Note: we just need to apply it to (u, v) such that D(u,v) >>>>>>>> αααααααα

1111

21

•• All constraints in All constraints in ““difference of 2 variablesdifference of 2 variables”” form form

•• How to solve?How to solve?

Solving the ConstraintsSolving the Constraints

CorrelatorCorrelator: : αααααααα = 7= 7

Legal: r(u)Legal: r(u)--r(v)r(v)≤≤≤≤≤≤≤≤w(e)w(e)

0)()(

0)()(

0)()(

0)()(

2)()(

03

32

31

21

10

≤−
≤−
≤−
≤−
≤−

vrvr

vrvr

vrvr

vrvr

vrvr

1)()(

1)()(

1)()(

1)()(

1)()(

1)()(

1)()(

1)()(

23

13

32

12

02

31

01

30

≤−
≤−

−≤−
≤−

−≤−
−≤−
−≤−

≤−

vrvr

vrvr

vrvr

vrvr

vrvr

vrvr

vrvr

vrvr

D>7:D>7:
r(u)r(u)--r(v)r(v)≤≤≤≤≤≤≤≤WW(u,v)(u,v)--11

V2V2v1v1

v0v0 00

33 33

00

00
00

00
22

77

WW
V0 V1 V2 V3V0 V1 V2 V3

V0V0
V1V1
V2V2
V3V3

0 2 2 20 2 2 2
0 0 0 00 0 0 0
0 2 0 00 2 0 0
0 2 2 00 2 2 0

DD
V0 V1 V2 V3V0 V1 V2 V3

V0V0
V1V1
V2V2
V3V3

0 3 6 0 3 6 1313
1313 3 6 3 6 1313
10 1310 13 3 3 1010
7 7 10 1310 13 77

V3V3

22

•• Do shortest path on constraint graph Do shortest path on constraint graph

–– Bellman Ford Algorithm, O(|V|Bellman Ford Algorithm, O(|V|33))

•• A solution exists if and only if there exists no negative weightA solution exists if and only if there exists no negative weighted ed

cycle.cycle.

Solving the ConstraintsSolving the Constraints

Legal: r(u)Legal: r(u)--r(v)r(v)≤≤≤≤≤≤≤≤w(e)w(e)

0)()(

0)()(

0)()(

0)()(

2)()(

03

32

31

21

10

≤−
≤−
≤−
≤−
≤−

vrvr

vrvr

vrvr

vrvr

vrvr

1)()(

1)()(

1)()(

1)()(

1)()(

1)()(

1)()(

1)()(

23

13

32

12

02

31

01

30

≤−
≤−

−≤−
≤−

−≤−
−≤−
−≤−

≤−

vrvr

vrvr

vrvr

vrvr

vrvr

vrvr

vrvr

vrvr

D>7:D>7:
r(u)r(u)--r(v)r(v)≤≤≤≤≤≤≤≤WW(u,v)(u,v)--11

A solution is r(vA solution is r(v00) = r(v) = r(v33) = 0, r(v) = 0, r(v11) = r(v) = r(v22) =) = --11

r(v1)r(v1)r(v0)r(v0)

r(v3)r(v3)r(v2)r(v2)

00

11 11

11

11

11

--11

--11

--11

0,0,--11

0,0,--11

00

00
--11

1212

23

RetimingRetiming

To find theTo find the minimum cycle time, do a binary search among minimum cycle time, do a binary search among

the entries of the D matrix 0(the entries of the D matrix 0(VV33loglogVV))

RetimeRetime

Retimed Retimed correlatorcorrelator::

Clock cycleClock cycle
= 3+3+7=13= 3+3+7=13 Clock cycle = 7Clock cycle = 7

V2V2v1v1

v0v0 00

33 33

00

00
00

00
22

77

aa bb

++

δδδδδδδδ δδδδδδδδ

HostHost

aa bb

++

δδδδδδδδ δδδδδδδδ

HostHost

WW
V0 V1 V2 V3V0 V1 V2 V3

V0V0
V1V1
V2V2
V3V3

0 2 2 20 2 2 2
0 0 0 00 0 0 0
0 2 0 00 2 0 0
0 2 2 00 2 2 0

DD
V0 V1 V2 V3V0 V1 V2 V3

V0V0
V1V1
V2V2
V3V3

0 3 6 0 3 6 1313
1313 3 6 3 6 1313
10 1310 13 3 3 1010
7 7 10 1310 13 77

24

RetimingRetiming

To find theTo find the minimum cycle time, do a binary search among the minimum cycle time, do a binary search among the

entries of the D matrix 0(entries of the D matrix 0(VV33loglogVV))

RetimeRetime

Retimed Retimed correlatorcorrelator::

Clock cycleClock cycle
= 3+3+7=13= 3+3+7=13 Clock cycle = 7Clock cycle = 7

V2V2v1v1

v0v0 00

33 33

00

00
00

00
22

77

aa bb

++

δδδδδδδδ δδδδδδδδ

HostHost

aa bb

++

δδδδδδδδ δδδδδδδδ

HostHost

WW
V0 V1 V2 V3V0 V1 V2 V3

V0V0
V1V1
V2V2
V3V3

0 2 2 20 2 2 2
0 0 0 00 0 0 0
0 2 0 00 2 0 0
0 2 2 00 2 2 0

DD
V0 V1 V2 V3V0 V1 V2 V3

V0V0
V1V1
V2V2
V3V3

0 3 6 0 3 6 1313
1313 3 6 3 6 1313
10 1310 13 3 3 1010
7 7 10 1310 13 77

1313

25

RetimingRetiming
•• Previous algorithm has drawbacksPrevious algorithm has drawbacks

–– Require W/D matrix computationRequire W/D matrix computation

–– O(|V|O(|V|22) clock period constraints most of which) clock period constraints most of which
are redundantare redundant

–– Average case is worst caseAverage case is worst case

•• FEAS algorithm for clock period cFEAS algorithm for clock period c
Repeat |V|Repeat |V|--1 times {1 times {

Compute edge weights of retimed graph Compute edge weights of retimed graph GGrr

}}

If then FAIL, else SUCCESSIf then FAIL, else SUCCESS

•• FEAS solves the constraints implicitly! FEAS solves the constraints implicitly!

•• RunRun--time: O(|V| |E|)time: O(|V| |E|)

++++++++>>>>→→→→→→→→∃∃∃∃∈∈∈∈∀∀∀∀)(;),(,...:, vrcvudvupGv r

26

Retiming with FEASRetiming with FEAS

•• W/D matrices not needed W/D matrices not needed

–– use binary search between current clock use binary search between current clock

period and the largest infeasible clock period period and the largest infeasible clock period

insteadinstead

•• Detecting failure is expensive in FEASDetecting failure is expensive in FEAS

–– On success, often see quick convergence and On success, often see quick convergence and

can terminate loop can terminate loop

1414

27

Retiming Retiming -- performanceperformance

•• Predecessor heuristic Predecessor heuristic -- detect infeasibility detect infeasibility

(cheaply and early)(cheaply and early)

a b

c

d

h

28

Retiming Retiming -- performanceperformance

•• Solve retiming for the loopSolve retiming for the loop

–– much smaller size than original graphmuch smaller size than original graph

–– loop infeasible loop infeasible � � � � � � � � no retiming at no retiming at c c

–– loop feasible loop feasible � � � � � � � � no conclusionno conclusion

a b

c

d

1515

29

Retiming For Minimum Area at Fixed Clock Retiming For Minimum Area at Fixed Clock

Period (Period (““Constrained Min AreaConstrained Min Area””))

Solved by solving the dual linear programSolved by solving the dual linear program
•• A minimum cost circulation problemA minimum cost circulation problem

Other constraints Other constraints
same as beforesame as before

30

Retiming Retiming -- performanceperformance

•• Constrained minConstrained min--area retimingarea retiming

–– constraint generationconstraint generation

a b

p1: w1, d1

a b

p2: w2, d2

w

d
w1, d1

w2, d2

c

Effect: No constraint

c

Effect: No constraint

Effect: w (p1) > 1
r

c

1616

32

Retiming For Minimum AreaRetiming For Minimum Area

•• In practiceIn practice

–– We need W & D matrices to add clock We need W & D matrices to add clock
period edgesperiod edges

•• Compute row of matrix at a time and avoid Compute row of matrix at a time and avoid
redundant edgesredundant edges

–– Use minimum cost scaling to solve Use minimum cost scaling to solve
circulation problemcirculation problem

•• Numeric precision needs big integers!Numeric precision needs big integers!

33

FSM Optimization: Combining FSM Optimization: Combining

Combinational Optimization and Combinational Optimization and

RetimingRetiming

AA BB

OUTOUT

BB

OUTOUT

AA

Break cyclesBreak cycles

1717

34

FSM OptimizationFSM Optimization

Peripheral retimingPeripheral retiming

ResynthesizeResynthesize

BB

OUTOUT

AA

BB

OUTOUT

AA

35

FSM OptimizationFSM Optimization

RetimeRetime

ReconnectReconnect

BB

OUTOUT

AA

BB

OUTOUT

AA

1818

36

FSM OptimizationFSM Optimization

ResynthesizedResynthesized circuitcircuit

BB

OUTOUT

AA

AA BB

OUTOUT

Original circuitOriginal circuit

37

Retiming & Initial StatesRetiming & Initial States

•• Circuits come in two flavorsCircuits come in two flavors

–– Initial powerInitial power--up then force set/reset up then force set/reset

lines lines

•• Retiming obeys delayed equivalence notionRetiming obeys delayed equivalence notion

–– Initial state loaded using initializing Initial state loaded using initializing

sequencesequence

•• Problem Problem –– same sequence might not work same sequence might not work

for retimed for retimed cktckt

1919

38

Retiming in practice todayRetiming in practice today

•• Mostly used in pipelined Mostly used in pipelined datapathdatapath

•• Verification technology needs to be Verification technology needs to be

improved for greater acceptanceimproved for greater acceptance

