Retiming

R. K. Brayton, K. Keutzer, \& S. Seshia UC Berkeley
N. Shenoy, Synopsys

Thanks to A. Kuehlmann, UCB

RTL Design Flow

Logic Optimization

- Perform a variety of transformations and optimizations
- Combinational transformations
- Technology independent
- Technology dependent
- Sequential transformations

- FSM state assignment
- Retiming

Logic Optimization Problem

inputs

outputs

What about the Registers?

- Pure combinational optimization can be suboptimal since relations across register boundaries are disregarded
- Optimize a sequential circuit by optimally placing registers. Move register(s) so that
- clock cycle decreases, or number of registers decreases and
- input-output behavior is preserved
- Also, can combine retiming with combinational optimization techniques
- Move latches out of the way temporarily
- optimize larger blocks of combinational

Lecture Outline

- Why is retiming important?
- Basic Model and Algorithms
- Combining with Combinational Optimization

Retiming - tradeoffs

Retiming - Introduction

- Move registers
- Goals
- clock period (min-period retiming)
- number of registers (min-area retiming)
- number of registers for a target clock period (constrained min-area retiming)

Importance of Retiming

- Practical sequential optimization
- Global optimality for clock period and register positioning
- Must for HDL synthesis
- lowers dependency on user description
- Low power strategy
- decrease \#registers with no loss in performance

Practical Importance of Retiming

Retiming - Problem Definition

- Circuit \longrightarrow graph
$\mathrm{V}=$ set of gates
- gate \longrightarrow vertex

E = set of edges
$\mathrm{d}(\mathrm{v})$ - delay of gate (vertex), $\mathrm{d}(\mathrm{v}) \geq 0$

- wire \longrightarrow edge
$\mathrm{w}(\mathrm{e})$ - \# of registers on edge e, w(e) ≥ 0
- environment \longleftrightarrow host vertex and host edges

Circuit Representation

Example: Correlator

Operation	delay
8	3
+	7

$$
\delta(x, y)=1 \text { if } x=y
$$

0 otherwise

Preliminaries

- For a path $\mathrm{p}: \mathrm{V}_{0} \rightarrow$

$$
\begin{aligned}
& d(p)=\sum_{i=0}^{k} d\left(v_{i}\right) \quad \text { (includes endpoints) } \\
& w(p)=\sum_{i=0}^{k-1} w\left(e_{i}\right)
\end{aligned}
$$

- Clock cycle

$$
c=\max _{p: w(p)=0}\{d(p)\}
$$

For correlator c = 13

Basic Operation

- Movement of registers from input to output of a gate or vice versa

- Does not affect gate functionalities
- A mathematical formulation: Retardation
- r: V \rightarrow Z, an integer vertex labeling
$-w_{r}(e)=w(e)+r(v)-r(u)$ for edge $e=(u, v)$

Basic Operation

- Thus in the example, $r(u)=-1, r(v)=-1$ results in

- For a path $p: s \rightarrow t, W_{r}(p)=w(p)+r(t)-r(s)$
- Retiming
- $\mathrm{r}: \mathrm{V} \rightarrow \mathbf{Z}$, an integer vertex labeling
$-w_{r}(\mathrm{e})=\mathrm{w}(\mathrm{e})+\mathrm{r}(\mathrm{v})-\mathrm{r}(\mathrm{u})$ for edge $\mathrm{e}=(\mathrm{u}, \mathrm{v})$
- A retiming r is legal if $w_{r}(e) \geq 0, \forall e \in E$

Retiming - Assumptions

- Each loop in circuit contains at least one register
- Circuit uses single clock and edge-triggered elements (identical skew)
- Gate delay is constant (and non-negative)
- Registers are ideal (set-up, drive independent of load)
- Any power-up state of the design can be safely handled by the environment (initial state assumption)

Retiming - Formulation

- Assign integers to each vertex so that objective is met
- Valid retiming constraints

$w_{r}(p)=w(p)+r(b)-r(a)$

Retiming for Minimum Clock Cycle

- Problem Statement: (Minimum cycle time)
- Given G(V, E, d, w), find a Legal retiming r so that

$$
\begin{equation*}
c=\max _{p: W_{r}(p)=0}\{d(p)\} \tag{A}
\end{equation*}
$$

is minimized

- 2 important matrices
- Register weight matrix $W(u, v)=\min \{w(p): u \longrightarrow p\}$
- Delay matrix

$$
\begin{align*}
& D(u, v)=\max \{d(p): u \xrightarrow{p} v, w(p)=W(u, v)\} \\
& D(u, v)>c \Rightarrow W(u, v) \geq 1 \tag{B}
\end{align*}
$$

Retiming for Minimum Clock Cycle

W - register path weight matrix,
 min \# of registers on all paths between \mathbf{u} and \mathbf{v}
D - path delay matrix, max delay among all paths between u and v with $\mathrm{W}(\mathbf{u}, \mathbf{v})$ registers

	W V0 V1 V2 V3	D Vo V1 V2 V3
vo	0222	03613
V1	0000	133613
V2	0200	1013310
V3	0220	710137

$\mathrm{C} \leq \alpha \Leftrightarrow \forall \mathrm{p}$, if $\mathrm{d}(\mathrm{p})>\alpha$ then $\mathrm{w}(\mathrm{p}) \geq 1$
i.e. for the clock cycle to be less than α there must be a latch in the path

Conditions for Retiming

- Suppose we need to check if a retiming exists for a clock cycle α
- Legal retiming: $w_{r}(e) \geq 0$ for all e. Hence

$$
\begin{array}{r}
w_{r}(e)=w(e)+r(v)-r(u) \geq 0 \text { or } \\
r(u)-r(v) \leq w(e)
\end{array}
$$

- For all paths $p: u \rightarrow v$ such that $d(p) \geq \alpha$, we require $w_{r}(p) \geq 1$
- Thus

$$
\begin{aligned}
1 & \leq w_{r}(p)=\sum_{i=0}^{k-1} w_{r}\left(e_{i}\right) \\
& =\sum_{i=0}^{k-1}\left[w\left(e_{i}\right)+r\left(v_{i+1}\right)-r\left(v_{i}\right)\right] \\
& =w(p)+r\left(v_{k}\right)-r\left(v_{0}\right) \\
& =w(p)+r(v)-r(u)
\end{aligned}
$$

Or take the least $w(p)$ (tightest constraint) $\quad r(u)-r(v) \leq W(u, v)-1$
i.e. there are many paths p, choose the p that gives tightest constraint

Note: we just need to apply it to (u, v) such that $D(u, v)>\alpha$

Solving the Constraints

- All constraints in "difference of 2 variables" form
- How to solve?

$$
\text { Correlator: } \alpha=7
$$

$$
D>7:
$$

$$
\begin{array}{l|l|}
\text { Legal: } r(\mathrm{u})-r(\mathrm{v}) \leq \mathrm{w}(\mathrm{e}) & r(\mathrm{u})-r(\mathrm{v}) \leq \mathrm{W}(\mathrm{u}, \mathrm{v})-1 \\
\hline r\left(v_{0}\right)-r\left(v_{1}\right) \leq 2 \\
r\left(v_{1}\right)-r\left(v_{2}\right) \leq 0 \\
r\left(v_{1}\right)-r\left(v_{3}\right) \leq 0 \\
r\left(v_{2}\right)-r\left(v_{3}\right) \leq 0 \\
r\left(v_{3}\right)-r\left(v_{0}\right) \leq 0 & r\left(v_{0}\right)-r\left(v_{3}\right) \leq 1 \\
& r\left(v_{1}\right)-r\left(v_{0}\right) \leq-1 \\
& r\left(v_{1}\right)-r\left(v_{3}\right) \leq-1 \\
& r\left(v_{2}\right)-r\left(v_{0}\right) \leq-1 \\
r\left(v_{2}\right)-r\left(v_{1}\right) \leq 1 \\
r\left(v_{2}\right)-r\left(v_{3}\right) \leq-1 \\
& r\left(v_{3}\right)-r\left(v_{1}\right) \leq 1 \\
& r\left(v_{3}\right)-r\left(v_{2}\right) \leq 1
\end{array}
$$

Solving the Constraints

- Do shortest path on constraint graph
- Bellman Ford Algorithm, $\mathbf{O}\left(|\mathrm{V}|{ }^{3}\right)$
- A solution exists if and only if there exists no negative weighted cycle.

$$
\begin{array}{cll}
\text { Legal: } r(\mathrm{u})-r(\mathrm{v}) \leq \mathrm{w}(\mathrm{e}) & \begin{array}{l}
\mathrm{D}>7: \\
\\
\hline r\left(v_{0}\right)-r\left(v_{1}\right) \leq 2 \\
r\left(v_{1}\right)-r\left(v_{2}\right) \leq 0 \\
r\left(v_{1}\right)-r\left(v_{3}\right) \leq 0 \\
r\left(v_{2}\right)-r\left(v_{3}\right) \leq 0 \\
r\left(v_{3}\right)-r\left(v_{0}\right) \leq 0
\end{array} & \begin{array}{ll}
r\left(v_{0}\right)-r\left(v_{3}\right) \leq 1 \\
& r\left(v_{1}\right)-r\left(v_{0}\right) \leq-1 \\
& r\left(v_{1}\right)-r\left(v_{3}\right) \leq-1 \\
r\left(v_{2}\right)-r\left(v_{0}\right) \leq-1 \\
r\left(v_{2}\right)-r\left(v_{1}\right) \leq 1 \\
& r\left(v_{2}\right)-r\left(v_{3}\right) \leq-1 \\
r\left(v_{3}\right)-r\left(v_{1}\right) \leq 1 \\
r\left(v_{3}\right)-r\left(v_{2}\right) \leq 1
\end{array}
\end{array}
$$

A solution is $r\left(v_{0}\right)=r\left(v_{3}\right)=0, r\left(v_{1}\right)=r\left(v_{2}\right)=-1$

Retiming

To find the minimum cycle time, do a binary search among
the entries of the D matrix $0\left(|v|{ }^{3} \log |v|\right)$

Retimed correlator:

Retiming

Retiming

- Previous algorithm has drawbacks
- Require W/D matrix computation
- $\mathbf{O}\left(|V|^{2}\right)$ clock period constraints most of which are redundant
- Average case is worst case
- FEAS algorithm for clock period c

Repeat |V|-1 times \{
Compute edge weights of retimed graph \mathbf{G}_{r} $\forall v \in G_{r}, \exists p: u \rightarrow \ldots \rightarrow v, d(u, v)>c ; r(v)++$ \} If $\max _{p: W_{r}(p)=0} d(p)>c$ then FAIL, else SUCCESS

- FEAS solves the constraints implicitly!
- Run-time: O(|V| |E|)

Retiming with FEAS

- W/D matrices not needed
- use binary search between current clock period and the largest infeasible clock period instead
- Detecting failure is expensive in FEAS
- On success, often see quick convergence and can terminate loop

Retiming - performance

- Predecessor heuristic - detect infeasibility (cheaply and early)

Retiming - performance

- Solve retiming for the loop
- much smaller size than original graph
- loop infeasible \Rightarrow no retiming at c
- loop feasible \Rightarrow no conclusion

Retiming For Minimum Area at Fixed Clock Period ("Constrained Min Area")

Goal: minimize number of registers used

$$
\begin{aligned}
\min N_{r} & =\sum_{e \in E} w_{r}(e) \\
& =\sum_{e: u \rightarrow v}(w(e)+r(v)-r(u)) \\
& =\sum_{e \in E} w(e)+\sum_{e: u \rightarrow v}(r(v)-r(u)) \\
& =N+\sum_{u \rightarrow v}(r(v)-r(u)) \\
& =N+\sum_{v \in V}[r(v)(\# \text { fanin }(v)-\# \text { fanout }(v)] \\
& =N+\sum_{v \in V} a_{V} r(v) \quad \text { Other constraints } \\
\text { where } a_{v} & \text { is a constant. } \quad \text { same as before }
\end{aligned}
$$

Solved by solving the dual linear program

- A minimum cost circulation problem

Retiming - performance

- Constrained min-area retiming
- constraint generation

p2: w2, d2
Effect: No constraint
Effect: No constraint

$$
\text { Effect: } w_{r}(p 1) \geqslant 1
$$

Retiming For Minimum Area

- In practice
- We need W \& D matrices to add clock period edges
- Compute row of matrix at a time and avoid redundant edges
- Use minimum cost scaling to solve circulation problem
- Numeric precision needs big integers!

FSM Optimization: Combining Combinational Optimization and Retiming

FSM Optimization

Peripheral retiming

Resynthesize

FSM Optimization

FSM Optimization

Retiming \& Initial States

- Circuits come in two flavors
- Initial power-up then force set/reset lines
- Retiming obeys delayed equivalence notion
- Initial state loaded using initializing sequence
- Problem - same sequence might not work for retimed ckt

Retiming in practice today

- Mostly used in pipelined datapath
- Verification technology needs to be improved for greater acceptance

