
11

1

RetimingRetiming

R. K. R. K. Brayton Brayton and K. Keutzer and K. Keutzer
UC BerkeleyUC Berkeley

N. Shenoy, SynopsysN. Shenoy, Synopsys
Thanks to A. Thanks to A. KuehlmannKuehlmann, UCB, UCB

2

RTL Design FlowRTL Design Flow

RTL
Synthesis

HDL

netlist

logic
optimization

netlist

Library

physical
design

layout

a

b

s

q
0

1

d

clk

a

b

s

q
0

1

d

clk

Module
Generators

Manual
Design

22

3

Logic OptimizationLogic Optimization
•• Perform a variety of Perform a variety of

transformations and transformations and
optimizationsoptimizations
–– Combinational Combinational

transformationstransformations
•• Technology independentTechnology independent
•• Technology dependentTechnology dependent

–– Sequential transformationsSequential transformations
•• FSM state assignmentFSM state assignment
•• RetimingRetiming

logic
optimization

netlist

netlist

pre-optimized
smaller, faster

less power

Library

a

b

s

q
0

1

d

clk

a

b

s

q
0

1

d

clk

4

Sequential OptimizationSequential Optimization
•• Architectural RestructuringArchitectural Restructuring
•• SystemSystem--Level OptimizationsLevel Optimizations
•• Clock skew schedulingClock skew scheduling

–– balancing combinational circuit delay by adjusting clock balancing combinational circuit delay by adjusting clock
schedule of individual registersschedule of individual registers

•• RetimingRetiming
–– balancing of path delays by moving registers within balancing of path delays by moving registers within

circuit topologycircuit topology
–– interleaving with combinational optimization techniquesinterleaving with combinational optimization techniques

33

5

What About the Register Placement?What About the Register Placement?
•• Pure combinational optimization can bePure combinational optimization can be suboptimalsuboptimal since since

relations across register boundaries are disregardedrelations across register boundaries are disregarded
•• Optimize a sequential circuit by optimally placing registers. Optimize a sequential circuit by optimally placing registers.

Move register(s) so thatMove register(s) so that
–– clock cycle decreases, or number of registers decreases andclock cycle decreases, or number of registers decreases and
–– inputinput--output behavior is preservedoutput behavior is preserved

•• Also, can combine retiming with combinational optimization Also, can combine retiming with combinational optimization
techniquestechniques
–– Move latches out of the way temporarilyMove latches out of the way temporarily
–– optimize larger blocks of combinationaloptimize larger blocks of combinational

6

Retiming Retiming -- tradeoffstradeoffs
a
b

6
4

5
4

1

1

1
2

2

2

clock period =
registers =

4
3

2
4

44

7

Retiming Retiming -- IntroductionIntroduction
•• Move registers Move registers
•• GoalsGoals

–– clock period (minclock period (min--period retiming)period retiming)
–– number of registers (minnumber of registers (min--area retiming)area retiming)
–– number of registers for a target clock period number of registers for a target clock period

(constrained min(constrained min--area retiming)area retiming)

a
b

6
4
6
4

5
4
5
4

1

1

1
2

2

2

clock period =
registers =

4
3
4
3

2
4
2
4

8

Importance of RetimingImportance of Retiming

•• Practical sequential optimizationPractical sequential optimization
•• Global optimality for clock period and register Global optimality for clock period and register

positioningpositioning
•• Must for HDL synthesisMust for HDL synthesis

–– lowers dependency on user descriptionlowers dependency on user description
–– ease of specification ease of specification

•• Low power strategyLow power strategy
–– decrease #registers with no loss in performancedecrease #registers with no loss in performance

55

9

Practical Importance of Practical Importance of
RetimingRetiming

0

5

10

15

20

25

30

35

40

45

area

area-ret

delay

delay-ret

10

•• Circuit graphCircuit graph
–– gategate
–– wirewire
–– environmentenvironment

Retiming Retiming -- Problem DefinitionProblem Definition

1

1
2

2

vertex

21

edge

1
h

1
1

host vertex and host edges

a
b

1

1

2

2
z

V = set of gates
E = set of edges
d(v) – delay of gate (vertex), d(v) ≥≥ 0
w(e) – # of registers on edge e, w(e) ≥≥ 00

66

11

Circuit RepresentationCircuit Representation
Example: Example: CorrelatorCorrelator

CircuitCircuit

δδ(x, y) = 1 if x=y(x, y) = 1 if x=y
0 otherwise0 otherwise

Operation delayOperation delay

δδ 33

+ + 77

•• Every cycle in Graph has at least one register i.e. Every cycle in Graph has at least one register i.e.
no combinational loops.no combinational loops.

00

33 33

00

00
00

00
22

GraphGraph

77

aa bb

++

δδ δδ

HostHost

12

PreliminariesPreliminaries

•• For a path p: VFor a path p: V00→→

•• Clock cycleClock cycle

∑

∑
−

=

=

=

=

1

0

0

)()(

)()(
k

i
i

k

i
i

ewpw

vdpd endpoints) (includes

)}({max
0)(:

pdc
pwp =

=

For For correlator correlator c = 13c = 13

Path with Path with

w(p)=0w(p)=000

33 33

00

00
00

00
22

77

77

13

•• Movement of registers from input to output of a Movement of registers from input to output of a
gate or vice versagate or vice versa

•• Does not affect gate functionalitiesDoes not affect gate functionalities
•• A mathematical formulation: A mathematical formulation: RetardationRetardation

–– r: V r: V →→ Z, an integer vertex labelingZ, an integer vertex labeling
–– wwrr(e) =w(e) + r(v) (e) =w(e) + r(v) -- r(u) for edge e= (u,v)r(u) for edge e= (u,v)

Basic OperationBasic Operation

Retime by 1Retime by 1

Retime by Retime by --11

14

•• Thus in the example, r(u) = Thus in the example, r(u) = --1, r(v) = 1, r(v) = --1 results in1 results in

•• For a path p: sFor a path p: s→→t, t, WWrr(p) = w(p) + r(t) (p) = w(p) + r(t) -- r(s)r(s)
•• RetimingRetiming

–– r: Vr: V→→Z, an integer vertex labelingZ, an integer vertex labeling
–– wwrr(e) = w(e) + r(v) (e) = w(e) + r(v) -- r(u) for edge e= (u,v)r(u) for edge e= (u,v)
–– A retiming r is legal if A retiming r is legal if wwrr(e) (e) ≥≥ 0, 0, ∀∀ ee∈∈EE

Basic OperationBasic Operation

vvuu
00

33 33

00

00
00

00
22

77

vvuu
00

33 33

00

11
11

00
11

77

88

15

Retiming Retiming -- AssumptionsAssumptions
•• Each loop in circuit contains at least one registerEach loop in circuit contains at least one register
•• Circuit uses single clock and edgeCircuit uses single clock and edge--triggered triggered

elements (identical skew)elements (identical skew)
•• Gate delay is constant (and nonGate delay is constant (and non--negative)negative)
•• Registers are ideal (setRegisters are ideal (set--up, drive independent of up, drive independent of

load)load)
•• Any powerAny power--up state of the design can be safely up state of the design can be safely

handled by the environment (initial state handled by the environment (initial state
assumption)assumption)

16

Retiming Retiming -- FormulationFormulation
•• Assign integers to each vertex so that objective Assign integers to each vertex so that objective

is metis met
•• Valid retiming constraintsValid retiming constraints

a be

w (e) = w(e)r

r(b)

+ r(b)

r(a)

- r(a)

a be

w (e) = w(e)r > 0> 0

a b

p

w (p) = w(p) + r(b) - r(a)r

99

17

Retiming for Minimum Clock CycleRetiming for Minimum Clock Cycle

–– Problem StatementProblem Statement: (Minimum cycle time): (Minimum cycle time)
–– Given G(V, E, d, w), find a Legal retiming r so that Given G(V, E, d, w), find a Legal retiming r so that

(A(A))

is minimizedis minimized
–– Retiming: 2 important matricesRetiming: 2 important matrices

•• Register weight matrixRegister weight matrix

•• Delay matrixDelay matrix

(B)(B)

)}({max
0)(:

pdc
pWp r =

=

}:)(min{),(vupwvuW p→=

)},()(,:)(max{),(vuWpwvupdvuD p =→=
1),(),(≥⇒> vuWcvuD

18

Retiming for Minimum Clock CycleRetiming for Minimum Clock Cycle

WW
V0 V1 V2 V3V0 V1 V2 V3

V0V0
V1V1
V2V2
V3V3

0 2 2 20 2 2 2
0 0 0 00 0 0 0
0 2 0 00 2 0 0
0 2 2 00 2 2 0

C C ≤≤ αα ⇔⇔ ∀∀p, if d(p) p, if d(p) >> αα then w(p) then w(p) ≥≥ 11
i.e. for the clock cycle to be less than i.e. for the clock cycle to be less than αα there must be there must be

a latch in the patha latch in the path

DD
V0 V1 V2 V3V0 V1 V2 V3

V0V0
V1V1
V2V2
V3V3

0 3 6 0 3 6 1313
1313 3 6 3 6 1313
10 1310 13 3 3 1010
7 7 10 1310 13 77

V2V2v1v1

v0v0 00

33 33

00

00
00

00
22

77
W W –– register path weight matrix,register path weight matrix,
min # of registers on all pathsmin # of registers on all paths
between u and vbetween u and v
D D –– path delay matrix, max delaypath delay matrix, max delay
among all paths between u and v among all paths between u and v
with W(u,v) registerswith W(u,v) registers

1010

19

Conditions for RetimingConditions for Retiming
•• Assume that we are asked to check if a retiming exists for a cloAssume that we are asked to check if a retiming exists for a clock ck

cycle cycle αα
•• Legal retiming: Legal retiming: wwrr(e) (e) ≥≥ 0 for all e. Hence 0 for all e. Hence

wwrr(e) = w(e) + r(v) (e) = w(e) + r(v) -- r(u) r(u) ≥≥ 0 or0 or
r (u) r (u) -- r (v) r (v) ≤≤ w (e)w (e)

•• For all paths p: u For all paths p: u →→ v such that d(p) v such that d(p) ≥≥ αα, we require , we require wwrr(p) (p) ≥≥ 11
–– ThusThus

)()()(
)()()(

)]()()([

)()(1

0

1

1

0

1

0

urvrpw
vrvrpw

vrvrew

ewpw

k

iii

k

i

k

i
irr

−+=
−+=

−+=

=≤

+

−

=

−

=

∑

∑

Or take the least w(p) (tightest constraint) r(u)Or take the least w(p) (tightest constraint) r(u)--r(v) r(v) ≤≤ W(u,v)W(u,v)--11

I.e. there are many paths I.e. there are many paths p,p, choose the choose the p p that gives the tightest constraintthat gives the tightest constraint

Note: this is independent of the path from u to v, so we just neNote: this is independent of the path from u to v, so we just need to apply ed to apply
it to u, v such that D(u,v) it to u, v such that D(u,v) >> αα

20

•• All constraints in difference of 2 variable form All constraints in difference of 2 variable form
•• How to solve?How to solve?

Solving the ConstraintsSolving the Constraints

CorrelatorCorrelator: : αα = 7= 7

Legal: r(u)Legal: r(u)--r(v)r(v)≤≤w(e)w(e)

0)()(
0)()(
0)()(
0)()(
2)()(

03

32

31

21

10

≤−
≤−
≤−
≤−
≤−

vrvr
vrvr
vrvr
vrvr
vrvr

1)()(
1)()(
1)()(
1)()(
1)()(
1)()(
1)()(
1)()(

23

13

32

12

02

31

01

30

≤−
≤−
−≤−

≤−
−≤−
−≤−
−≤−

≤−

vrvr
vrvr
vrvr
vrvr
vrvr
vrvr
vrvr
vrvr

D>7:D>7:
r(u)r(u)--r(v)r(v)≤≤WW(u,v)(u,v)--11

V2V2v1v1

v0v0 00

33 33

00

00
00

00
22

77

WW
V0 V1 V2 V3V0 V1 V2 V3

V0V0
V1V1
V2V2
V3V3

0 2 2 20 2 2 2
0 0 0 00 0 0 0
0 2 0 00 2 0 0
0 2 2 00 2 2 0

DD
V0 V1 V2 V3V0 V1 V2 V3

V0V0
V1V1
V2V2
V3V3

0 3 6 0 3 6 1313
1313 3 6 3 6 1313
10 1310 13 3 3 1010
7 7 10 1310 13 77

V3V3

1111

21

•• Do shortest path on constraint graph Do shortest path on constraint graph
–– Bellman Ford Algorithm, O(|V|Bellman Ford Algorithm, O(|V|33))

•• A solution exists if and only if there exists no negative weightA solution exists if and only if there exists no negative weighted ed
cycle.cycle.

Solving the ConstraintsSolving the Constraints

Legal: r(u)Legal: r(u)--r(v)r(v)≤≤w(e)w(e)

0)()(
0)()(
0)()(
0)()(
2)()(

03

32

31

21

10

≤−
≤−
≤−
≤−
≤−

vrvr
vrvr
vrvr
vrvr
vrvr

1)()(
1)()(
1)()(
1)()(
1)()(
1)()(
1)()(
1)()(

23

13

32

12

02

31

01

30

≤−
≤−
−≤−

≤−
−≤−
−≤−
−≤−

≤−

vrvr
vrvr
vrvr
vrvr
vrvr
vrvr
vrvr
vrvr

D>7:D>7:
r(u)r(u)--r(v)r(v)≤≤WW(u,v)(u,v)--11

A solution is r(vA solution is r(v00) = r(v) = r(v33) = 0, r(v) = 0, r(v11) = r(v) = r(v22) =) = --11

r(v1)r(v1)r(v0)r(v0)

r(v3)r(v3)r(v2)r(v2)

00

11 11

11

11

11

--11

--11

--11

0,0,--11

0,0,--11

00

00
--11

22

Representing ConstraintsRepresenting Constraints
c

I I

I
I

≥ 1 ≥ 2 ≥ 1
≥ 2

≥ 1

b

origin
e

d
≥ 3

b ≥ origin + 1

d ≥ origin + 1

c ≥ b + 2

d ≥ b + 2

e ≥ c + 1 e ≥ d + 3

1 2
1

31
2

origin
b

d
e

c

1212

23

RetimingRetiming
To find theTo find the minimum cycle time, do a binary search among minimum cycle time, do a binary search among

the entries of the D matrix 0(the entries of the D matrix 0(VV33loglogVV))

RetimeRetime

RetimedRetimed correlatorcorrelator::

Clock cycleClock cycle
= 3+3+7=13= 3+3+7=13 Clock cycle = 7Clock cycle = 7

V2V2v1v1

v0v0 00

33 33

00

00
00

00
22

77

aa bb

++

δδ δδ

HostHost

aa bb

++

δδ δδ

HostHost

WW
V0 V1 V2 V3V0 V1 V2 V3

V0V0
V1V1
V2V2
V3V3

0 2 2 20 2 2 2
0 0 0 00 0 0 0
0 2 0 00 2 0 0
0 2 2 00 2 2 0

DD
V0 V1 V2 V3V0 V1 V2 V3

V0V0
V1V1
V2V2
V3V3

0 3 6 0 3 6 1313
1313 3 6 3 6 1313
10 1310 13 3 3 1010
7 7 10 1310 13 77

24

RetimingRetiming
To find theTo find the minimum cycle time, do a binary search among the minimum cycle time, do a binary search among the

entries of the D matrix 0(entries of the D matrix 0(VV33loglogVV))

RetimeRetime

RetimedRetimed correlatorcorrelator::

Clock cycleClock cycle
= 3+3+7=13= 3+3+7=13 Clock cycle = 7Clock cycle = 7

V2V2v1v1

v0v0 00

33 33

00

00
00

00
22

77

aa bb

++

δδ δδ

HostHost

aa bb

++

δδ δδ

HostHost

WW
V0 V1 V2 V3V0 V1 V2 V3

V0V0
V1V1
V2V2
V3V3

0 2 2 20 2 2 2
0 0 0 00 0 0 0
0 2 0 00 2 0 0
0 2 2 00 2 2 0

DD
V0 V1 V2 V3V0 V1 V2 V3

V0V0
V1V1
V2V2
V3V3

0 3 6 0 3 6 1313
1313 3 6 3 6 1313
10 1310 13 3 3 1010
7 7 10 1310 13 77

1313

25

RetimingRetiming
•• Previous algorithm has drawbacksPrevious algorithm has drawbacks

–– Require W/D matrix computationRequire W/D matrix computation
–– O(|V|) clock period constraints most of which O(|V|) clock period constraints most of which

are redundantare redundant
–– Average case is worst caseAverage case is worst case

•• FEAS algorithm for clock period cFEAS algorithm for clock period c
Repeat |V|Repeat |V|--1 times {1 times {
Compute retimed graph Compute retimed graph GGrr

}}
If then FAIL, else SUCCESSIf then FAIL, else SUCCESS

•• FEAS solves the constraints implicitly! FEAS solves the constraints implicitly!

++>→→∃∈∀)(;),(,...:, vrcvudvupGv r

)}({max
0)(:

pd
pWp r =

26

RetimingRetiming
•• In practiceIn practice

–– D matrix is needed only for search for a D matrix is needed only for search for a
clock period, use binary search clock period, use binary search
between current clock period and the between current clock period and the
largest infeasible clock period insteadlargest infeasible clock period instead

–– Detecting failure is expensive in FEAS Detecting failure is expensive in FEAS

1414

27

Retiming Retiming -- performanceperformance
•• Predecessor heuristic Predecessor heuristic -- detect infeasibility detect infeasibility

(cheaply and early)(cheaply and early)

a b

c
d

h

28

Retiming Retiming -- performanceperformance
•• Solve retiming for the loopSolve retiming for the loop

–– much smaller size than original graphmuch smaller size than original graph
–– loop infeasible loop infeasible Ö Ö no retiming at no retiming at c c
–– loop feasible loop feasible Ö Ö no conclusionno conclusion

a b

c
d

1515

29

Retiming For Minimum AreaRetiming For Minimum Area

HW: Write dual of linear programHW: Write dual of linear program

30

Retiming Retiming -- performanceperformance
•• Constrained minConstrained min--area retimingarea retiming

–– constraint generationconstraint generation

a b

p1: w1, d1

a b

p2: w2, d2

w

d w1, d1

w2, d2

c

Effect: No constraint

c

Effect: No constraint
Effect: w (p1) > 1r

c

1616

31

Retiming Retiming -- performanceperformance
•• Mixed shortest path and longest path problemMixed shortest path and longest path problem

–– FloydFloyd--WarshallWarshall : too slow, too much memory: too slow, too much memory
•• ExploitExploit sparsitysparsity of circuit graphs to explore gates within a of circuit graphs to explore gates within a cc

critical frontiercritical frontier

M : average #gates within c
critical frontier
• average time : O(n M lg M)
• average memory: O(n)

32

Retiming For Minimum AreaRetiming For Minimum Area

•• In practiceIn practice
–– We need W & D matrices to add clock period We need W & D matrices to add clock period

edgesedges
•• Compute row of matrix at a time and avoid redundant Compute row of matrix at a time and avoid redundant

edgesedges
•• W is easy, D is a little harderW is easy, D is a little harder
•• Take care to avoid adding redundant edgesTake care to avoid adding redundant edges

–– Use minimum cost scaling to solve circulation Use minimum cost scaling to solve circulation
problemproblem

•• Numeric precision needs big integers!Numeric precision needs big integers!

1717

33

Another Look at FSM OptimizationAnother Look at FSM Optimization

AA BB

OUTOUT

BB

OUTOUT

AA

Break feedbackBreak feedback

34

FSM OptimizationFSM Optimization
Peripheral retimingPeripheral retiming

ResynthesizeResynthesize

BB

OUTOUT

AA

BB

OUTOUT

AA

1818

35

FSM OptimizationFSM Optimization
RetimeRetime

ReconnectReconnect

BB

OUTOUT

AA

BB

OUTOUT

AA

36

FSM OptimizationFSM Optimization

Resynthesized Resynthesized circuitcircuit

BB

OUTOUT

AA

AA BB

OUTOUT

Original circuitOriginal circuit

1919

37

Retiming Retiming –– initial statesinitial states

•• Circuits come in two flavorsCircuits come in two flavors
–– Initial powerInitial power--up then force set/reset up then force set/reset

lines lines
•• Retiming obeys delayed equivalence notionRetiming obeys delayed equivalence notion

–– Initial state loaded in Initial state loaded in
•• This is a problemThis is a problem

