Retiming

R. K. Brayton and K. Keutzer
UC Berkeley
N. Shenoy, Synopsys
Thanks to A. Kuehimann, UCB

RTL Design Flow

PEN physical

design

Logic Optimization

* Perform a variety of
transformations and
optimizations

— Combinational
transformations
» Technology independent
* Technology dependent
— Sequential transformations
* FSM state assignment

+ Retiming i I i I

smaller, faster
pre-optimized less power
3

optimization

Sequential Optimization

Architectural Restructuring
System-Level Optimizations
Clock skew scheduling

— balancing combinational circuit delay by adjusting clock
schedule of individual registers

Retiming

— balancing of path delays by moving registers within
circuit topology

— interleaving with combinational optimization techniques

What About the Register Placement?

* Pure combinational optimization can be suboptimal since
relations across register boundaries are disregarded

+ Optimize a sequential circuit by optimally placing registers.
Move register(s) so that
— clock cycle decreases, or number of registers decreases and
— input-output behavior is preserved

+ Also, can combine retiming with combinational optimization
techniques

— Move latches out of the way temporarily
— optimize larger blocks of combinational

Retiming - tradeoffs

clock period=6 5 4 2
#registers=4 4 3 4

Retiming - Introduction

* Move registers

+ Goals
— clock period (min-period retiming)
— number of registers (min-area retiming)

— number of registers for a target clock period
(constrained min-area retiming)

clock period= 6 5 4 2
#registers=4 4 3 4

Importance of Retiming

Practical sequential optimization

Global optimality for clock period and register
positioning

Must for HDL synthesis

— lowers dependency on user description

— ease of specification

Low power strategy

— decrease #registers with no loss in performance

Practical Importance of
Retiming

M area

M agrea-ret

delay
M delay-ret

Retiming - Problem Definition

» Circuit == graph V = set of gates

BT N E = set of edges
9 d(v) — delay of gate (vertex), d(v) =0

— wire «=> edge w(e) — # of registers on edge e, w(e) > 0
— environment «=» host vertex and host edges

Circuit Representation

Example: Correlator

Circuit Operation | delay

3(x, y) = 1 if x=y 8 3
0 otherwise + 7

Every cycle in Graph has at least one register i.e.
no combinational loops.

MGG ERES

* For a path p: V—»
A
d(p)=>Y.d(v,) (includes endpoints)
=0

k-1
w(p) = z w(e;)

» Clock cycle 0 Path with
c= max {d(p)} @‘/i\ w(p)=0
pw(p)=0 \
El T’@

For correlator ¢ = 13

Basic Operation

Movement of registers from input to output of a
gate or vice versa

Retime by -1

o3 e

Retime by 1

» Does not affect gate functionalities
» A mathematical formulation: Retardation

—r: V> Z, an integer vertex labeling
— w,(e) =w(e) + r(v) - r(u) for edge e= (u,v)

Basic Operation

* Thus in the example, r(u) = -1, r(v) = -1 results in

g N S @AO/ 1®\
@z\.iﬁl © . 1\~é>”T,®

* For a path p: s—>t, W,(p) = w(p) + r(t) - r(s)
* Retiming

— r: VZ, an integer vertex labeling

— w,(e) =w(e) + r(v) - r(u) for edge e= (u,v)

— Aretiming ris legal if w.(e) > 0, VecE

Retiming - Assumptions

Each loop in circuit contains at least one register

Circuit uses single clock and edge-triggered
elements (identical skew)

Gate delay is constant (and non-negative)
Registers are ideal (set-up, drive independent of
load)

Any power-up state of the design can be safely
handled by the environment (initial state
assumption)

Retiming - Formulation

» Assign integers to each vertex so that objective
is met

« Valid retiming constraints

w,(e) =w(e) +r(b) -r(a) >0 W, (p) = w(p) + r(b) - r(a)

Retiming for Minimum Clock Cycle

— Problem Statement: (Minimum cycle time)
— Given G(V, E, d, w), find a Legal retiming r so that

¢ = max {d(p); (A)

p:Wr(p)=0
is minimized
— Retiming: 2 important matrices

* Register weight matrix
W (u,v)=min{w(p):u—L->v}
* Delay matrix
D(u,v) =max{d(p): u—>v,w(p)=W(u,v)}
D(u,v)>c=>W(u,v)21 (B)

Retiming for Minimum Clock Cycle

W - register path weight matrix,
min # of registers on all paths
between u and v

o D — path delay matrix, max delay
among all paths between u and v
with W(u,v) registers

(0]

)

VO V1 v2 v3

NOORN
CO0ON

C<a< Vp,ifd(p) > a then w(p) >1
i.e. for the clock cycle to be less than o there must be
a latch in the path

Conditions for Retiming

Assume that we are asked to check if a retiming exists for a clock
cycle o
Legal retiming: w,(e) = 0 for all e. Hence
w,(e) =w(e) +r(v) -r(u) >0 or
r(u)-r(v)<w(e)
For all paths p: u — v such that d(p) > a, we require w,(p) > 1
— Thus e
1<w.(p)= Z w.(e;)

i=0

k=1
= Z[w(e,.) +r(v,,)—r(v)]
= ‘;'(P) +r(v)—r(v,)
=w(p)+r(v)—r(u)

Or take the least w(p) (tightest constraint) r(u)-r(v) < W(u,v)-1
l.e. there are many paths p, choose the p that gives the tightest constraint

Note: this is independent of the path from u to v, so we just need to apply
it to u, v such that D(u,v) > o

Solving the Constraints

« All constraints in difference of 2 variable form
* How to solve?

<

D>7:

Legal: r(u)-r(v)<w(e) r(u)-r(v)<W(u,v)-1
r(vy)—r(v,)<2 r(vy)—r(v;) <1
r(v,)—-r(»v,)<0 r(v)—r(vy) <-1
r(v,)—r(v;)<0 r(v)—r(v;)<-1
r(vy,)—r(v;)<0 r(vy,)—r(v,) <-1
r(v;)—r(v,) <0 r(vy)—r(v) <1

r(v,)—r(v;)<-1
r(vy)—r(v,) <1
r(v;)—r(v,)<1

NMNOON
OOON

Solving the Constraints

Do shortest path on constraint graph
— Bellman Ford Algorithm, O(|V|?)

* A solution exists if and only if there exists no negative weighted
cycle.

Legal: r(u)-r(v)<w(e) D>7:)
r(vy)—r(v) <2 r(u)-r(v)<W(u,v)-1

(o) — (v) < r(vy)—r(y) <1
s -t
r)-rln)<0 T
() —r(v) <0 r(v,)=r(v)=<-1
. r(v)=r(y) <1
r(v,)—r(v,)<-1
r(vy)—r(v) <1
r(v;)—r(v,) <1

A solution is r(vy) = r(v;) =0, r(v,) = r(v,) = -1

origin
b > origin +1 c>h+2

origin 1 1
d> origin +1 d>b+2 o@
e>d+3 1 3

exc+1 e
d

Retiming

To find the minimum cycle time, do a binary search among
the entries of the D matrix 0(|V|3log|V|)

°/ 0
)53

vO

NNVON
NOON

Retimed correlator:

e R]
o)

Clock cycle
Clock cycle = 7

= 3+3+7=13
a

Retiming

To find the minimum cycle time, do a/oinary search among the
entries of the D matrix ()(|V|3log|V|)

,°/ 0
O]

vO

NNVNON
NMNOON

Retimed correlator:

- I Re'hme

Clock cycle

= 3+43+7=13 Clock cycle = 7

Retiming

* Previous algorithm has drawbacks
— Require W/D matrix computation

— O(]V]) clock period constraints most of which
are redundant

— Average case is worst case
* FEAS algorithm for clock period c
Repeat |V|-1 times {
Compute retimed graph G,
VveG.,dp:u—..—>v,du,v)>csr(v)++
}
If max {d(p)} then FAIL, else SUCCESS

- FEAS'olves the constraints implicitly! .

Retiming

* In practice

— D matrix is needed only for search for a
clock period, use binary search
between current clock period and the
largest infeasible clock period instead

— Detecting failure is expensive in FEAS

Retiming - performance

* Predecessor heuristic - detect infeasibility
(cheaply and early)

Retiming - performance

» Solve retiming for the loop
— much smaller size than original graph
— loop infeasible ® no retiming at ¢
— loop feasible ® no conclusion

| ¥ 1

.
.
.
:
.UO.
:
|
:
= |

Retiming For Minimum Area

Goal: minimize number of registers used

min N, = Z w, ()

o F

= Z (wie)+riv)—riu))

Z wie)+ Z (r(v)—riu))

o I

N+ (r(v)—r(u)

o=V

N +z [r(v)(]'?’ Janin(v)—# fam)lt!(l-']]

el

=N +Z a,r(v)
el

where a,, is a constant.

Retiming - performance

Constrained min-area retiming
— constraint generation

Effect: No constraint
Effect: No constraint
Effect: w, (p1) =21

Retiming - performance

* Mixed shortest path and longest path problem
— Floyd-Warshall : too slow, too much memory

» Exploit sparsity of circuit graphs to explore gates within a c
critical frontier

M : average #gates within ¢
critical frontier

 average time : O(n M Ig M)
» average memory: O(n)

Retiming For Minimum Area

* In practice
— We need W & D matrices to add clock period
edges
+ Compute row of matrix at a time and avoid redundant
edges

* W is easy, D is a little harder
» Take care to avoid adding redundant edges

— Use minimum cost scaling to solve circulation

problem
* Numeric precision needs big integers!

Another Look at FSM Optimization

Break feedback

FSM Optimization

Peripheral retiming

-

Resynthesize

L

FSM Optimization

Retime

Reconnect

L

FSM Optimization

Original circuit

Resynthesized circuit

Retiming - initial states

» Circuits come in two flavors
— Initial power-up then force set/reset
lines
* Retiming obeys delayed equivalence notion
— Initial state loaded in
* This is a problem

