Retiming

R. K. Brayton and K. Keutzer

UC Berkeley
N. Shenoy, Synopsys

Thanks to A. Kuehlmann, UCB

RTL Design Flow

Logic Optimization

- Perform a variety of transformations and optimizations
- Combinational transformations
- Technology independent
- Technology dependent
- Sequential transformations
- FSM state assignment
- Retiming

Sequential Optimization

- Architectural Restructuring
- System-Level Optimizations
- Clock skew scheduling
- balancing combinational circuit delay by adjusting clock schedule of individual registers
- Retiming
- balancing of path delays by moving registers within circuit topology
- interleaving with combinational optimization techniques

What About the Register Placement?

- Pure combinational optimization can be suboptimal since relations across register boundaries are disregarded
- Optimize a sequential circuit by optimally placing registers. Move register(s) so that
- clock cycle decreases, or number of registers decreases and
- input-output behavior is preserved
- Also, can combine retiming with combinational optimization techniques
- Move latches out of the way temporarily
- optimize larger blocks of combinational

Retiming - Introduction

- Move registers
- Goals
- clock period (min-period retiming)
- number of registers (min-area retiming)
- number of registers for a target clock period (constrained min-area retiming)

Importance of Retiming

- Practical sequential optimization
- Global optimality for clock period and register positioning
- Must for HDL synthesis
- lowers dependency on user description
- ease of specification
- Low power strategy
- decrease \#registers with no loss in performance

Practical Importance of Retiming

Retiming - Problem Definition

- Circuit \longleftrightarrow graph
$\mathbf{V}=$ set of gates
E = set of edges
$\mathrm{d}(\mathrm{v})$ - delay of gate (vertex), $\mathrm{d}(\mathrm{v}) \geq 0$
- gate \longrightarrow vertex
$\mathbf{w}(\mathrm{e})$ - \# of registers on edge $\mathrm{e}, \mathrm{w}(\mathrm{e}) \geq 0$
- wire \longrightarrow edge
host vertex and host edges

Circuit Representation

Example: Correlator

Operation	delay
δ	3
+	7

- Every cycle in Graph has at least one register i.e. no combinational loops.

Preliminaries

- For a path $\mathbf{p}: \mathbf{V}_{0} \rightarrow$

$$
\begin{aligned}
& d(p)=\sum_{\substack{i=0 \\
k-1}}^{k} d\left(v_{i}\right) \quad \text { (includes endpoints) } \\
& w(p)=\sum_{i=0}^{k-1} w\left(e_{i}\right)
\end{aligned}
$$

- Clock cycle

$$
c=\max _{p: w(p)=0}\{d(p)\}
$$

For correlator $c=13$

Basic Operation

- Movement of registers from input to output of a gate or vice versa

- Does not affect gate functionalities
- A mathematical formulation: Retardation
$-\mathrm{r}: \mathbf{V} \rightarrow \mathbf{Z}$, an integer vertex labeling
$-w_{r}(e)=w(e)+r(v)-r(u)$ for edge $e=(u, v)$

Basic Operation

- Thus in the example, $\mathrm{r}(\mathrm{u})=-1, r(v)=-1$ results in

- For a path $\mathrm{p}: \mathbf{s} \rightarrow \mathbf{t}, \mathrm{W}_{\mathrm{r}}(\mathrm{p})=\mathrm{w}(\mathrm{p})+\mathrm{r}(\mathrm{t})-\mathrm{r}(\mathbf{s})$
- Retiming
- r: $\mathbf{V} \rightarrow \mathbf{Z}$, an integer vertex labeling
$-w_{r}(e)=w(e)+r(v)-r(u)$ for edge $e=(u, v)$
- A retiming r is legal if $w_{r}(e) \geq 0, \forall e \in E$

Retiming - Assumptions

- Each loop in circuit contains at least one register
- Circuit uses single clock and edge-triggered elements (identical skew)
- Gate delay is constant (and non-negative)
- Registers are ideal (set-up, drive independent of load)
- Any power-up state of the design can be safely handled by the environment (initial state assumption)

Retiming - Formulation

- Assign integers to each vertex so that objective is met
- Valid retiming constraints

$w_{r}(e)=w(e)+r(b)-r(a) \geqslant 0$

$$
w_{r}(p)=w(p)+r(b)-r(a)
$$

Retiming for Minimum Clock Cycle

- Problem Statement: (Minimum cycle time)
- Given G(V, E, d, w), find a Legal retiming r so that

$$
\begin{equation*}
c=\max _{p: W_{r}(p)=0}\{d(p)\} \tag{A}
\end{equation*}
$$

is minimized

- Retiming: 2 important matrices
- Register weight matrix

$$
W(u, v)=\min \{w(p): u \xrightarrow{p} v\}
$$

- Delay matrix

$$
\begin{gather*}
D(u, v)=\max \{d(p): u \xrightarrow{p} v, w(p)=W(u, v)\} \\
D(u, v)>c \Rightarrow W(u, v) \geq 1 \tag{B}
\end{gather*}
$$

Retiming for Minimum Clock Cycle

W - register path weight matrix, min \# of registers on all paths between \mathbf{u} and \mathbf{v}
D - path delay matrix, max delay among all paths between u and v with $W(u, v)$ registers

$$
\mathbf{C} \leq \alpha \Leftrightarrow \forall \mathrm{p}, \text { if } \mathrm{d}(\mathrm{p})>\alpha \text { then } \mathrm{w}(\mathrm{p}) \geq 1
$$

i.e. for the clock cycle to be less than α there must be a latch in the path

Conditions for Retiming

- Assume that we are asked to check if a retiming exists for a clock cycle α
- Legal retiming: $w_{r}(e) \geq 0$ for all e. Hence

$$
\begin{aligned}
& w_{r}(e)=w(e)+r(v)-r(u) \geq 0 \text { or } \\
& r(u)-r(v) \leq w(e)
\end{aligned}
$$

- For all paths $\mathrm{p}: \mathrm{u} \rightarrow \mathrm{v}$ such that $\mathrm{d}(\mathrm{p}) \geq \alpha$, we require $\mathrm{w}_{\mathrm{r}}(\mathrm{p}) \geq 1$
- Thus

$$
\begin{aligned}
1 & \leq w_{r}(p)=\sum_{i=0}^{k-1} w_{r}\left(e_{i}\right) \\
& =\sum_{i=0}^{k-1}\left[w\left(e_{i}\right)+r\left(v_{i+1}\right)-r\left(v_{i}\right)\right] \\
& =w(p)+r\left(v_{k}\right)-r\left(v_{0}\right) \\
& =w(p)+r(v)-r(u)
\end{aligned}
$$

Or take the least $w(p)$ (tightest constraint) $r(u)-r(v) \leq W(u, v)-1$
l.e. there are many paths p, choose the p that gives the tightest constraint Note: this is independent of the path from \mathbf{u} to \mathbf{v}, so we just need to apply it to u, v such that $D(u, v)>\alpha$

Solving the Constraints

- All constraints in difference of 2 variable form
- How to solve?

Solving the Constraints

- Do shortest path on constraint graph
- Bellman Ford Algorithm, $\mathrm{O}\left(|\mathrm{V}|^{3}\right)$
- A solution exists if and only if there exists no negative weighted cycle.

Legal: $r(u)-r(v) \leq w(e)$

```
D>7:
```

| $r\left(v_{0}\right)-r\left(v_{1}\right) \leq 2$ |
| :--- | :--- |
| $r\left(v_{1}\right)-r\left(v_{2}\right) \leq 0$ |
| $r\left(v_{1}\right)-r\left(v_{3}\right) \leq 0$ |
| $r\left(v_{2}\right)-r\left(v_{3}\right) \leq 0$ |
| $r\left(v_{3}\right)-r\left(v_{0}\right) \leq 0$ |$\quad |$| $r(\mathbf{u})-r(v) \leq \mathbf{W}(\mathrm{u}, \mathrm{v})-1$ |
| :--- |
| |
| $r\left(v_{0}\right)-r\left(v_{3}\right) \leq 1$ |
| $r\left(v_{1}\right)-r\left(v_{0}\right) \leq-1$ |
| $r\left(v_{1}\right)-r\left(v_{3}\right) \leq-1$ |
| $r\left(v_{2}\right)-r\left(v_{0}\right) \leq-1$ |
| $r\left(v_{2}\right)-r\left(v_{1}\right) \leq 1$ |
| $r\left(v_{2}\right)-r\left(v_{3}\right) \leq-1$ |
| $r\left(v_{3}\right)-r\left(v_{1}\right) \leq 1$ |
| $r\left(v_{3}\right)-r\left(v_{2}\right) \leq 1$ |

A solution is $r\left(v_{0}\right)=r\left(v_{3}\right)=0, r\left(v_{1}\right)=r\left(v_{2}\right)=-1$

Representing Constraints

$$
\begin{array}{cc}
b \geq \text { origin +1 } & c \geq b+2 \\
d \geq \text { origin }+1 & d \geq b+2 \\
e \geq c+1 & e \geq d+3
\end{array}
$$

Retiming

To find the minimum cycle time, do a binary search among the entries of the D matrix $0\left(|V|{ }^{3} \log |V|\right)$

Retimed correlator:

Retiming

To find the minimum cycle time, do a oinary search among the entries of the D matrix ()$\left(|V|^{3}|\rho g| V \mid\right)$

Retimed correlator:

,	$\underset{\text { vo v1 v2 v3 }}{W}$	D V0 V1 V2 V3	
Vo	0222	03613	Vo
V1	0000	133613	V1
V2	0200	1013310	V2
V3	0220	710137	V3

Retiming

- Previous algorithm has drawbacks
- Require W/D matrix computation
- $\mathrm{O}(|\mathrm{V}|)$ clock period constraints most of which are redundant
- Average case is worst case
- FEAS algorithm for clock period c

Repeat |V|-1 times \{
Compute retimed graph \mathbf{G}_{r}
$\forall v \in G_{r}, \exists p: u \rightarrow \ldots \rightarrow v, d(u, v)>c ; r(v)++$
\}
If $\max \{d(p)\} \quad$ then FAIL, else SUCCESS

- FEAS Solves the constraints implicitly!

Retiming

- In practice
- D matrix is needed only for search for a clock period, use binary search between current clock period and the largest infeasible clock period instead
- Detecting failure is expensive in FEAS

Retiming - performance

- Predecessor heuristic - detect infeasibility (cheaply and early)

Retiming - performance

- Solve retiming for the loop
- much smaller size than original graph
- loop infeasible \Rightarrow no retiming at c
- loop feasible \Rightarrow no conclusion

Retiming For Minimum Area

Goal: minimize number of registers used

$$
\begin{aligned}
\min N_{r} & =\sum_{e \in E} w_{r}(e) \\
& =\sum_{e: u \rightarrow v}(w(e)+r(v)-r(u)) \\
& =\sum_{e \in E} w(e)+\sum_{e: u \rightarrow v}(r(v)-r(u)) \\
& =N+\sum_{u \rightarrow v}(r(v)-r(u)) \\
& =N+\sum_{v \in V}[r(v)(\# \text { fanin }(v)-\# \text { fanout }(v)] \\
& =N+\sum_{v \in V} a_{V} r(v)
\end{aligned}
$$

where a_{v} is a constant.

Retiming - performance

- Constrained min-area retiming
- constraint generation

p2: w2, d2
Effect: No constraint
Effect: No constraint
Effect: $w_{r}(p 1) \geqslant 1$

Retiming - performance

- Mixed shortest path and longest path problem
- Floyd-Warshall : too slow, too much memory
- Exploit sparsity of circuit graphs to explore gates within a c critical frontier

M : average \#gates within c critical frontier

- average time : O(n M Ig M)
- average memory: O(n)

Retiming For Minimum Area

- In practice
- We need W \& D matrices to add clock period edges
- Compute row of matrix at a time and avoid redundant edges
- W is easy, \mathbf{D} is a little harder
- Take care to avoid adding redundant edges
- Use minimum cost scaling to solve circulation problem
- Numeric precision needs big integers!

Another Look at FSM Optimization

FSM Optimization

Peripheral retiming

Resynthesize

FSM Optimization
Retime
$\xrightarrow{\square}$

FSM Optimization

Retiming - initial states

- Circuits come in two flavors
- Initial power-up then force set/reset lines
- Retiming obeys delayed equivalence notion
- Initial state loaded in
- This is a problem

