
1
Kurt Keutzer

Problem Formulation
and

Algorithm Application
in

Computer-aided Design

Prof. Kurt Keutzer

EECS

University of California

Berkeley, CA

2
Kurt Keutzer

Critical Path Delay – Setup Time

Delay is a function of

Total gate, wire delays

� measure of delay

between registers

� logic levels

Data stable during

� Setup time, before clock

� Hold time, after clock

clock

Q1 Q2

Tclock1 Tclock2

critical path,
~5 logic levels

Tclock1

data

setup time

3
Kurt Keutzer

Critical Path Delay – Hold Time

Delay is a function of

Total gate, wire delays

� measure of delay

between registers

� logic levels

Data stable during

� Setup time, before clock

� Hold time, after clock

clock

Q1 Q2

Tclock1 Tclock2

critical path,
~5 logic levels

Tclock1

data

hold time

4
Kurt Keutzer

• in addition to checks for set-up time violations there need to be
checks for hold-time violations

• the hold-time of a circuit is the amount of time that a signal needs
to be held steady so that it can be ``latched into’’ the register

Problem 1: Hold-time check

clk

Combinational
logic

clk

Combinational
logic

clk

Combinational
logic

How can we check for this problem?

clk

Combinational
logic

clk

Combinational
logic

clk

Combinational
logic

original circuit

sub-circuit

before signal
from this path
can be latched-in

signal
from this path
is generated and
replaces it

Hold-time problem

clk

Combinational
logic

clk

Combinational
logic

clk

Combinational
logic

original circuit

sub-circuit

this will be
a long path

what kind of path will
this be ?
how do we find if there
are any such paths?

7
Kurt Keutzer

Problem formulation - 1

C

B

f

X

Y

W

0

.05.1

1

.2

0

0

1

A

.15
.20

.20

A

C

B

f

2

2

2

1

0

1

0

.20

.20

.20

.10

X

Y

Z

W

.15

.05

.05

.05

1

2

2

2

Z

Use a labeled

directed graph

G = <V,E>

Vertices represent

gates, primary

inputs and

primary outputs

Edges represent

wires

Labels represent

delays

Now what do we do

with this?

8
Kurt Keutzer

Problem formulation - 2

C

B

f

X

Y

W

0

.05.1

1

.2

0

0

1

A

.15
.20

.20

A

C

B

f

2

2

2

1

0

1

0

.20

.20

.20

.10

X

Y

Z

W

.15

.05

.05

.05

1

2

2

2

Z

Use a labeled directed

graph

G = <V,E>

Find the shortest path

9
Kurt Keutzer

Shortest Path Algorithm

C

B

f

X

Y

W

0

.05.1

1

.2

0

0

.1

A

.15
.20

.20

1

2

2

2

Z

Compute the shortest path in a graph G = <V,E,delay,Origin> (delay is set of labels, Origin is the super-source

of the DAG)

Forward-prop(W){

for each vertex v in W

for each edge <v,w> from v

Final-delay(w) = min(Final-delay(w), delay(v) + delay(w) + delay(<v,w>))

if all incoming edges of W have been traversed

add w to W

}

shortest_path(G)

Forward_prop(Origin)

}

0

O

0
00

Origin 0

0

10
Kurt Keutzer

Problem 2: Electrical Connectivity Checks

1) Extract physical geometry

2) Identify electrical connectivity polygon by polygon - build database

for future queries

3) Query database

What data-structure would you use in step 2 to make step 3 efficient?

What nets are
electrically connected
to this net?

Could power be
shorted
to ground?

11
Kurt Keutzer

Applying the union-find algorithm - 1

origin

x

z

v

w

t

y

x

y

z

origin

u

tu

w v

Introduction to

Algorithms, T. Cormen,

C. Lesierson, R. Rivest,

The MIT Press, Second

Printing, 1996 .page 448.

Algorithms and

Techniques for VLSI

Layout Synthesis, Hill et

al., Kluwer Academic

Publishers, 1989. pages

25, 30-31.

12
Kurt Keutzer

Applying the union-find algorithm - 2

origin

x

z

v

w

t

y

x

y

z

origin

u

tu

w v

1
a = Find(z),
b = Find(w)

union(a,b)

Heuristics:
- ranking
- path-compression

2

13
Kurt Keutzer

Problem 3: Mapping for Delay

logic
optimization

netlist

netlist

Library

tech
independent

tech
dependent

2-level
Logic opt

multilevel
Logic opt

Real
Library

Generic
Library

14
Kurt Keutzer

Can we use dynamic programming?

Can we use a dynamic
programming
formulation to find a
minimum delay cover of
the candidate tree?

15
Kurt Keutzer

Does Dynamic Programming Still Work?

Principle of optimality: Optimal cover for a tree consists

of a best match at the root of the tree plus the optimal

cover for the sub-trees starting at each input of the

match

x

y

z

p

Best cover for
this match uses
best covers for
x, y, z

Best cover for
this match uses
best covers for
p, z

Choose least
cost tree-cover
at root

16
Kurt Keutzer

Dynamic Programming for Min Delay

NAND2
2

AOI21
delay 3
max(2,0,0) = 5

INV
delay 1 +
max(6) = 7

NAND2
delay 2 +
max(4, 1) = 6

NAND2
Delay 2 +
max(2, 0) = 4

NAND2
delay 2

INV
delay 1

17
Kurt Keutzer

What else do we need to consider?

We need to time the cover based on proper arrival times

� Arrival times will only be known when the arrival times of

prior (topologically) trees in the DAG are known

� Map from inputs to outputs

Mapping of the tree may produce too much slack on off-critical

paths – we’ll discuss this later in the lecture

Selection of a cell in the network depends on the load it is facing!

18
Kurt Keutzer

Three covers for delay - min load

2

1

3

2

2 + 1 = 3 MAX(3,0) + 2 = 5

8

MAX(5,1) + 2 = 7

MAX(8,0) + 2 =10

MAX (3,1,0) + 3 = 6

2 + 1 = 3

MAX (6,0) + 2 = 8

MAX (3,0,0) + 3 = 6

1

0
0

0

0

0

0
0

0

0

0

0
0

0

0

0

7 + 1 = 8

What about higher load?

19
Kurt Keutzer

Library and Delay Information

Area

INV (1)

NAND2 (3)

NAND3 (4)

AOI21 (4)

NAND4 (5)

Load-Dependent Delay When Driving

INV (1) NAND2 (2) NAND3 (3)
AOI21 NAND4

ND2 (2) NAND2 (4) NAND3 (5)
AOI21 NAND4

ND3 (3) NAND2 (5) NAND3 (7)
AOI21 NAND4

AOI21 (3) NAND2 (4) NAND3 (7)
AOI21 NAND4

ND4 (5) NAND2 (9) NAND3 (12)
AOI21 NAND4

CELL Delay of Cell Driving

20
Kurt Keutzer

Variable Load

2 2 + 2 = 4

MAX (4,0,0) + 4 = 8

MAX (8,0) + 5 = 13

better for real loads!

7

3
NAND3

MAX (7,3) + 7 = 14

NAND3

0
0

0

0

0

0
0

0

0

0

ND3
ND3

AOI21

ND2

Best prior match
but
delay of ND3 is 7
when driving a ND3

ND2 does better
when driving a ND3

21
Kurt Keutzer

Incorporating load-dependent delays

Optimum match depends on forward (unmapped) part of the
tree

How can we handle this in the dynamic programming
framework?

What is the load
seen by g ?g

22
Kurt Keutzer

Variable Load Delay Optimization

Create bin for each load value that we may face

Array of solutions at each node, one per load value

Compute arrival time for each match for each load value

When evaluating a match, use the optimal solution at the

input node which is appropriate for the load presented by

this match

23
Kurt Keutzer

Variable Load Covering

Array of solutions

0
0

0

INV

NAND2

NAND3

AOI21

NAND4

0

0

24
Kurt Keutzer

Variable Load Covering Result

Array of solutions

(all solutions NAND2 sees INV)

AOI
AOI
INV

4

2

5
ND3-all

AOI or NAND3

AOI

0
0

0

If driving NAND3 will get AOI21 solution with arrival time 13
If driving AOI21 or ND2 will get AOI21 solution
If driving INV choose either AOI21 or NAND3 solution

INV

NAND2

NAND3

AOI21

NAND4

4

3

5 5

3

7

2

1

3

9

7

10

8

7

10
12

10

13

0

0

ND2 -all INV -all

INV -all

cell chosen/delay when driving

ND2 -all
AOI

25
Kurt Keutzer

Summary of load-dependent mapping

Load-dependent delay shows how dynamic programming paradigm

can be extended

What’s the computation time of this approach?

What’s wrong or incomplete with this picture?

When do we know wiring capacitance?

What can we do to address it?

26
Kurt Keutzer

Problem 4 – Techmap for low dynamic power

subject tree

Given input load capacitance for each cell in the library and
switching frequencies on the net – find a cover that minimizes
dynamic (1/2 CV **2f) power.

27
Kurt Keutzer

Hint - Variable Load Covering

Array of solutions

0
0

0

INV

NAND2

NAND3

AOI21

NAND4

0

0

Destination capacitances will be especially important here. Use the
variable loading approach that was used for performance-driven
mapping.

28
Kurt Keutzer

Problem 5: Layer Assignment

Photo courtesy:
Jan M. Rabaey
Anantha Chandrakasan
Borivoje Nikolic

Given:

• Cell placement

• 100K nets

• 8 layers

• Assign each net to a

(primary) layer

Intel 65nm

• M1 105nm,

• M2 105;

• M3 110;

• M4 140;

• M5 165;

• M6 240;

• M7, 360;

• M8 540)

29
Kurt Keutzer

Routing Objectives

Minimize path delay

• Timing driven ���� maintain timing constraints

• Minimize wire length

• Balance congestion

Minimize noise

• Noise driven ���� minimize cross-coupled capacitance

Minimize clock skew

• Balance clock trees

• Keep buses together

30
Kurt Keutzer

When to do layer assignment?

Advantages/disadvantages for global routing

Advantages/disadvantages for detail routing

31
Kurt Keutzer

Global routing

• Identify routing resources to be used

• [Identify layers (and tracks) to be used]

• Assign particular nets to these resources

• Also used in floorplanning and placement

• Within global routing

� Advantages/disadvantages to doing layer
assignment before routing region assignment

� Advantages/disadvantages to doing layer
assignment after routing region assignment

32
Kurt Keutzer

Linear time algorithm

Before routing region assignment?

• Simply take Euclidean distance of each net

• Bin nets according to distance – longer nets higher layers

• Improvement?

• Use Rectilinear Steiner Trees

After routing region assignment?

• Simply take length of RST of each net

• Bin nets according to distance – longer nets higher layers

33
Kurt Keutzer

The Class NP

NP is a class of decision problems for which

� a given proposed solution (called certificate) for a given input

� can be checked quickly (in polynomial time) to see if it really
is a solution.

A non-deterministic algorithm

� The non-deterministic “guessing” phase.

� Some completely arbitrary string s, “proposed solution”

� each time the algorithm is run the string may differ

� The deterministic “verifying” phase.

� a deterministic algorithm takes the input of the problem
and the proposed solution s, and

� return value true or false

� The output step.

� If the verifying phase returned true, the algorithm outputs
yes. Otherwise, there is no output.

34
Kurt Keutzer

The Class NP-Complete

A problem Q is NP-complete

� it is NP-hard.

� if it is in NP and

A problem Q is NP-hard

� if every problem in NP is reducible to Q.

A problem P is polynomially reducible to a problem Q if

� there exists a polynomial reduction function T such that

� For every string x,

� if x is a yes input for P, then T(x) is a yes input for Q

� if x is a no input for P, then T(x) is a no input for Q.

� T can be computed in polynomially bounded time.

35
Kurt Keutzer

Polynomial Reductions

Problem P is polynomially reducible to Q

� P ≤≤≤≤p Q

� Transforming inputs of P

� to inputs of Q

Reducibility relation is transitive.

36
Kurt Keutzer

Problem 5:

Given Boolean satisfiabilty problem is NP-hard

Prove Circuit-satisfiability problem is NP-Complete

Circuit-satisfiablity problem

� we say that a one-output Boolean combinational circuit

is satisfiable

� if it has a satisfying assignment,

� a truth assignment (a set of Boolean input values)
that

� causes the output of the circuit to be 1

Problem: Show that Circuit-satisfiability problem

� belongs to the class NP

� is NP-hard, i.e.

� Show any instance of satisfiabilty problem can, in
poly time, be turned into an instance of circuit sat

37
Kurt Keutzer

Problem 5: Hints

Problem: Show that Circuit-satisfiability problem

� belongs to the class NP

� Hint: If you guessed a solution how long would it
take to verify it

� is NP-hard, i.e.

� Hint: Show any instance of the Boolean satisfiabilty
problem can, in poly time, be turned into an instance
of circuit sat

