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Critical Path Delay – Setup Time

Delay is a function of

Total gate, wire delays

� measure of delay 

between registers

� logic levels

Data stable during

� Setup time, before clock

� Hold time, after clock

clock
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Critical Path Delay – Hold Time

Delay is a function of

Total gate, wire delays

� measure of delay 

between registers

� logic levels

Data stable during

� Setup time, before clock

� Hold time, after clock

clock

Q1 Q2

Tclock1 Tclock2

critical path, 
~5 logic levels

Tclock1

data

hold time
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• in addition to checks for set-up time violations there need to be 
checks for hold-time violations

• the hold-time of a circuit is the amount of time that a signal needs 
to be held steady so that it can be ``latched into’’ the register

Problem 1: Hold-time check

clk

Combinational
logic

clk

Combinational
logic

clk

Combinational
logic



How can we check for this problem? 

clk

Combinational
logic

clk

Combinational
logic

clk

Combinational
logic

original circuit

sub-circuit

before signal
from this path
can be latched-in

signal
from this path
is generated and
replaces it

Hold-time problem 

clk

Combinational
logic

clk

Combinational
logic

clk

Combinational
logic

original circuit

sub-circuit

this will be
a long path

what kind of path will 
this be ?
how do we find if there 
are any such paths? 



7
Kurt Keutzer

Problem formulation - 1
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Use a labeled 

directed graph 

G = <V,E>

Vertices represent 

gates, primary 

inputs and 

primary outputs

Edges represent 

wires

Labels represent 

delays

Now what do we do 

with this?
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Problem formulation - 2
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Use a labeled directed

graph 

G = <V,E>

Find the shortest path
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Shortest Path Algorithm
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Compute the shortest path in a graph G = <V,E,delay,Origin> (delay is set of labels, Origin is the super-source 

of the DAG)

Forward-prop(W){

for each vertex v in W

for each edge <v,w> from v

Final-delay(w) = min(Final-delay(w), delay(v) + delay(w) + delay(<v,w>))

if all incoming edges of W have been traversed

add w to W

}

shortest_path(G)

Forward_prop(Origin)

}

0

O

0
00

Origin 0

0
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Problem 2: Electrical Connectivity Checks

1) Extract physical geometry

2) Identify electrical connectivity polygon by polygon - build database 

for future queries

3) Query database 

What data-structure would you use in step 2 to make step 3 efficient?

What nets are 
electrically connected
to this net? 

Could power be 
shorted
to ground?
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Applying the union-find algorithm - 1
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Introduction to 

Algorithms, T. Cormen, 

C. Lesierson, R. Rivest, 

The MIT Press, Second 

Printing, 1996 .page 448.

Algorithms and 

Techniques for VLSI 

Layout Synthesis, Hill et 

al., Kluwer Academic 

Publishers, 1989. pages 

25, 30-31.
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Applying the union-find algorithm - 2
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1
a = Find(z),
b = Find(w)

union(a,b)

Heuristics:
- ranking
- path-compression

2
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Problem 3: Mapping for Delay

logic
optimization

netlist

netlist

Library

tech
independent

tech
dependent

2-level
Logic opt

multilevel
Logic opt

Real
Library

Generic
Library
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Can we use dynamic programming?

Can we use a dynamic 
programming 
formulation to find a 
minimum delay cover of 
the candidate tree?
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Does Dynamic Programming Still Work?

Principle of optimality:  Optimal cover for a tree consists 

of a best match at the root of the tree plus the optimal 

cover for the sub-trees starting at each input of the 

match

x

y

z

p

Best cover for
this match uses
best covers for
x, y, z

Best cover for
this match uses
best covers for
p, z

Choose least
cost tree-cover
at root
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Dynamic Programming for Min Delay

NAND2
2

AOI21
delay 3
max(2,0,0) = 5

INV
delay 1 +
max(6) = 7

NAND2
delay 2 +
max(4, 1) = 6

NAND2
Delay 2 +
max(2, 0) = 4

NAND2
delay 2

INV
delay 1
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What else do we need to consider?

We need to time the cover based on proper arrival times

� Arrival times will only be known when the arrival times of 

prior (topologically) trees in the DAG are known

� Map from inputs to outputs

Mapping of the tree may produce too much slack on off-critical 

paths – we’ll discuss this later in the lecture

Selection of a cell in the network depends on the load it is facing!
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Three covers for delay  - min load

2

1

3

2

2 + 1 = 3 MAX(3,0) + 2 = 5

8

MAX( 5,1) + 2 = 7

MAX( 8,0) + 2 =10

MAX (3,1,0) + 3 = 6

2 + 1 = 3

MAX (6,0) + 2 = 8

MAX (3,0,0) + 3 = 6

1

0
0

0

0

0

0
0

0

0

0

0
0

0

0

0

7 + 1 = 8

What about higher load? 
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Library and Delay Information

Area

INV (1)

NAND2 (3)

NAND3 (4)

AOI21 (4)

NAND4 (5)

Load-Dependent Delay When Driving

INV (1)       NAND2 (2) NAND3 (3)
AOI21 NAND4

ND2 (2) NAND2 (4)           NAND3 (5)
AOI21                   NAND4

ND3 (3) NAND2 (5)           NAND3 (7)
AOI21                   NAND4

AOI21 (3) NAND2 (4)           NAND3 (7)
AOI21                  NAND4

ND4 (5) NAND2 (9)           NAND3 (12)
AOI21 NAND4

CELL Delay of Cell Driving
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Variable Load

2 2 + 2 = 4

MAX (4,0,0) + 4 = 8

MAX (8,0) + 5 = 13

better for real loads!

7

3
NAND3

MAX (7,3) + 7 = 14

NAND3

0
0

0

0

0

0
0

0

0

0

ND3
ND3

AOI21

ND2

Best prior match 
but
delay of ND3 is 7 
when driving a ND3

ND2 does better
when driving a ND3
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Incorporating load-dependent delays

Optimum match depends on forward (unmapped) part of the 
tree

How can we handle this in the dynamic programming 
framework?

What is the load
seen by g ?g
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Variable Load Delay Optimization

Create bin for each load value that we may face

Array of solutions at each node, one per load value

Compute arrival time for each match for each load value

When evaluating a match, use the optimal solution at the 

input node which is appropriate for the load presented by 

this match
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Variable Load Covering

Array of solutions

0
0

0

INV

NAND2

NAND3

AOI21

NAND4

0

0
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Variable Load Covering Result

Array of solutions

(all solutions NAND2 sees INV)

AOI
AOI
INV

4

2

5
ND3-all

AOI or NAND3

AOI

0
0

0

If driving NAND3 will get AOI21 solution with arrival time 13
If driving AOI21 or ND2 will get AOI21 solution
If driving INV choose either AOI21 or NAND3 solution

INV

NAND2

NAND3

AOI21

NAND4

4

3

5 5

3

7

2

1

3

9

7

10

8

7

10
12

10

13

0

0

ND2 -all INV -all

INV -all

cell chosen/delay when driving

ND2 -all
AOI
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Summary of load-dependent mapping

Load-dependent delay shows how dynamic programming paradigm 

can be extended 

What’s the computation time of this approach?

What’s wrong or incomplete with this picture?

When do we know wiring capacitance?

What can we do to address it?
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Problem 4 – Techmap for low dynamic power

subject tree

Given input load capacitance for each cell in the library and 
switching frequencies on the net – find a cover that minimizes 
dynamic (1/2 CV **2f) power. 
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Hint - Variable Load Covering

Array of solutions

0
0

0

INV

NAND2

NAND3

AOI21

NAND4

0

0

Destination capacitances will be especially important here. Use the 
variable loading approach that was used for performance-driven 
mapping. 
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Problem 5: Layer Assignment

Photo courtesy:
Jan M. Rabaey
Anantha Chandrakasan
Borivoje Nikolic

Given:

• Cell placement

• 100K nets

• 8 layers

• Assign each net to a 

(primary) layer

Intel 65nm

• M1 105nm,  

• M2 105;  

• M3 110;  

• M4 140; 

• M5 165; 

• M6 240; 

• M7, 360; 

• M8 540)
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Routing Objectives 

Minimize path delay

• Timing driven ���� maintain timing constraints

• Minimize wire length

• Balance congestion

Minimize noise

• Noise driven ���� minimize cross-coupled capacitance

Minimize clock skew

• Balance clock trees

• Keep buses together
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When to do layer assignment?

Advantages/disadvantages for global routing

Advantages/disadvantages for detail routing
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Global routing

• Identify routing resources to be used

• [Identify layers (and tracks) to be used]

• Assign particular nets to these resources

• Also used in floorplanning and placement

• Within global routing

� Advantages/disadvantages to doing layer 
assignment before routing region assignment

� Advantages/disadvantages to doing layer 
assignment after routing region assignment
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Linear time algorithm

Before routing region assignment?

• Simply take Euclidean distance of each net

• Bin nets according to distance – longer nets higher layers

• Improvement?

• Use Rectilinear Steiner Trees

After routing region assignment?

• Simply take length of RST of each net

• Bin nets according to distance – longer nets higher layers
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The Class NP

NP is a class of decision problems for which

� a given proposed solution (called certificate) for a given input

� can be checked quickly (in polynomial time) to see if it really 
is a solution.

A non-deterministic algorithm

� The non-deterministic “guessing” phase. 

� Some completely arbitrary string s, “proposed solution”

� each time the algorithm is run the string may differ

� The deterministic “verifying” phase.

� a deterministic algorithm takes the input of the problem 
and the proposed solution s, and

� return value true or false

� The output step.

� If the verifying phase returned true, the algorithm outputs 
yes. Otherwise, there is no output.
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The Class NP-Complete

A problem Q is NP-complete

� it is NP-hard.

� if it is in NP and

A problem Q is NP-hard

� if every problem in NP is reducible to Q.

A problem P is polynomially reducible to a problem Q if 

� there exists a polynomial reduction function T such that

� For every string x, 

� if x is a yes input for P, then T(x) is a yes input for Q

� if x is a no input for P, then T(x) is a no input for Q. 

� T can be computed in polynomially bounded time. 
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Polynomial Reductions

Problem P is polynomially reducible to Q

� P ≤≤≤≤p Q

� Transforming inputs of P 

� to inputs of Q

Reducibility relation is transitive.
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Problem 5:

Given Boolean satisfiabilty problem is NP-hard 

Prove Circuit-satisfiability problem is NP-Complete

Circuit-satisfiablity problem

� we say that a one-output Boolean combinational circuit 

is satisfiable

� if it has a satisfying assignment, 

� a truth assignment (a set of Boolean input values) 
that

� causes the output of the circuit to be 1

Problem: Show that Circuit-satisfiability problem

� belongs to the class NP

� is NP-hard, i.e. 

� Show any instance of satisfiabilty problem can, in 
poly time, be turned into an instance of circuit sat
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Problem 5: Hints

Problem: Show that Circuit-satisfiability problem

� belongs to the class NP

� Hint: If you guessed a solution how long would it 
take to verify it

� is NP-hard, i.e. 

� Hint: Show any instance of the Boolean satisfiabilty
problem can, in poly time, be turned into an instance 
of circuit sat


