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Logic Optimization

Perform a variety of 
transformations and 
optimizations

– Structural graph 
transformations

– Boolean transformations

– Mapping into a physical 
library

smaller, faster
less power
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Combinational Logic Optimization

Input: 

• Initial Boolean network

• Timing characterization for the module

• - input arrival times and drive factors

• - output loading factors

• Optimization goals

• - output required times

• Target library description

Output:

• Minimum-area net-list of library gates which meets timing 
constraints

A very difficult optimization problem !
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Modern Approach to Logic Optimization

Divide logic optimization into two subproblems:

– • Technology-independent optimization

• - determine overall logic structure

• - estimate costs (mostly) independent of 
technology

• - simplified cost modeling

– • Technology-dependent optimization (technology 
mapping)

• - binding onto the gates in the library

• - detailed technology-specific cost model

Orchestration of various optimization/transformation 
techniques for each subproblem
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“Closed Book” Technology Library

A standard cell technology or library may 
contain many hundreds of cells

Typical cells are NAND, NOR, NOT, AOI (AND-
or-Invert), OAI (Or-And-Invert) etc. 
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Library

Contains for each cell:

– Functional  information:  cell = a *b * c

– Timing information: function of

• input slew

• intrinsic delay

• output capacitance

non-linear models used in tabular 
approach

– Physical footprint (area)

– Power characteristics

Wire-load models - function of

– Block size

– Wiring

Library
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Elements of  a library - 1

INVERTER 2

NAND2 3

NAND3 4

NAND4 5

Element/Area Cost
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Elements of a library - 2

AOI21 4

AOI22 5

Element/Area Cost
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Reasonable Library

Inverter, Buffer

ND2-ND4; NOR2-NOR4; AND2- AND4; 

AOI21 - AOI333; OAI21 - OAI333

XOR, XNOR

MUX, Full Adder

Neg-Edge Triggered D-Flip-Flop

Pos-Edge Triggered D-FF

J-K FF

Above with various clears,  enables 

Scan versions of each of the above

Most of the above in 6 different power sizes:

– 1x, 2x, 4x, 6x, 8x, 16x
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Input Circuit Netlist

``subject DAG’’
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Problem statement

into the technology  library (simple example below):

Find an ``optimal’’ (in area, delay, power) mapping of a  circuit
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Is there a problem? Trivial Covering #1

subject DAG

7 NAND2 (3) =  21
5 INV        (2) =  10

Area cost 31
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Covering #2

2 INV = 4
2 NAND2 = 6
1 NAND3 = 4
1 NAND4 = 5

Area cost 19
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Covering #3

1 INV =  2
1 NAND2 =  3
2 NAND3 =  8
1 AOI21 =  4

Area Cost 17

Costs:
31, 19, 17
Yes, there’s a problem!
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History of the Problem - 1

Technology mapping in 1986 was a big problem

• Almost every design group (e.g. AT&T) had their 
own library 

– ASIC – 400 cells

– Microprocessor/DSP – 200 base cells

– Government – 200+ cells

• Every group had their own approach to mapping

– ``Do what you have to do!’’ – handcrafted mappers tied to 
particular libraries and optimization tools

– ``Rule-based’’ systems – e.g. GE Socrates – very slow 
``expert systems’’ that made no guarantee on final quality 
of result
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History of the Problem - 2

Yes, there are two problems:

– Technology mapping can significant affect the area, 
speed, and power dissipation of a circuit 

– There are over 200 different semiconductors each with 
multiple internal libraries – how to create a tool that can 
utilize a diverse set of libraries??
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A similar problem – code generation

Example of code generation in compilers using tree-covering

• Handles complex instruction sets ���� Handles complex libraries

• Easily portable to other instruction sets ���� Easily portable to 

Kurt Keutzer 20

Problem Formulation: DAG Covering

Represent input netlist in normal form
⇒⇒⇒⇒ subject DAG

Represent each library gate with normal 
forms for the logic function
⇒⇒⇒⇒        primitive DAGs

Each primitive DAG has a cost

Goal:  Find a minimum cost covering of the 
subject DAG by the primitive DAGs

Normal form:  2-input NAND gates and 
inverters

K. Keutzer, DAGON: Technology Binding and Local 
Optimization by DAG Matching, in Proceedings of the
24th Design Automation Conference, 1987 and 
25 Years of Design Automation
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Step 1: Extract Combinational Logic

B

Flip-flops

Combinational
Logic

Since FF’s don’t need to be optimized with surrounding 
combinational logic we can partition them out

inputs outputs

Kurt Keutzer 22

Step 2: Normalize Circuit Netlist

``subject DAG’’

Reduce the netlist into ND2 gates



12

Copyright © 2000 K. Keutzer

Kurt Keutzer 23

Step 3a: Normalize library

INVERTER 2

NAND2 3

NAND3 4

NAND4 5

Element/Area Cost Tree Representation (normal form)
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Step 3b: Normalize library

AOI21 4

AOI22 5

Element/Area Cost Tree Representation (normal form)
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Sound Algorithmic approach

NP-hard optimization problem

Tree covering heuristic:  If subject and primitive 
DAGs are trees, efficient algorithm can find 
optimum cover ⇒⇒⇒⇒ dynamic programming 
formulation

Step 4: DAG Covering

multiple fanout

K. Keutzer, D. Richards, Computation 
Complexity of Logic Synthesis and 
Optimization,  in Proceedings of the
International Workshop on  Logic 
Synthesis, 1989
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Solution formulation

1) Partition input netlist into forest of trees
2) Solve each tree optimally using tree covering
3) Stitch trees back together
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Resulting Trees

Break at multiple fanout points
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For each tree - Dynamic Programming

Principle of optimality:  Optimal cover for a tree 
consists of a best match at the root of the 
tree plus the optimal cover for the sub-trees 
starting at each input of the match

x

y

z

p

Best cover for
this match uses
best covers for
x, y, z

Best cover for
this match uses
best covers for
p, z

Choose least
cost tree-cover
at root

K. Keutzer, DAGON: Technology 
Binding and Local Optimization by DAG 
Matching, in Proceedings of the
24th Design Automation Conference, 
1987
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Example of Optimal Tree Covering

NAND2
3

AOI21
4 + 3 = 7

INV
11 + 2 = 13

NAND2
2 + 6 + 3 = 11

NAND2
3 + 3 = 6

NAND2
3

INV
2

Kurt Keutzer 30

DAG covering in detail

1) partition DAG into a forest of trees

2) normalize netlist

3) optimally cover each tree

a) generate all candidate matches

b) find the optimal match using dynamic 
programming



16

Copyright © 2000 K. Keutzer

Kurt Keutzer 31

Partition DAG into Forest of trees

Each gate with fanout >1 becomes root of a new tree

Kurt Keutzer 32

Normalize netlist

Re-express netlist into 2-input Nand gates and Inverters

Make each tree left-oriented
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Generate candidate matches - 1

subject tree

At the end of this segment each gate in the subject tree is annotated
with every possible library cell  that could be rooted at that gate

What are some ways we can generate matches?

Kurt Keutzer 34

Generating candidate matches -2

Naïve approach -

try to match each cell in the library with each node of 
the tree (libraries can be large! - beware of large 
constants!!)

Better approach

build tables such that only potential candidate matches 
are checked

Best approach

fancy string matching - pp. 862-869

Introduction to Algorithms, T. Cormen, C. Lesierson, R. 
Rivest, The MIT Press, Second Printing, 1996. - pp. 862-
869

What’s the complexity 
of each approach?
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Optimal tree covering - 1

``subject tree’’

3

2

2

3

Kurt Keutzer 36

Optimal tree covering - 2

``subject tree’’

5

8

3

2

2

3
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Optimal tree covering - 3

``subject tree’’

Cover with ND2 or ND3 ?

3

2

2

3

8
13

5

1 NAND2 3
+ subtree 5

1 NAND3 = 4

Area cost 8

Kurt Keutzer 38

Optimal tree covering – 3b

``subject tree’’

3

2

2

3

8
13

5 4

Label the root of the sub-tree with optimal match and cost
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Optimal tree covering – 4a

``subject tree’’

Cover with INV or AO21 ?

5
4

3

8

2

2

13

2

1 Inverter 2
+ subtree 13

Area cost 15

1 AO21 4
+ subtree 1  3
+ subtree 2 2

Area cost 9

Kurt Keutzer 40

Optimal tree covering – 4b

``subject tree’’5
4

3

8

2

2

13

2

9

Label the root of the sub-tree with optimal match and cost
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Optimal tree covering - 5

``subject tree’’

Cover with ND2 or ND3 ?

subtree 1 9
subtree 2 4
1 NAND2 3

Area cost 16

NAND2 NAND3

8

4

9

subtree 1 8
subtree 2 2
subtree 3 4
1 NAND3 4

Area cost 18

2

Kurt Keutzer 42

Optimal tree covering – 5b

``subject tree’’

168

4

9

2

Label the root of the sub-tree with optimal match and cost
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Optimal tree covering - 6

``subject tree’’

Cover with INV or AOI21 ?

INV AOI21

Area cost 22

5

16

Area cost 18

subtree 1 16
1 INV 2

subtree 1 13
subtree 2 5
1 AOI21 4

13
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Optimal tree covering – 6b

``subject tree’’5

16

18
13

Label the root of the sub-tree with optimal match and cost
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Optimal tree covering - 7

``subject tree’’

Cover with ND2 or ND3 or ND4 ?

Kurt Keutzer 46

Cover 1 - NAND2

``subject tree’’

Cover with ND2 ?

16

18

subtree 1 18
subtree 2 0
1 NAND2 3

Area cost 21

4

9
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Cover 2 - NAND3

``subject tree’’

Cover with ND3?

subtree 1 9
subtree 2 4
subtree 3 0
1 NAND3 4

Area cost 17

9

4
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Cover - 3

``subject tree’’

Cover with ND4 ?

Area cost 19

subtree 1 8
subtree 2 2
subtree 3 4
subtree 4 0
1 NAND4 5

8

4

2
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Optimal Cover was Cover 2

``subject tree’’

Cover with ND3?

INV 2
ND2 3
2 ND3 8
AOI21 4

Area cost 17

AOI21

ND2

INV

ND3

ND3

Clear that greedy doesn’t work 
well
What’s the complexity?
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Computational Complexity

To determine the optimal cover for a tree we only need to 
consider a best cost match at the root of the tree 

This is constant-time in the number of matched cells

Plus the optimal cover for the sub-trees starting at each input 
of the match

This is constant-time in the indegree/fan-in of each match

x

y

z

p

Best cover for
this match uses
best covers for
x, y, z

Best cover for
this match uses
best covers for
p, z

Choose least
cost tree-cover
at root

O(n) - amazing!

What’s the complexity?
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Enhancements to DAG covering

Many enhancements incorporated over the last decade

• Timing optimization incorporating load-dependent 
delays 

– – Rudell - UCB

• Optimization for low power

• Application to FPGAs –

– J. Rose - Chortle

– J. Cong - Flowmap

• Optimal direct DAG covering without tree covering  
approximation (didn’t net much)

Kurt Keutzer 52

Summary of Technology Mapping

DAG covering formulation

– Separated library issues from mapping algorithm

Heuristics based on tree covering for area and delay

– surprisingly efficient final result - for 
technology/library dependent reasons

Very efficient 

– linear time

Very flexible approach

– applicable to wide range of libraries (standard cell, 
gate array) and technologies (FPGAS)

Best enhancement is integration of technology 
decomposition

Also requires ``follow up’’ rule based approaches for best 
final circuit efficiency
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Why does this approximation work well?

Each gate with fanout >1 becomes root of a new tree

Kurt Keutzer 54

Why does this approximation work well?

Few non-tree cells – XOR, MUX – one-level deep
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Why does this approximation work well?

Non-tree matching usually requires duplication – rarely a benefit
for area

Kurt Keutzer 56
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Retrospective

DAG covering by tree-covering is effective for four 
reasons 

• separates library definition and characterization from 
mapping algorithm

• Duplication of logic not a win in terms of area 
optimization. Advantage of duplication of logic for 
timing is very (physical) context dependent

• provided an efficient mapping in what appears to be a 
relatively flat solution space

• Very computationally efficient so suitable to VLSI scale 
(millions of gates) netlist

Principal weaknesses

• Problems handling multiplexor-trees, full-adders, other 
DAG patterns

• Problems in performing performance optimization 
tricks in tight pipelined logic

Kurt Keutzer 58

Extra Slides
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Typical library costs

2 3 4

3 3 7
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But what if?

2 3 4

3 3 4
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Given a function  f to be strong divided by  g

– Add an extra input to f corresponding to  g, 
namely  G and obtain function  h as follows

Minimize  h using two-level minimizer

Strong (or Boolean) Division

hON = fON −−−− hDC

hOFF ==== fON ++++ hDC

hDC = G g + G g
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Typical library costs

2 3 4

3 3 7
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But what if?

2 3 4

3 3 4


