
1

Delay Modeling and Static Timing
Verification

Prof. Kurt Keutzer

Michael Orshansky

EECS

University of California

Berkeley, CA

2

RTL Synthesis Flow

RTL
Synthesis

HDL

netlist

logic
optimization

netlist

Library

physical
design

layout

a

b

s

q
0

1

d

clk

a

b

s

q
0

1

d

clk

3

Design Process

Design : specify and enter the
design intent

Implement:
refine the
design
through all
phases

Verify:
verify the
correctness of
design and
implementation

4

Implementation Verification

RTL
Synthesis

HDL

netlist

logic
optimization

netlist

Library/
module
generators

physical
design

layout

manual
design

Is the
implementation

consistent
with the original
design intent?

Is what I
implemented

what I
wanted?

a

b

s

q
0

1

d

clk

a

b

s

q
0

1

d

clk

5

Implementation verification for ASIC’s

RTL
Synthesis

HDL

netlist

logic
optimization

netlist

Library/
module
generators

physical
design

layout

manual
design

Apply gate-level
simulation (‘‘the
golden
simulator’’) at
each step to verify

functionality:
• 0-1 behavior on
regression test
set

and timing:
• maximum delay
of circuit across
critical paths

a

b

s

q
0

1

d

clk

a

b

s

q
0

1

d

clk

ASIC
signoff

6

Advantages of gate-level simulation
verifies timing and functionality simultaneously
approach well understood by designers

Disadvantages of gate-level simulation
computationally intensive - only 1 - 10 clock cycles of 100K gate design
per 1 CPU second
incomplete - results only as good as your vector set - easy to overlook
incorrect timing/behavior

Simulation
driver

(vectors)

Simulation
monitor
(yes/no)

and
speed

Software Simulation

a

b

s

q

0

1

d

clk

7

Alternative - Static Sign-off

RTL
Synthesis

HDL

netlist

logic
optimization

netlist

Library/
module
generators

physical
design

layout

manual
design

a

b

s

q
0

1

d

clk

a

b

s

q
0

1

d

clk

ASIC
signoff

Use static
analysis
techniques to
verify:

functionality:
• formal
equivalence-
checking
techniques – we’ll
talk about this
later

and timing:
• use static timing
analysis

8

Different Roles of Timing Analysis

Optimization is only relevant when there exists an objective
function

For many circuits the primary objective function is speed

Timing verification
Before fabrication, ensure a chip meets its timing requirements

Timing-driven optimization – give fast accurate timing
information to guide tools as they evolve the chip

Logic synthesis
Placement
Routing

9

• determine fastest permissible clock speed (e.g. 100MHz)
by determining delay (including set-up and hold time) of
longest path from register to register (e.g. 10ns.)

•largely eliminates need for gate-level simulation to verify the delay
of the circuit

Approach of Static Timing Verification

clk

Combinational
logic

clk

Combinational
logic

clk

Combinational
logic

10

Cycle Time - Critical Path Delay

Cycle time (T) cannot be smaller
than longest path delay (Tmax)

Longest (critical) path delay is a
function of:

Total gate, wire delays
logic levels

clock

Q1 Q2

Tclock1 Tclock2
critical path,

~5 logic levels

Tclock1

data
cycle time

maxT T≤

11

Cycle Time - Setup Time

For FFs to correctly latch data,
it must be stable during:

• Setup time (Tsetup) before
clock arrives

clock

Q1 Q2

Tclock1 Tclock2
critical path,

~5 logic levels

Tclock1

data

setup time

max setupT T T+ ≤

12

Cycle Time - Clock-skew

clock

Q1 Q2

Tclock1 Tclock2

Tclock1

Tclock2

Q2

data

clock skew
Q2

12

If clock network has unbalanced
delay – clock skew

Cycle time is also a function of
clock skew (Tskew)

max setup skewT T T T+ + ≤

critical path,
~5 logic levels

13

Cycle Time - Clock to Q

Cycle time is also a function
of propagation delay of
FF (Tclk-to-Q)

Tclk-to-Q : time from arrival of
clock signal till change at
FF output)

clock

Q1 Q2

Tclock1 Tclock2

Tclock1

Tclock2

Q2
clock-to-Q

data

Q2

max setup skew clk to QT T T T T− −+ + + ≤

critical path,
~5 logic levels

14

Min Path Delay - Hold Time

For FFs to correctly latch data,
data must be stable during:

• Hold time (Thold) after clock
arrives

Determined by delay of shortest
path in circuit (Tmin) and
clock skew (Tskew)

clock

Q1 Q2

Tclock1 Tclock2
short path, ~3

logic levels

Tclock1

data
hold time

min hold skewT T T≥ +

15

One more time

set-up time – D stable
before clock

cycle time

Example of a single phase clock

hold time –
D stable
after clock

When signal
may change

16

Elements of Timing Verification

To verify circuit timing need
Accurate delay calculation
Timing analysis engine

Delay calculation
Delay numbers for gates
Delay numbers for wires

Timing analysis engine
Circuit path analysis
Integrating clock network and FF/latches

17

Delay Modeling and Delay Computation

Single path delay computation

DD
To simulate complex circuits, need accurate models of

Gate delay
Interconnect delay

tG1 tG2 tW1
tG3

Time

100%

50%

Path delay = sum of 50%
propagation delays

tG1 tG2

Vdd

tW1 tG3

18

Gate Delay Modeling Requirements

Fast delay evaluation
To enable full chip simulation
Analytical models and look-up tables

Conservative delay models
STA determines longest path delay under all possible
conditions

To enable fast tractable computation, have to give up on many
modeling details

Input pattern dependencies
Complex dynamic behavior is captured through tables

19

Gate Timing Characterization

“Extract” exact transistor characteristics from layout
Transistor width, length, junction area and perimeter
Local wire length and inter-wire distance

Compute all transistor and wire capacitances

CL D
A

B

F

CL

20

Cell Timing Characterization

Delay tables generated using a detailed transistor-level
circuit simulator SPICE (differential-equations solver)

For a number of different input slews and load capacitances
simulate the circuit of the cell

Propagation time (50% Vdd at input to 50% at output)
Output slew (10% Vdd at output to 90% Vdd at output)

Time

tslew

tpd

Vdd

21

Scope of Variation

Inter-Die Variation

Intra-Die Variation

• As an ASIC vendor we
must ensure that our
chips work across this
range of variation

• This is a very restrictive
condition and will be
responsible for many
conservative
assumptions throughout
timing analysis

%),(σµN

22

FF: Fast NMOS
&
Fast PMOS

SF: Slow NMOS
&
Fast PMOS

3 corner Model:
TT, SS, FF

5 corner model:
all

Corners from SPICE document

SS

SF

FF

FS

Comparison Corner vs Real Data

Device Worst Case Model

Must use worst case assumptions for
Slow/set-up and Fast/hold analysis

23

How Is Gate Delay Computed?
Non-linear effects reflected in tables

Input
Slew

Input
Slew

Delay at the gate

Output
Capacitance

Output
Capacitance

Output
Slew

Intrinsic
Delay

Resulting waveform

DG = f (CL, Sin) and Sout = f (CL, Sin)
Non-linear

Interpolate between table entries

Interpolation error is usually below 10% of SPICE

24

Conservatism of Gate Delay Modeling

True gate delay depends on input arrival time patterns
STA will assume that only 1 input is switching
Will use worst slope among several inputs

Time

A B Ftpd

Time

A Ftpd

Vdd

Vdd

D
A

B

F

CL
D

A

B

F

CL

25

Elements of Timing Verification

To verify circuit timing need
Accurate delay calculation
Timing analysis engine

Delay calculation
Delay numbers for gates
Delay numbers for wires

Timing analysis engine
Circuit path analysis
Integrating clock network and FF/latches

26

Interconnect Impact on Chip

Jan M. Rabaey
Anantha Chandrakasan
Borivoje Nikolic

27

Wire-Dominated Chips

Wiring requirements grow dramatically

Number of interconnect layers (6-8)

Interconnect effects
Large RC and RLC delays
Inter-wire coupling

Interconnect becomes a
dominant factor in
limiting chip performance

TSMC Copper Process

28

Wire Delay Modeling

Lumped RC model
Simple: R – total resistance,
C – total capacitance
Pessimistic and inaccurate
Spurious oscillations

Distributed RC model
Required for longer interconnect lines
Exact solution requires solving “diffusion equation”
No closed-form solution - approximations

R1 C1
R2 C2

RN
CN

Vin VoutR

C

29

Wire Delay Modeling: Elmore Constant

Elmore Delay Constant
Dominant time constant for step input
Works for branch-less distributed RC networks
No floating caps, grounded resistors

N i
N i j 1 1 2 1 2 i 1 2 i

i 1 j 1
C R C R C (R R) ... C (R R ... R)

= =
τ = = + + + + + + +∑ ∑

R1 C1
R2 C2

RN
CN

30

Wire Delay Modeling: AWE

AWE (Asymptotic Waveform Evaluation) is a qth-order extension of the
Elmore delay for general RLC circuits

A generalized approach to linear RLC network response approximations
Floating cap, grounded resistors, inductors
Non-zero input transition times
Initial conditions

Produces a reduced qth order model of transient response
Trade-off between model order (complexity) and model accuracy

The q unknown time- constants, or poles, of the circuit, are

obtained through a moment matching technique (a Padé approximation)

A first-order AWE approximation reduces to RC tree methods

31

Constructing RC Network

Resistance estimation (extraction) is easy

Capacitance estimation (extraction) is difficult
Analytically
Using electromagnetic 3D simulators / extractors

C10

C12

C11 C11 T

H

S W

= ρ
⋅
w

w
LR

W T

32

Capacitance: The Parallel Plate Model

Dielectric

Substrate

L

W

H

tdi

Electrical-field lines

Current flow

WL
t

c
di

di
int

ε
=

LL
Cwire SSS

SS 1
=

⋅
=

Jan M. Rabaey
Anantha Chandrakasan
Borivoje Nikolic

33

Interwire Capacitance

fringing parallel

34

Deriving Capacitance Information

Wire delays determined by layout
Wire-to-wire spacing
Wire-length

Problem: wire-to-wire capacitance and wire-length not known
until placement and routing of all circuit components

Two modes of evaluating wire delay
Post P&R: 2, 2&1/2 or 3-D interconnect parasitic extraction (e.g.
capacitance and resistance), distributed RC delay models
Synthesis: tabular data based on prior chips

S W

T

H

35

Wire Load Models
Synthesis must produce circuits that meet the designer’s timing

constraints

Wire delay based on gathered empirical data from past chips or

estimated by typical (average) wirelength given by Rent’s rule – see
extra slides at the end of the lecture

Function of FO
Function of block size

Lumped RC model used
fanout

block size (gates)

cap

1

2

3

4

5

100 500 20001000 3000

36

Delay Modeling: Review

Components of cycle time
Critical path delay, setup time, clock skew, clock-to-Q

Gate delay modeling
Fast delay evaluation: look up tables
Conservative models: worst-case assumptions
Derived by running SPICE simulations of cells in the library

Wire delay modeling
More accurate

Elmore model, RC tree, AWE
Statistical wirelength modeling

Typically table look ups – or extracted values are used

37

Library (.lib) Embodies Gate/Wire Delay Info

Contains for each cell:
Functional information: cell = a *b * c
Timing information: function of

input slew
intrinsic delay
output capacitance

non-linear models used in tabular approach
Physical footprint (area)
Power characteristics

Wire-load models - function of
Block size
Fan-out

Library

38

Elements of Timing Verification

To verify circuit timing need
Accurate delay calculation
Timing analysis engine

Delay calculation
Delay numbers for gates
Delay numbers for wires

Timing analysis engine
Considering clock network and FF/latches
Circuit path analysis

39

clk

Combinational
logic

clk

Combinational
logic

clk

Combinational
logic

Clocking issues
Regimes: single-phase, two-phase, multi-phase
overlapping, non-overlapping
qualified clocks, clock skew

Elements of Static Timing Verification - 2

40

Clock Skew

From Dennis Sylvester

The clock may be delivered to each FF at a different,
unsynchronized, time

41

clk

Combinational
logic

clk

Combinational
logic

clk

Combinational
logic

Delay calculation procedure
Longest graphical path
Longest true delay

Method of calculation
``Batch mode’’
Incremental

Elements of Static Timing Verification - 3

42

Typical Simplifications

Clocking issues
clocking regime treated as orthogonal issue

Delay modeling
gate - fixed pin-to-pin delays,
interconnect - non-linear effects captured in tables
Process-voltage-temperature - worst-case values used

Delay calculation
``extract’’ combinational logic from sequential circuit
Choose for accuracy

Simple ``longest-path analysis’’
Boolean analysis excluding false paths

43

Elements of Timing Verification

To verify circuit timing need
Accurate delay calculation
Timing analysis engine

Delay calculation
Delay numbers for gates
Delay numbers for wires

Timing analysis engine
Considering clock network and FF/latches
Circuit path analysis

Topologically/graphically based
Including Boolean/functional pruning

Approach -reduce to combinational

clk

Combinational
logic

clk

Combinational
logic

clk

Combinational
logic

original circuit

extracted block

Combinational
logic

45

Each combinational block

Arrival time in
green A

C

B

f

2

2

2
1

0

1

0

.20
.20

.20

.10

X

Y
Z

W

.15

.05

.05

.05

Interconnect
delay in red

Gate delay in
blue

What’s the right
mathematical
object to use to
represent this
physical object?

46

Problem formulation - 1

C

B

f

X

Y

W

0

.05.1

1

.2

0

0

1

A

.15
.20

.20

A

C

B

f

2

2

2
1

0

1

0

.20
.20

.20

.10

X

Y
Z

W

.15

.05

.05

.05

1
2

2

2

Z

Use a labeled
directed graph

G = <V,E>

Vertices represent
gates, primary
inputs and
primary outputs

Edges represent
wires

Labels represent
delays

Now what do we do
with this?

47

Problem formulation - Arrival Time

Arrival time A(v) for a node v is time when signal arrives at
node v

u
u

A() max (A(u) d)→υ
∈ υ

υ = +
FI()

X

Y

A(Z)

Z

x zd →

Y zd →

A(X)

A(Y)

 where d is delay from to andu u, {X,Y}, {Z}.υ→ υ υ FI(υ) = =

48

Problem formulation - 2

C

B

f

X

Y

W

0

.5.1

1

.2

0

0

1

A

.15
.20

.20

A

C

B

f

2

2

2
1

0

1

0

.20
.20

.20

.10

X

Y
Z

W

.15

.5

.05

.05

1
2

2

2

Z

Use a labeled
directed graph

G = <V,E>

Enumerate all paths
- choose the
longest?

49

Problem formulation - 3

C

B

f

X

Y

W

0

.5.1

1

.2

0

0

.1

A

.15
.20

.20

1
2

2

2

Z

Compute the longest path in a graph G = <V,E,delay,Origin> (delay is set of labels, Origin is the super-source
of the DAG)

Forward-prop(W){

for each vertex v in W

for each edge <v,w> from v

Final-delay(w) = max(Final-delay(w), delay(v) + delay(w) + delay(<v,w>))

if all incoming edges of w have been traversed

add w to W

}

Longest path(G)

Forward_prop(Origin)

}

0

0

0

0

0

Origin

(Kirkpatrick 1966, IBM JRD)
Complexity?

50

Algorithm Execution

C

B

f

X

Y

W

0

.5.1

1

.2

0

0

.1

A

.15
.20

.20

1
2

2

2

Z

Compute the longest path in a graph G = <V,E,delay,Origin> (delay is set of labels, Origin is the super-source
of the DAG)

Forward-prop(W){

for each vertex v in W

for each edge <v,w> from v

Final-delay(w) = max(Final-delay(w), delay(v) + delay(w) + delay(<v,w>))

if all incoming edges of w have been traversed

add w to W

}

Longest path(G)

Forward_prop(Origin)

}

0

O

0

0

0

Origin

0

51

Algorithm Execution

C

B

f

X

Y

W

0

.5.1

1

.2

0

0

.1

A

.15
.20

.20

1
2

2

2

Z

Compute the longest path in a graph G = <V,E,delay,Origin> (delay is set of labels, Origin is the super-source
of the DAG)

Forward-prop(W){

for each vertex v in W

for each edge <v,w> from v

Final-delay(w) = max(Final-delay(w), delay(v) + delay(w) + delay(<v,w>))

if all incoming edges of w have been traversed

add w to W

}

Longest path(G)

Forward_prop(Origin)

}

0

O

000

Origin 0

0

52

Algorithm Execution

C

B

f

X

Y

W

0

.5.1

1

.2

0

0

.1

A

.15
.20

.20

1
2

2

2

Z

Compute the longest path in a graph G = <V,E,delay,Origin> (delay is set of labels, Origin is the super-source
of the DAG)

Forward-prop(W){

for each vertex v in W

for each edge <v,w> from v

Final-delay(w) = max(Final-delay(w), delay(v) + delay(w) + delay(<v,w>))

if all incoming edges of w have been traversed

add w to W

}

Longest path(G)

Forward_prop(Origin)

}

0

O

0

.1

0

Origin

0

0

0

53

Algorithm Execution

C

B

f

X

Y

W

0

.5.1

1

.2

0

0

.1

A

.15
.20

.20

1

2

2

2

Z

Compute the longest path in a graph G = <V,E,delay,Origin> (delay is set of labels, Origin is the super-source
of the DAG)

Forward-prop(W){

for each vertex v in W

for each edge <v,w> from v

Final-delay(w) = max(Final-delay(w), delay(v) + delay(w) + delay(<v,w>))

if all incoming edges of w have been traversed

add w to W

}

Longest path(G)

Forward_prop(Origin)

}

0

O

0

.1

0

Origin

0

0

0

2.0

54

Algorithm Execution

C

B

f

X

Y

W

0

.5.1

1

.2

0

0

.1

A

.15
.20

.20

1
2

2

2

Z

Compute the longest path in a graph G = <V,E,delay,Origin> (delay is set of labels, Origin is the super-source
of the DAG)

Forward-prop(W){

for each vertex v in W

for each edge <v,w> from v

Final-delay(w) = max(Final-delay(w), delay(v) + delay (w) + delay(<v,w>))

if all incoming edges of w have been traversed

add w to W

}

Longest path(G)

Forward_prop(Origin)

}

0

O

0

.1

0

Origin

1.1

55

Algorithm Execution

C

B

f

X

Y

W

0

.5.1

1

.2

0

0

.1

A

.15
.20

.20

1
2

2

2

Z

Compute the longest path in a graph G = <V,E,delay,Origin> (delay is set of labels, Origin is the super-source
of the DAG)

Forward-prop(W){

for each vertex v in W

for each edge <v,w> from v

Final-delay(w) = max(Final-delay(w), delay(v) + delay(w) + delay(<v,w>))

if all incoming edges of w have been traversed

add w to W

}

Longest path(G)

Forward_prop(Origin)

}

0

O

0

.1

0

Origin

1.1

2.2

56

Algorithm Execution

C

B

f

X

Y

W

0

.5.1

1

.2

0

0

.1

A

.15
.20

.20

1
2

2

Z

Compute the longest path in a graph G = <V,E,delay,Origin> (delay is set of labels, Origin is the super-source
of the DAG)

Forward-prop(W){

for each vertex v in W

for each edge <v,w> from v

Final-delay(w) = max(Final-delay(w), delay(v) + delay(w) + delay(<v,w>))

if all incoming edges of w have been traversed

add w to W

}

Longest path(G)

Forward_prop(Origin)

}

0

O

0

.1

0

Origin

1.1

2

3

57

Algorithm Execution

C

B

f

X

Y

W

0

.5.1

1

.2

0

0

1

A

.15
.20

.20

1

2
3.6

2

Z

Compute the longest path in a graph G = <V,E,delay,Origin> (delay is set of labels, Origin is the super-source
of the DAG)

Forward-prop(W){

for each vertex v in W

for each edge <v,w> from v

Final-delay(w) = max(Final-delay(w), delay(v) + delay(w) + delay(<v,w>))

if all incoming edges of w have been traversed

add w to W

}

Longest path(G)

Forward_prop(Origin)

}

0

O

0

0

0

Origin

1.1

2

3

58

Algorithm Execution

C

B

f

X

Y

W

0

.5.1

1

.2

0

0

1

A

.15
.20

.20

1

2
3.6

2

Z

Compute the longest path in a graph G = <V,E,delay,Origin> (delay is set of labels, Origin is the super-source
of the DAG)

Forward-prop(W){

for each vertex v in W

for each edge <v,w> from v

Final-delay(w) = max(Final-delay(w), delay(v) + delay(w) + delay(<v,w>))

if all incoming edges of w have been traversed

add w to W

}

Longest path(G)

Forward_prop(Origin)

}

0

O

0

0

0

Origin

1.1

2

5.8

3

59

Algorithm Execution

C

B

f

X

Y

W

0

.5.1

1

.2

0

0

1

A

.15
.20

.20

1

2
3.6

2

Z

Compute the longest path in a graph G = <V,E,delay,Origin> (delay is set of labels, Origin is the super-source
of the DAG)

Forward-prop(W){

for each vertex v in W

for each edge <v,w> from v

Final-delay(w) = max(Final-delay(w), delay(v) + delay(w) + delay(<v,w>))

if all incoming edges of w have been traversed

add w to W

}

Longest path(G)

Forward_prop(Origin)

}

0

O

0

0

0

Origin

1.1

2

5.8

3

60

Algorithm Execution

C

B

f

X

Y

W

0

.5.1

1

.2

0

0

1

A

.15
.20

.20

1

2
3.6

2

Z

Compute the longest path in a graph G = <V,E,delay,Origin> (delay is set of labels, Origin is the super-source
of the DAG)

Forward-prop(W){

for each vertex v in W

for each edge <v,w> from v

Final-delay(w) = max(Final-delay(w), delay(v) + delay(w) + delay(<v,w>))

if all incoming edges of w have been traversed

add w to W

}

Longest path(G)

Forward_prop(Origin)

}

0

O

0

0

0

Origin

1.1

2

5.8

3

5.95

61

Critical Path (sub-graph)

C

B

f

X

Y

W

0

.5.1

1

.2

0

0

1

A

.15
.20

.20

1

2
3.6

2

Z

Compute the longest path in a graph G = <V,E,delay,Origin> (delay is set of labels, Origin is the super-source
of the DAG)

Forward-prop(W){

for each vertex v in W

for each edge <v,w> from v

Final-delay(w) = max(Final-delay(w), delay(v) + delay(w) + delay(<v,w>))

if all incoming edges of w have been traversed

add w to W

}

Longest path(G)

Forward_prop(Origin)

}

0

O

0

0

0

Origin

1.1

2

5.8

3

5.95

62

Timing for Optimization: Extra
Requirements

Longest-path algorithm computes arrival times at each node

If we have timing constraints, need to propagate slack to
each node

A measure of how much timing margin exists at each node
Can optimize a particular branch

Can trade slack for power, area, robustness

clock

63

Required Time

Required time R(v) is the time before which a signal must
arrive to avoid a timing violation

Then recursively

X

Y

R(Z)
Z

Yxd →

X zd →
R(X)

R(Y)

u
u

R() min (R(u) d)υ→
∈ υ

υ = −
FO()

where {Y,Z} and {X}υ υ FO() = =

Required time is user defined at output:
 setupR(v) = T - T

64

Required Time Propagation: Example

C

B

f

X

Y

W

0

.5.1

1

.2

0

0

1

A

.15
.20

.20

1

2
3.6

2

Z

Assume required time at output R(f) = 5.80

Propagate required times backwards

0

O

0

0

0

Origin

1.1

2

5.8

3

5.95

5.65

3.45

3.45

0.95

0.45

-0.15

1.45

5.80

65

Timing Slack

From arrival and required time can compute slack. For each
node v:

Slack reflects criticality of a node

Positive slack
Node is not on critical path. Timing constraints met.

Zero slack
Node is on critical path. Timing constraints are barely met.

Negative slack
There is a timing violation

Slack distribution is key for timing optimization!

S() R() A()υ = υ − υ

66

Timing Slack Computation: Example

Compute slack at each node

C

B

f

X

Y

W

A

ZOrigin
-0.15

-0.15

0.45

-0.15

0.45

-0.15

1.45

-0.15

S() R() A()υ = υ − υ

67

Timing Slack Properties

Path through a timing graph:

Path slack reflects slack at output assuming no other path in
circuit is active

By increasing delay on only one cell in the path, can set path
slack to zero -> other cells also have zero slack.

1 2 kv ,v ,...,vρ =< >

Path slack:
i i 1

k 1
k 1 v v

i 1
S() R(v) A(v) d

+

−
→

=
ρ = − − ∑

Lemma 1: For any path through circuit,
 for 1

1 2 k

i

v ,v ,...,v
S(v) S(), i k

ρ =< >

≤ ρ ≤ ≤

Lemma 2: For each cell v V there is some path
such that

v

vS(v) S()
∈ ρ

= ρ

R. Nair et al, “Generation of Performance
Constraints for Layout”, TCAD 1989.

68

clk

Combinational
logic

clk

Combinational
logic

clk

Combinational
logic

• computing longest path delay
• full path enumeration - potentially exponential
• longest path algorithm on DAG (Kirkpatrick 1966, IBM JRD)
(O(v+e) or O(g + p))

• Currently in successful application on even the largest (>10M
gate) circuits
•has two challenges:

•asynchronous sub-circuits - limited gate-level simulation
• false paths - ubiquitous and problematic

Approach of Static Timing Verification

69

Elements of Timing Verification

To verify circuit timing need
Accurate delay calculation
Timing analysis engine

Delay calculation
Delay numbers for gates
Delay numbers for wires

Timing analysis engine
Considering clock network and FF/latches
Circuit path analysis

Topologically/graphically based
Including Boolean/functional pruning

70

Interesting Example: Carry Bypass Adder

Full Adder Full Adderco

and

c2

co

a0 b0 a1 b1

c1

so s1

mux

0

1
p1p0

pi: carry propagate from state i

Pi: ai XORbi

Lehman, Birla - IRETrans. Electron. Comput. , 1961
V. Oklobdzija - Jrnl. of VLSI Signal Processing, 1991

71

Longest graphical/topological path runs along carry chain
from stage to stage

Longest path analysis would identify red path as critical

1
0

si+1

ci+1

ci-1

ai
bi

ai
bi

ai+1

Inside Carry Bypass Adder - 1
late arriving

bi+1

bi+1
ai+1

72

To sensitize red path we need: ai⊕bi && ai+1⊕ bi+1
But: red path is false because when this condition is true MUX

selects “1” input, i.e. directly from ci-1
Instead shorter green paths are sensitized and red path is not the

critical path of the circuit
False paths first observed by V. Hrapcenko (Soviet Math. Dokl. 1978)

1
0

si+1

ci+1

ci-1

ai
bi

ai
bi

ai+1

Inside Carry Bypass Adder - 2
late arriving

bi+1

bi+1
ai+1

1 needed

1 needed

1 created

73

Capturing Functional Behavior in Analysis

Failure to remove false paths leads to conservative delay
estimation

Looking for a path delay calculation approach that :
Is conservative
Is not (overly) pessimistic
Incorporates functional (Boolean) behavior

Eliminates false paths from analysis

Two approaches to false path elimination
User-specified path exceptions (still mainstream)
Automatic false-path detection

74

False Path Detection

Sensitization criterion: a condition under which a signal
transition at gate input will propagate to the gate output

Two-vector (transition mode) condition
More complex: two-vector condition with (2^n * 2^n) vs. single
vector condition (2^n space)
Does not satisfy monotone speedup property

Path delay increased when gate delay decreases

One-vector (floating mode) condition
Previous node value is (conservatively) indeterminate

75

Chen-Du Path Sensitization Condition

Path from a gate input to the gate output is true iff the input
gives
1. The earliest controlling value
2. The latest non-controlling value if all inputs are non-

controlling

Functional timing analysis
Test each path for falsity
Implicit path delay sensitization (PODEM)

a
b

a
b

76

Enhancements of STA – project ideas

Incremental timing

Incorporation of deep sub-micron effects - crosstalk

Incorporation of physical variation timing variation –
statistical timing

77

Current Status of Static Timing Verification

Static timing verification is now the principal method for verifying
timing in the majority of digital circuits

ASICs:
Gate-level models from Semiconductor vendors
Driven by fast interpolation from tables
Estimated (wire-load model) or back-annotated
capacitances

Custom (e.g. Intel microprocessor)/COT (e.g. nVidia, ATI graphics
chips)

Mixture of above and transistor-level static-timing
verification
Transistor level based on extracted device and wiring
attributes
Simulation of each transistor network builds accurate
model

78

Extras

Rent’s rule

RC Models

79

Statistical Wire Length Estimation

Before P&R, need to predict wire
length for each net

Can predict average (typical)
wirelength based on empirical
statistical regularities

Early on data showed that there
exist strong correlation
between number of IO
terminals and number of gates
in the block

(Bakoglu)

80

Rent’s Rule

1.90.5Gate Array

0.820.45Microprocessor

60.12Static Memory

Proportionality Constant KRent’s constantChip Type

Typical values of Rent’s Coefficient (Bakoglu)

In 1960, E.F.Rent showed that

where Np =no. of external signal connections on a block, Ng = no.
of logic gates in a block, K accounts for # of pins per gate, and
is Rent’ s constant – is a measure of many of the gates in a
circuit block need to communicate with the outside world.

Rent’ s Rule is very circuit-fabric (architecture) specific

β=p gN K(N)

β

81

Statistical Wirelength Estimation

Estimate average wiring length for point-to-point nets by
applying Rent’s rule recursively:

Partition the chip into hierarchical divisions
Estimate the connections between partitions by Rent’ s Rule

Wire length also depends on fan out of the net
= + −avg avgL (FO) L (1 0.4(FO 1))

= βavg gL f(N ,)

(J. Davis)
Wirelength (gate pitches)

82

Wire Delay Modeling: RC Trees

If a single dominant time-constant exists, then

For RC trees (branching networks), delay can be estimated
using Rubinstein-Penfield Theorem

where

N
i k i,k

k 1

i,k j j

C R

R R (R [path(i s) path(k s)])
=

τ ∝

= ⇒ ∈ → →

∑

∑ I

C1

C2

C3

R2

R1

R3

C4

Ci

R4

Ri

C1

C2C2

C3

R2

R1

R3

C4C4

CiCi

R4

Ri

s 1

2

3

4

i

C1

C2

C3

R2

R1

R3

C4

Ci

R4

Ri

C1

C2C2

C3

R2

R1

R3

C4C4

CiCi

R4

Ri

s 1

2

3

4

i

 i 1 1 2 1 3 1 3 4 1 3 i 1 3 iE.g. C R C R C (R R) C (R R) C (R R R)τ == + + + + + + + +

83

Wire Delay Modeling: RC Trees

Same limitations as for Elmore constant
RC- tree topologies (not applicable with inter-nodal capacitances)
Instantaneous input transition times

The theorem also establishes precise bounds on voltage
waveforms

