Model Checking

Sanjit Seshia
EECS
UC Berkeley

(with thanks to Kenneth McMillan)

Formal Verification as practiced today

Verification Engineer

RTL

Properties (Spec)

Correct / Error trace

MODEL GENERATOR

MODEL CHECKER
Today’s Lecture

What you know: How to formally specify properties using temporal logic

Today:
• Given a FSM description and a temporal logic property, how do we automatically check if that property holds?
 – Model checking
• Survey of some other formal verification topics
• What’s next in verification?

Recap: Terminology and Temporal Logic

Behavior / Execution / Trace / Run / Path

A property corresponds to a “set of behaviors”

Operators to express properties over time:

G “globally”
F “eventually” / “in the future”
X “in the next state”
U “until”
Model Checking

G(p \rightarrow X q)

Yes, property satisfied

Model Checker

Brief History of Finite-State Model Checking

1977: Pnueli introduces use of (linear) temporal logic for program verification [1996 Turing Award]
1981: Model checking introduced by Clarke & Emerson and Quielle & Sifakis
 – But capacity limited by “state explosion”
1986: Bryant publishes paper on BDDs
1987: McMillan comes up with idea for “Symbolic Model Checking” (using BDDs)
 – First step towards tackling state explosion
1987-1999: Flurry of activity on model checking with BDDs, lots of progress using: abstraction, compositional reasoning, …
 – More techniques to tackle state explosion
1999: Clarke et al. introduce “Bounded Model Checking” using SAT
 – Exploits advantages of SAT over BDDs
1999-date: More advances based on both BDDs and SAT, industrial use increases especially for corner-case and control logic debugging
Outline

- Recap of Computation Tree Logic and why it is useful for designing verification algorithms
- Model Checking with BDDs
- Bounded Model Checking with SAT

Labelled State Transition Graph

“Kripke structure”

Infinite Computation Tree
Temporal Logic

Linear Temporal Logic (LTL)
- Properties expressed over a single time-line

Computation Tree Logic (CTL, CTL*)
- Properties expressed over a tree of all possible executions
- CTL* gives more expressiveness than LTL
- CTL is a subset of CTL* that is easier to verify than arbitrary CTL*

Computation Tree Logic (CTL*)

Introduce two new operators called “Path quantifiers”
- A p: Property p holds along all computation paths
- E p: Property p holds along at least one path
- Example:
 “From any state, it is possible to get to the reset state”
 \[A \underbrace{G \ (E \ F \ \text{reset})} \]

- CTL: Every F, G, X, U must be preceded by either an A or a E
 - E.g., Can’t write A (FG p)

- LTL is just like having an “A” on the outside
Why CTL?

- Verifying LTL properties turns out to be computationally harder than CTL
- Exponential in the size of the LTL expression
 - linear for CTL
- For both, verification is linear in the size of the state graph

CTL as a way to approximate LTL

- $\text{AG EF } p$ is weaker than $\text{G F } p$
 Good for finding bugs...

![Diagram](image1)

- $\text{AF AG } p$ is stronger than $\text{F G } p$
 Good for verifying correctness...

![Diagram](image2)
CTL Model Checking

So, we’ve decided to do CTL model checking.

What are the algorithms?

Recap: Reachability Analysis

Given:
1. A Boolean formula corresponding to initial states R_0
2. δ

To find: All states reachable from R_0 in 1, 2, 3, ... transitions (clock ticks)

Strategy: Denote set of states reachable from R_0 in k (or less) clock ticks as R_k

$$R_{k+1}(s^*) = R_k(s^*) + \exists s \{ R_k(s) \cdot \delta(s, s^*) \}$$
Backwards Reachability Analysis

Given:
1. A Boolean formula corresponding to error states \(E_0 \)
2. \(\delta \)

To find: All states that can reach \(E_0 \) in 1, 2, 3, ... transitions (clock ticks)

Strategy: Denote set of states reachable from \(E_0 \) in \(k \) (or less) clock ticks as \(E_k \)

\[
E_{k+1}(s) = E_k(s) + \exists s^+ \{ E_k(s^+) \cdot \delta(s, s^+) \}
\]

Verification of G p

Corresponding CTL formula is \(AGp \)
- Remember that \(p \) is a function of \(s \)

- **Forward Reachability Analysis:**
 - Check if any \(R_h(s) \cdot p'(s) \) is true for any \(s \)

- **Backward Reachability Analysis:**
 - Set \(E_0 = p' \)
 - Check if \(E_k(s) \cdot R_0(s) \) is true for any \(s \)
Model Checking Arbitrary CTL

Need only consider the following types of CTL properties:

- \(\mathcal{E} X p \)
- \(\mathcal{E} \mathcal{G} p \)
- \(\mathcal{E} (p \mathcal{U} q) \)

Why? \(\leftarrow\) all others are expressible using above

- \(\mathcal{A} \mathcal{G} p = ? \)
- \(\mathcal{A} \mathcal{G} (p \rightarrow (\mathcal{A} \mathcal{F} q)) = ? \)

Model Checking CTL Properties

We define a general recursive procedure called “Check” to do this

Definition of Check:

- Input: A CTL property \(\Pi \) (and implicitly, \(\delta \))
- Output: A Boolean formula \(B \) representing the set of states satisfying \(\Pi \)

- If \(B(s) \cdot R_0(s) \neq 0 \), then \(\Pi \) is true (in the initial state)
The “Check” procedure

Cases:
• If Π is a Boolean formula, then Check(Π) = Π
• Else:
 – $\Pi = \text{EX } p$, then Check(Π) = CheckEX(Check(p))
 – $\Pi = \text{E}(p \text{ U } q)$, then
 Check(Π) = CheckEU(Check(p), Check(q))
 – $\Pi = \text{E G } p$, then Check(Π) = CheckEG(Check(p))

• Note: What are the arguments to CheckEX, CheckEU, CheckEG? CTL properties or Boolean formulas?

CheckEX

CheckEX(p) returns a set of states such that p is true in their next states

How to write this?
CheckEU

CheckEU(p, q) returns a set of states, each of which is such that
- Either q is true in that state
- Or p is true in that state and you can get from it to a state in which p U q is true

Seems like circular reasoning!

But it works out: using a recursive computation like in reachability analysis
- We compute a series of approximations leading to the right answer

Let Z_0 be our initial approximation to the answer to CheckEU(p, q)

$$Z_k(s) = \{ q(s) + [p(s) \cdot \exists s^+ \{ \delta(s, s^+) \cdot Z_{k-1}(s^+) \}] \}$$

What’s a good choice for Z_0? Why will this terminate?
Summary

EGp computed similarly

Definition of Check:
- Input: A CTL property Π (and implicitly, δ)
- Output: A Boolean formula B representing the set of states satisfying Π

All Boolean formulas represented “symbolically” as BDDs
- “Symbolic Model Checking”

Bounded Model Checking [Biere, Clarke, Cimatti, Zhu99]

Given
- A finite state machine M (“transition system”)
- A property p

Determine
- Does M allow a counterexample to p of k transitions or fewer?

This problem can be translated to a SAT problem
Models

Transition system described by a set of constraints

Each circuit element is a constraint

note: $a = a_t$ and $a' = a_{t+1}$

Properties

We restrict our attention to safety properties.

Characterized by:

- Initial condition R_0
- Final condition E (representing “error” states)

A counterexample is a path from a state satisfying R_0 to state satisfying E, where every transition satisfies C.
Unfolding

Unfold the model k times:

\[U_k = C_0 \land C_1 \land \ldots \land C_{k-1} \]

\[R_0 \quad \text{...} \quad E_k \]

- Use SAT solver to check satisfiability of \(R_0 \land U_k \land E_k \)
- A satisfying assignment is a counterexample of k steps

BMC applications

Debugging:
- Can find counterexamples using a SAT solver

Proving properties:
- Only possible if a bound on the length of the shortest counterexample is known.
 - I.e., we need a diameter bound. The diameter is the maximum length of the shortest path between any two states.
 - Worst case is exponential. Obtaining better bounds is sometimes possible, but generally intractable.
New Developments in SAT-based MC

SAT-based bounded model checking has scaled to thousands of state bits and is very useful for debugging

- Can verify LTL properties too

Unbounded model checking is now also possible with SAT

But on some problems, BDD-based model checking is still better

Some Other Formal Verification Topics

Scaling up Model Checking
- Abstraction: Keep only the relevant state variables
- Compositional Reasoning: Break a system up into modules, prove the property for the modules, combine the proofs
- ...

Model Generation
- Counterexample-guided Abstraction-Refinement
- Machine learning (especially for Environment model)

Theorem proving is also used, sometimes combined with Model Checking
Some References for Further Study

- **Verification Tools for Finite-State Concurrent Systems**, Clarke, Grumberg, Long (in prelim reading list)

Formal Verification in Industry

Some commercial tools in EDA: Synopsys Magellan, 0-In FV, Jasper JasperGold, Real Intent Verix, IBM RuleBase, ...

Theorem proving also used: e.g., Intel’s Forte system, ACL2 prover at AMD

Software: Microsoft Static Driver Verifier (SDV), VeriSoft (Bell Labs), SPIN (Bell Labs, now NASA/JPL), ...

Industry view: Useful, but not the only tool
What’s next in Verification?

- Non-Boolean (infinite-state) Model Checking
 - Software (why aren’t FSMs enough to express these?)
 - Real-time systems
 - Hybrid systems
 - Verifying data-dependent properties
- Computer Security
- Run-time Verification & Robustness

Computer Security

How is verifying security different from other forms of verification?

- What’s different about the properties?
- What’s different about the system model?
An Example of a Security Problem

Assume cryptography works perfectly, can’t be broken

\[d \rightarrow \text{Encrypt, Key K} \rightarrow E_K(d) \]

It can still be possible to get unauthorized access to information!

- Encryption must be used carefully!

Example: IBM 4758 Secure Co-processor

Used widely in the banking industry

Software Interaction

Common Cryptographic Architecture (CCA) Interface

Master key, MK

MK is in-built, secret, unique to each chip

<table>
<thead>
<tr>
<th>Key</th>
<th>Control Vector</th>
</tr>
</thead>
<tbody>
<tr>
<td>K</td>
<td>CV_K = Read, Write</td>
</tr>
<tr>
<td></td>
<td>...</td>
</tr>
</tbody>
</table>

Picture courtesy IBM
The Problem
[discovered by M. Bond, et al. at Cambridge, UK]

Using perfectly legal CCA commands, it is possible to generate a control vector to do operations one is not allowed to do
- E.g., read and write account information

Has to be an “inside job” at one of the bank branches

Can be discovered by a form of Bounded Model Checking [Ganapathy et al., ICSE’05]

The Vision

Correct-by-Construction Design Compiler
VERIFIER
Robust Implementation

Specification / Feedback

Design Engineer