
1

1

Boolean Algebra and
Binary Decision Diagrams

Profs. Sanjit Seshia & Kurt Keutzer

EECS

UC Berkeley

With thanks to Rob Rutenbar, CMU

S. Seshia
2

Today’s Lecture

• Boolean algebra basics

• Binary Decision Diagrams

– Representation, size

– Building BDDs

• Finish up with equivalence checking

2

S. Seshia
3

Recap

What is a

• Literal?

• Cube?

• Minterm?

S. Seshia
4

Boolean function

A Boolean function F of n variables x1, x2, …, xn

F : {0,1}n ���� {0,1}

Mapped to 0 Mapped to 1

3

S. Seshia
5

Cofactors

A Boolean function F of n variables x1, x2, …, xn

F : {0,1}n ���� {0,1}

Suppose we define new Boolean functions of n-1
variables as follows:

Fx1
(x2, …, xn) = F(1, x2, x3, …, xn)

Fx1’ (x2, …, xn) = F(0, x2, x3, …, xn)

Fx1
and Fx1’ are cofactors of F.

What does their input state space look like?

S. Seshia
6

Examples of Cofactors

F(x, y, z) = xy + xz’ + y(x’z + z’)

What’s Fx ?

Fx’ ?

y + z’ + yz’

yz + yz’

OK, so why are cofactors useful?

4

S. Seshia
7

Analogy: Taylor series expansion

Represent complex function using simpler
functions

f(x) = f(0) + x f’(0) + x2/2! f”(0) + …

Anything like this for Boolean functions?

ANS: Yes, using cofactors!

S. Seshia
8

Shannon Expansion

F(x1, …, xn) = xi . Fxi
+ xi’ . Fxi’

Proof?

5

S. Seshia
9

Shannon expansion with many variables

F(x, y, z, w) = xy Fxy + x’y Fx’y + xy’ Fxy’ + x’y’ Fx’y’

Assuming previous slide, how would you derive the
above?

Is Cofactoring commutative? i.e. (Fx)y = (Fy)x ?

S. Seshia
10

Properties of Cofactors

• Suppose you construct a new function H from
two existing functions F and G: e.g.,

– H = F’

– H = F.G

– H = F + G

– Etc.

• What is the relation between cofactors of H
and those of F and G?

6

S. Seshia
11

Very Useful Property

• Cofactor of NOT is NOT of cofactors

• Cofactor of AND is AND of cofactors

• …

• Works for any binary operator

S. Seshia
12

Back to BDDs: Recap

Truth Table

Binary Decision Tree

Binary Decision Diagram (BDD)

Ordered Binary Decision Diagram (OBDD)

Reduced Ordered Binary Decision Diagram
(ROBDD, simply called BDD)

What steps
happen at
each arrow?

7

S. Seshia
13

Example: Odd Parity Function

Binary Decision Tree

a
b

c
d

S. Seshia
14

Nodes & Edges

8

S. Seshia
15

Ordering

S. Seshia
16

Reduction

Identify Redundancies

3 Rules:

1. Merge equivalent leaves

2. Merge isomorphic nodes

3. Eliminate redundant tests

9

S. Seshia
17

Merge Equivalent Leaves

S. Seshia
18

Merge Isomorphic Nodes

10

S. Seshia
19

Eliminate Redundant Tests

S. Seshia
20

Example

11

S. Seshia
21

Example

S. Seshia
22

Final ROBDD for Odd Parity Function

12

S. Seshia
23

Example of Rule 3

What does a path
correspond to?

S. Seshia
24

ROBDDs are Canonical

a

b
c

d

0 1

0

0

0

0

1
1

1
1

ordering
a b c d

f = ac + abc + acd + abcd
disjoint cover

f

a
c
a
d
b
c
b
d

a
b

c
d

g

13

S. Seshia
25

Proof that ROBDDs are canonical

Theorem (R. Bryant): If G, G’ are ROBDD’s of a
Boolean function f with k inputs, using same
variable ordering, then G and G’ are identical.

S. Seshia
26

ROBDDs are Canonical - use 1

Given an ordering, a logic function has a unique
ROBDD.

Given two circuits, checking their equivalence reduces
to a Directed Acyclic Graph isomorphism check
between their respective ROBDDs

– can be done in linear time in G1 (= G2).

– How big can a ROBDD get?

14

S. Seshia
27

Sensitivity to Ordering

Given a function with n inputs, one input
ordering may require exponential # vertices
in ROBDD, while other may be linear in size.

f = x1 x2 + x3 x4 + x5 x6

x1 < x4 < x5 < x2 < x3 < x6x1 < x2 < x3 < x4 < x5 < x6

1

2
3

4
5

0 1

6

1

4

5
4

2

5

6

5

2

5

3
2

3

2

0 1

S. Seshia
28

Another Ordering Example

MUX

s

d0

d1

What ordering to pick for F and why?

F(s, d0, d1)

15

S. Seshia
29

Given ordering and multilevel network.

Proceed through network, constructing the ROBDD for
each gate output, by applying the gate operator to the
ROBDDs of the gate inputs

ROBDD Construction

ROBDD of a b

a b + c
a
b

c

d

a b
0 1 0 1 Begin with ROBDDS

for primary inputs

0 1 0 1

S. Seshia
30

Applying an Operator to BDDs

Two options:

1. Construct an operator for each logic
operator: AND, OR, NOT, EXOR, …

2. Build a few core operators and define
everything else in terms of those

Advantage of 2:
• Less programming work
• Easier to add new operators later by writing “wrappers”

16

S. Seshia
31

Core Operators

Just two of them!

1. Restrict(Function F, variable v, constant k)

• Shannon cofactor of F w.r.t. v=k

2. ITE(Function I, Function T, Function E)

• “if-then-else” operator

S. Seshia
32

ITE

• Just like:

– “if then else” in a programming language

– A mux in hardware

• ITE(I(x), T(x), E(x))

– If I(x) then T(x) else E(x)

I(x)

T(x)

E(x)

1

0

ITE(I(x), T(x), E(x))

17

S. Seshia
33

The ITE Function

ITE(I(x), T(x), E(x))

=

I(x) . T(x) + I’(x). E(x)

S. Seshia
34

What good is the ITE?

How do we express

• NOT?

• OR?

• AND?

18

S. Seshia
35

How do we implement ITE?

Divide and conquer!

Use Shannon cofactoring…

• Recall: Operator of cofactors is Cofactor of
operators…

S. Seshia
36

ITE Algorithm

ITE (bdd I, bdd T, bdd E) {

if (terminal case) { return computed result; }

else { // general case

Let x be the topmost variable of I, T, E;

PosFactor = ITE(Ix , Tx , Ex) ;

NegFactor = ITE(Ix’ , Tx’ , Ex’);

R = new node labeled by x;

R.low = NegFactor;

R.high = PosFactor;

Reduce(R);

return R;

}

19

S. Seshia
37

Terminal Cases

• ITE(1, T, E) =

• ITE(0, T, E) =

• ITE(I, T, T) =

• ITE(I, 1, 0) =

• …

S. Seshia
38

General Case

• Still need to do cofactor (Restrict)

• How hard is that?

– Which variable are we cofactoring out? (2 cases)

20

S. Seshia
39

ITE Algorithm – Complexity?

ITE (bdd I, bdd T, bdd E) {

if (terminal case) { return computed result; }

else { // general case

Let x be the topmost variable of I, T, E;

PosFactor = ITE(Ix, Tx, Ex) ;

NegFactor = ITE(Ix’, Tx’, Ex’);

R = new node labeled by x;

R.low = NegFactor;

R.high = PosFactor;

Reduce(R);

return R;

}

How many ITE
calls can
we make?

S. Seshia
40

Practical Issues

• Previous calls to ITE are cached

– “memoization”

• Every BDD node created goes into a “unique
table”

– Before creating a new node R, look up this table

– Avoids need for reduction

21

S. Seshia
41

ROBDD-based equivalence checking

Given circuits C1 and C2 to be verified for equivalence

A1) create the ``comparison circuit” D1

A2) find a variable ordering for the ROBDD for D1

A3) build the ROBDD and check for 0

or

B1) find a variable ordering for the ROBDD’s of C1, C2

B2) build the ROBDD for each of C1, C2

B3) Check to see that the DAGs are isomorphic

S. Seshia
42

Putting it all together

Current formula requires:

• Ability to associate FF’s from the two circuits

• Exploiting structural similarity/check-points

• Applying whatever works:

– Test techniques, SAT for more regular structures

– BDD for more random

– Mix and match

22

S. Seshia
43

Solving RTL-to-Gates Verification

RTL
Synthesis

HDL
``specification’’

netlist

Step 1:
(formally)
translate

HDL
source

into
netlist

Combinational
logic

clkclk

Combinational
logic

clkclk

Step 2:
Perform

gates-to-gates
verification

gate-level
implementation

S. Seshia
44

Solving RTL-to-RTL Verification

RTL
Synthesis

HDL
``specification’’

netlist

Step 1:
(formally)
translate
both HDL
sources

into
netlists

Combinational
logic

clkclk

RTL
Synthesis

HDL
implementation

netlist

Combinational
logic

clkclk

Step 2:
perform
gate-to-

gate
verification
on netlists

23

S. Seshia
45

Current status of equivalence checking

Equivalence checking is one of the great successes of EDA in the
late 90’s

Equivalence checkers are now able to routinely verify complex
(>10M gate) integrated circuit designs

Coupled with static timing analysis it has enabled “static-signoff”

Current technology leaders are Cadence Verplex and Synopsys
Formality. Good proprietary (e.g. IBM/verity) solutions exist

Successful equivalence checkers must orchestrate a number of
different approaches

– syntactic equivalence

– automatic test pattern generation-like approaches

– BDD-based techniques

A few open problems remain:

• retimed circuits

• circuits with differing state assignments

