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Today’s Lecture

• Boolean algebra basics

• Binary Decision Diagrams

– Representation, size

– Building BDDs

• Finish up with equivalence checking
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Recap

What is a

• Literal?

• Cube?

• Minterm?
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Boolean function

A Boolean function F of n variables x1, x2, …, xn

F : {0,1}n ���� {0,1}

Mapped to 0 Mapped to 1
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Cofactors

A Boolean function F of n variables x1, x2, …, xn

F : {0,1}n ���� {0,1}

Suppose we define new Boolean functions of n-1 
variables as follows:

Fx1 
(x2, …, xn)  = F(1, x2, x3, …, xn)

Fx1’ (x2, …, xn) = F(0, x2, x3, …, xn)

Fx1
and Fx1’ are cofactors of F.  

What does their input state space look like?
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Examples of Cofactors

F(x, y, z) = xy + xz’ + y(x’z + z’)

What’s Fx ?

Fx’ ?

y + z’ + yz’

yz + yz’

OK, so why are cofactors useful?
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Analogy: Taylor series expansion

Represent complex function using simpler 
functions

f(x) = f(0) + x f’(0) + x2/2! f”(0) + …

Anything like this for Boolean functions?

ANS: Yes, using cofactors!
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Shannon Expansion

F(x1, …, xn) =  xi . Fxi
+  xi’ . Fxi’

Proof?
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Shannon expansion with many variables

F(x, y, z, w) = xy Fxy + x’y Fx’y + xy’ Fxy’ + x’y’ Fx’y’

Assuming previous slide, how would you derive the 
above?

Is Cofactoring commutative? i.e. (Fx)y = (Fy)x ?
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Properties of Cofactors

• Suppose you construct a new function H from 
two existing functions F and G: e.g.,

– H = F’

– H = F.G

– H = F + G

– Etc.

• What is the relation between cofactors of H 
and those of F and G?



6

S. Seshia
11

Very Useful Property

• Cofactor of NOT is NOT of cofactors

• Cofactor of AND is AND of cofactors

• …

• Works for any binary operator
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Back to BDDs: Recap

Truth Table

Binary Decision Tree

Binary Decision Diagram (BDD)

Ordered Binary Decision Diagram (OBDD)

Reduced Ordered Binary Decision Diagram 
(ROBDD, simply called BDD)

What steps 
happen at 
each arrow?



7

S. Seshia
13

Example: Odd Parity Function

Binary Decision Tree

a
b

c
d
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Nodes & Edges
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Ordering
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Reduction

Identify Redundancies

3 Rules:

1. Merge equivalent leaves

2. Merge isomorphic nodes

3. Eliminate redundant tests
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Merge Equivalent Leaves
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Merge Isomorphic Nodes
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Eliminate Redundant Tests
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Example
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Example
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Final ROBDD for Odd Parity Function
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Example of Rule 3

What does a path 
correspond to?

S. Seshia
24

ROBDDs are Canonical

a

b
c

d

0 1

0

0

0

0

1
1

1
1

ordering
a b c d

f = ac + abc + acd + abcd
disjoint cover

f

a
c
a
d
b
c
b
d

a
b

c
d

g
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Proof that ROBDDs are canonical

Theorem (R. Bryant): If G, G’ are ROBDD’s of a 
Boolean function f with k inputs, using same 
variable ordering, then G and G’ are identical. 
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ROBDDs are Canonical - use 1

Given an ordering, a logic function has a unique 
ROBDD.

Given two circuits, checking their equivalence reduces 
to a Directed Acyclic Graph isomorphism check 
between their respective ROBDDs

– can be done in linear time in  G1 (=  G2 ).

– How big can a ROBDD get?
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Sensitivity to Ordering

Given a function with n inputs, one input 
ordering may require exponential # vertices 
in ROBDD, while other may be linear in size.

f = x1 x2 + x3 x4 + x5 x6

x1 < x4 < x5 < x2 < x3 < x6x1 < x2 < x3 < x4 < x5 < x6

1

2
3

4
5

0 1

6

1

4

5
4

2

5

6

5

2

5

3
2

3

2

0 1
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Another Ordering Example

MUX

s

d0

d1

What ordering to pick for F and why?

F(s, d0, d1)



15

S. Seshia
29

Given ordering and multilevel network.

Proceed through network, constructing the ROBDD for 
each gate output, by applying the gate operator to the 
ROBDDs of the gate inputs

ROBDD Construction

ROBDD of a b

a b + c
a
b

c

d

a b
0 1 0 1 Begin with ROBDDS

for primary inputs

0 1 0 1
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Applying an Operator to BDDs

Two options:

1. Construct an operator for each logic 
operator: AND, OR, NOT, EXOR, …

2. Build a few core operators and define 
everything else in terms of those

Advantage of 2:
• Less programming work
• Easier to add new operators later by writing “wrappers”
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Core Operators

Just two of them!

1. Restrict(Function F, variable v, constant k)

• Shannon cofactor of F w.r.t. v=k

2. ITE(Function I, Function T, Function E)

• “if-then-else” operator
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ITE

• Just like:

– “if then else” in a programming language

– A mux in hardware

• ITE(I(x), T(x), E(x))

– If I(x) then T(x) else E(x)

I(x)

T(x)

E(x)

1

0

ITE(I(x), T(x), E(x))
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The ITE Function

ITE( I(x), T(x), E(x) ) 

=

I(x) . T(x)   +  I’(x). E(x) 
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What good is the ITE?

How do we express

• NOT?

• OR?

• AND?
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How do we implement ITE?

Divide and conquer!

Use Shannon cofactoring…

• Recall: Operator of cofactors is Cofactor of 
operators…
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ITE Algorithm

ITE (bdd I, bdd T, bdd E) {

if (terminal case) { return computed result; }

else { // general case

Let x be the topmost variable of I, T, E;

PosFactor = ITE(Ix , Tx , Ex) ;

NegFactor = ITE(Ix’ , Tx’ , Ex’);

R = new node labeled by x;

R.low = NegFactor;

R.high = PosFactor;

Reduce(R);

return R;

}
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Terminal Cases

• ITE(1, T, E) = 

• ITE(0, T, E) =

• ITE(I, T, T) =

• ITE(I, 1, 0) = 

• …
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General Case

• Still need to do cofactor (Restrict)

• How hard is that?

– Which variable are we cofactoring out? (2 cases)
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ITE Algorithm – Complexity?

ITE (bdd I, bdd T, bdd E) {

if (terminal case) { return computed result; }

else { // general case

Let x be the topmost variable of I, T, E;

PosFactor = ITE(Ix, Tx, Ex) ;

NegFactor = ITE(Ix’, Tx’, Ex’);

R = new node labeled by x;

R.low = NegFactor;

R.high = PosFactor;

Reduce(R);

return R;

}

How many ITE 
calls can
we make?
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Practical Issues

• Previous calls to ITE are cached

– “memoization”

• Every BDD node created goes into a “unique 
table”

– Before creating a new node R, look up this table

– Avoids need for reduction
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ROBDD-based equivalence checking

Given circuits C1 and C2 to be verified for equivalence

A1) create the ``comparison circuit” D1

A2) find a variable ordering for the ROBDD for D1

A3) build the ROBDD and check for 0

or 

B1) find a variable ordering for the ROBDD’s of C1, C2

B2) build the ROBDD for each of C1, C2

B3) Check to see that the DAGs are isomorphic
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Putting it all together

Current formula requires:

• Ability to associate FF’s from the two circuits

• Exploiting structural similarity/check-points

• Applying whatever works:

– Test techniques, SAT for more regular structures

– BDD for more random

– Mix and match 
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Solving RTL-to-Gates Verification

RTL
Synthesis

HDL
``specification’’

netlist

Step 1: 
(formally) 
translate 

HDL 
source 

into 
netlist

Combinational
logic

clkclk

Combinational
logic

clkclk

Step 2: 
Perform 

gates-to-gates 
verification

gate-level
implementation
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Solving RTL-to-RTL Verification

RTL
Synthesis

HDL
``specification’’

netlist

Step 1: 
(formally) 
translate
both HDL 
sources 

into 
netlists

Combinational
logic

clkclk

RTL
Synthesis

HDL
implementation

netlist

Combinational
logic

clkclk

Step 2: 
perform 
gate-to-

gate 
verification 
on netlists
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Current status of equivalence checking

Equivalence checking is one of the great successes of EDA in the
late 90’s

Equivalence checkers are now able to routinely verify complex 
(>10M gate) integrated circuit designs

Coupled with static timing analysis it has enabled “static-signoff”

Current technology leaders are Cadence Verplex and Synopsys 
Formality. Good proprietary (e.g. IBM/verity) solutions exist

Successful equivalence checkers must orchestrate a number of 
different approaches

– syntactic equivalence 

– automatic test pattern generation-like approaches

– BDD-based techniques

A few open problems remain:

• retimed circuits

• circuits with differing state assignments


