Review of Register-transfer Level Design Flow and a Look at Industrial Practice

Prof. Kurt Keutzer
EECS
keutzer@eecs.berkeley.edu

Feedback

- Good
 - Entire flow of CAD
 - Real world perspective
 - Examples of algorithms
 - Class structure → problem → formulation → algorithm
 - No homework
 - Dialog with class/ “Socratic approach”
- Bad
 - No homework
 - Questions to class sometimes unclear
 - Too fast, need more details
 - Energy of lecture up and down some days

Actually, this was last year’s feedback!!!
Feedback – this year

- Good
 - Entire flow of CAD
 - Real world perspective
 - Examples of algorithms
 - Good slides
 - No homework
 - Questions invited in class
- Bad
 - No homework
 - Too fast, need more details – more examples of algorithms
 - Slides not updated on webpage before class – slides don’t match the lecture
 - Can’t see fonts on slides
 - Don’t know what to read before class

Responding to feedback

- Graduate course without an undergraduate “Intro to CAD” course – it’s a challenge for all of us
 - No homework -
 - we voted – it was your call
 - Too fast, need more details –
 - A lot of material but a modest amount of class work
 - more examples of algorithms? Welcome to graduate school!
- Slides not updated on webpage before class – slides don’t match the lecture
 - I add new questions every year – don’t want to update before class
 - Should be updated immediately after class – my bad
- Can’t see fonts on slides – get glasses, really!
- Don’t know what to read before class – check the web page – reading assignments have been there
- Speak up!! Raise your questions/concerns during class
Design Process

- **Design**: specify and enter the design intent

Verify:
verify the correctness of design and implementation

Implement:
refine the design through all phases

How are designers describing ICs?
Current Practice: HDL at RTL Level

```vhdl
module foobar (q, clk, s, a, b);
  input clk, s, a, b;
  output q; reg q; reg d;
always @(a or b or s) // mux
begin
  if( !s )
    d = a;
  else if( s )
    d = b;
  else
    d = 'bx;
end // always @(a or b or s)

always @(clk) // latch
begin
  if( clk == 1 )
    q = d;
  else if( clk !== 0 )
    q = 'bx;
end // always @(clk)
endmodule
```

Verification

- **Design**: specify and enter the design intent
- **Verify**: verify the correctness of design and implementation
- **Implement**: refine the design through all phases
What are the three phases of verification?

Design Verification

Is the design consistent with the original specification?

Is what I think I want what I really want?
Implementation Verification

Is the implementation consistent with the original design intent?
Is what I implemented what I wanted?

Manufacture Verification (Test)

Is the manufactured circuit consistent with the implemented design?
Did they build what I wanted?
What is the work horse of design verification?

Is the design consistent with the original specification?
Is what I think I want what I really want?
Types of software simulators

- Circuit simulation
 - Spice, Advice, Hspice
 - Timemill + Ace, ADM
- Event-driven gate/RTL/Behavioral simulation
 - Verilog - VCS, NC-Verilog, Turbo-Verilog, Verilog-XL
 - VHDL - VSS, MTI, Leapfrog
- Cycle-based gate/RTL/Behavioral simulation
 - Verilog - Frontline, Speedsim
 - VHDL - Cyclone
- Domain-specific simulation
 - SPW, COSSAP
- Architecture-specific simulation

What are the work horses of implementation verification?

- What are the key techniques employed?
Use static analysis techniques to verify:

- use static timing analysis
- longest path delay calculation
- false path elimination

Use static analysis techniques to verify:

- formal equivalence-checking techniques
- testing based
- BDD based
- SAT based
- structural
What are the work horses of manufacturer test?

- What are the key techniques employed?

Manufacture Verification (Test)

- Scan-based methodology for high stuck-at fault coverage
- Test vector generation using:
 - Podem-like methods
 - SAT
- Coverage grading using fault simulation
What kind of flow is used to design most ASICs?

RTL Synthesis Flow

![RTL Synthesis Flow Diagram]
RTL Synthesis

```verilog
module foobar (q, clk, s, a, b);
    input clk, s, a, b;
    output q; reg q; reg d;
    always @(a or b or s) // mux
        begin
            if(~s )
                d = a;
            else if( s )
                d = b;
            else
                d = 'bx;
        end // always @(a or b or s)
endmodule
```

Logic Optimization

- Perform a variety of transformations and optimizations
 - Structural graph transformations
 - Boolean transformations
 - Mapping into a physical library
- What are the key algorithms?
Physical Design

- Transform sequential circuit netlist into a physical circuit
 - *place* circuit components
 - *route* wires
 - transform into a mask
- Or for FPGA’s
 - *place* look-up tables
 - *route* wires
- What are the key algorithms?

Ok – now what do companies really do?

- What do they build?
- How do real designers put things together?
- Where does the time go?
- And what challenges do they face?
Nvidia GeForce4 Ti Architecture

- 0.15u, 8LM, 63M txtr, 505 signals/801 balls, 18W

A. Khan – Cadence - 2002

- 0.5um ➔ 0.18um
- 5x5 mm² ➔ 21.7x21.3 mm²
- ~0.8M ➔ 287.5M transistors
- 3LM ➔ 6LM (8LM)
- ~100 ➔ 150 MHz (622 MHz)

Cirrus Logic, Inc. IC, 3Ci™
* Sony Computer Entertainment, Inc. & Sony Corporation
Graphics Synthesizer®-32. Copyright 2000
Sony Computer Entertainment, Inc.
The Design and Implementation of a First-Generation CELL Processor (IBM, Sony, Toshiba)

- 164b PPE + 8 SPEs; typ. clock 4GHz+
- 234M transistors
- 3 clock networks
- 12ps skew (top-2 metal grids)
 - 850 individually-tuned elements
- Design verified for valid operation with thermal transients

The Implementation of a 2-core Multi-Threaded Itanium®-Family Processor (Intel)

- Power reduction primary design priority
 - 130W single uP
 - 2 uPs, 90nm, 2+GHz, 26.5MB cache (L1-L3); 1.72B transistors, 21.5x27.7 sq. mm
 - 300W \Rightarrow 100W
- Manage power to a dynamically-adjustable limit (Max. performance/watt)
 - Multi-L, V$_c$; real-time clock, VDD control (ammeter, thermal monitors)

Table:

<table>
<thead>
<tr>
<th>Feature</th>
<th>Frequency (GHz)</th>
<th>Power (W)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Current (25°C)</td>
<td>2.6</td>
<td>90</td>
</tr>
<tr>
<td>Current (45°C)</td>
<td>2.6</td>
<td>95</td>
</tr>
<tr>
<td>Current (67°C)</td>
<td>2.6</td>
<td>100</td>
</tr>
<tr>
<td>Current (80°C)</td>
<td>2.6</td>
<td>115</td>
</tr>
<tr>
<td>Current (90°C)</td>
<td>2.6</td>
<td>115</td>
</tr>
<tr>
<td>Current (95°C)</td>
<td>2.6</td>
<td>115</td>
</tr>
<tr>
<td>Current (99°C)</td>
<td>2.6</td>
<td>115</td>
</tr>
<tr>
<td>Current (100°C)</td>
<td>2.6</td>
<td>120</td>
</tr>
</tbody>
</table>

Diagram:

Ok – now what do people really do?

- What do they build?
- How do real designers put things together?
- Where does the time go?
- And what challenges do they face?

EDA Design Flow for Implementation

[Diagram showing the EDA Design Flow for Implementation]
Tools in Stargen Flow

<table>
<thead>
<tr>
<th>Design Tools</th>
<th>Design Tasks</th>
</tr>
</thead>
<tbody>
<tr>
<td>RTL creation, checking, debugging</td>
<td>Emacs, vi, Everest HDL-Lint, Novas Debussy</td>
</tr>
<tr>
<td>Verilog simulation/testbench</td>
<td>Synopsys VCS, VERA</td>
</tr>
<tr>
<td>RTL floorplanning</td>
<td>Icenergy SOCPrototype</td>
</tr>
<tr>
<td>Logic synthesis</td>
<td>Synopsys Design Compiler</td>
</tr>
<tr>
<td>Physical synthesis</td>
<td>Synopsys Physical Compiler</td>
</tr>
<tr>
<td>Static timing analysis</td>
<td>Primetime</td>
</tr>
<tr>
<td>Design for test analysis and scan chain insertion</td>
<td>Synopsys DFT Compiler or Mentor DFT Advisor</td>
</tr>
<tr>
<td>Gate netlist floorplanning</td>
<td>Synopsys (Avanti) Jupiter</td>
</tr>
<tr>
<td>Clock tree synthesis, routing</td>
<td>Synopsys (Avanti) Astro</td>
</tr>
<tr>
<td>Extraction</td>
<td>Synopsys (Avanti) Star-RCXT</td>
</tr>
<tr>
<td>Signal integrity</td>
<td>PrimetimeSi, AstroXTalk, AstroRail</td>
</tr>
<tr>
<td>DRC/LVS</td>
<td>Mentor Calibre</td>
</tr>
<tr>
<td>Equivalency checking</td>
<td>Synopsys Formality</td>
</tr>
<tr>
<td>Memory BIST</td>
<td>TBD Tools</td>
</tr>
<tr>
<td>ATPG, IEEE1149</td>
<td>TBD Tools</td>
</tr>
</tbody>
</table>

Ok – now what do people really do?

- What do they build?
- How do real designers put things together?
- Where does the time go?
- And what challenges do they face?
TOSHIBA CHIP DESIGN
FLOW AND CYCLE TIME

Current Status of RTL Design Flow

- Current RTL design flow is able to produce
 - 10 - 100M logical gate ASIC platforms:
 - Significant portions of high speed microprocessors - e.g. Alpha, Pentium Pro > 1M gate-equivalents > 1GHz.
 - Rapid turnaround ASIC → structured ASIC
 - 6000 (down from 8500) IC designs/year go through this flow
 - Not providing productivity improvement needed to keep up with Moore’s Law
- Successful flow, but stalled out – why?
Ok – now what do people really do?

- What do they build?
- How do real designers put things together?
- Where does the time go?
- And what challenges do they face?

What happens in a process generation?

- In the transition from one process generation (e.g. .18u) to another (e.g. .13u)
- Critical dimensions shrink by a scaling factor S, typically $S = 2^{1/2}$
 - Has a “squaring” effect on density $S^2 = 2$ – i.e. same number of transistors in half the area
 - Hence Moore’s Law – 2X density increase every 18 months
 - Ideally has a similar effect on performance $1.3 \times 1.3 = 1.7$
- Vdd reduces by a scaling factor U – more on this later
- As Vdd reduces Vth reduces in order to get performance gains

- And what’s the point of all this?
Defining a technology node – “half pitch”

Figure 4 Definition of Metal Half Pitch

Definition of “half-pitch” – ITRS Roadmap

Drawn and Effective

Drawn – e.g. 90nm

Effective –
ASIC – 70nm
MPU e.g. 45nm

Physical Structure
Technology Scaling Models

• Full Scaling (Constant Electrical Field)
 ideal model — dimensions and voltage scale
 together by the same factor S

• Fixed Voltage Scaling
 most common model until 1990’s
 only dimensions scale, voltages remain constant

• General Scaling
 most realistic for today’s situation —
 Voltages and dimensions scale with different factors –
 U and S respectively

Scaling Relationships for Long Channel Devices

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Relation</th>
<th>Full Scaling</th>
<th>General Scaling</th>
<th>Fixed Voltage Scaling</th>
</tr>
</thead>
<tbody>
<tr>
<td>W, L, t_{ox}</td>
<td>$1/S$</td>
<td>$1/S$</td>
<td>$1/S$</td>
<td></td>
</tr>
<tr>
<td>V_{DD}, V_T</td>
<td>$1/S$</td>
<td>$1/U$</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>N_{SUB}</td>
<td>V/W_{depl}^2</td>
<td>S</td>
<td>S^2/U</td>
<td>S^2</td>
</tr>
<tr>
<td>Area/Device</td>
<td>WL</td>
<td>$1/S^2$</td>
<td>$1/S^2$</td>
<td>$1/S^2$</td>
</tr>
<tr>
<td>C_{ex}</td>
<td>$1/t_{ox}$</td>
<td>S</td>
<td>S</td>
<td>S</td>
</tr>
<tr>
<td>C_L</td>
<td>$C_{ex}WL$</td>
<td>$1/S$</td>
<td>$1/S$</td>
<td>$1/S$</td>
</tr>
<tr>
<td>k_n, k_p</td>
<td>$C_{ox}W/L$</td>
<td>S</td>
<td>S</td>
<td>S</td>
</tr>
<tr>
<td>I_{av}</td>
<td>$k_{n,p} V^2$</td>
<td>$1/S$</td>
<td>S/U^2</td>
<td>S</td>
</tr>
<tr>
<td>I_P (intrinsic)</td>
<td>$C_I V / I_{av}$</td>
<td>$1/S$</td>
<td>U/S^2</td>
<td>$1/S^2$</td>
</tr>
<tr>
<td>P_{av}</td>
<td>$C_I V^2 / I_{P}$</td>
<td>$1/S^2$</td>
<td>S/U^3</td>
<td>S</td>
</tr>
<tr>
<td>PDP</td>
<td>$C_I V^2$</td>
<td>$1/S^3$</td>
<td>$1/SU^2$</td>
<td>$1/S$</td>
</tr>
</tbody>
</table>

Table 3.1: Scaling Relationships for Long Channel Devices

Weste & Harris – CMOS VLSI Design
Result: A Quadruple-Whammy

Complexity

Heterogeneity

Time-to-Money

DSM Effects

Increasing Device and Context Complexity

- Exponential increase in device complexity—increasing with Moore’s law (or faster)!
- System context in which devices are deployed (e.g. cellular radio) are increasing in complexity as well exponential increases in design productivity

We have exponentially more transistors!
Scope of design growing exponentially

Lines of Verilog grows with Moore’s Law

<table>
<thead>
<tr>
<th>GPU</th>
<th>Technology</th>
<th>Transistors</th>
<th>Frequency</th>
<th>Placeable Instances</th>
<th>Flops</th>
<th>Models C vs V</th>
<th>Directed Arch Tests</th>
<th>GDS2 File size</th>
<th>Power</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gen1</td>
<td>0.25u</td>
<td>9M</td>
<td>125MHz</td>
<td>1M</td>
<td>-50K</td>
<td>90K/300K</td>
<td>300</td>
<td>300K</td>
<td>6 W</td>
</tr>
<tr>
<td>Gen2</td>
<td>0.18u</td>
<td>25M</td>
<td>250MHz²</td>
<td>1.5M</td>
<td>-200K</td>
<td>600K/300K</td>
<td>6000</td>
<td>2GB</td>
<td>10 W</td>
</tr>
<tr>
<td>Gen3</td>
<td>0.15u</td>
<td>57M</td>
<td>350MHz²</td>
<td>3M</td>
<td>-500K</td>
<td>600K/800K</td>
<td>25000</td>
<td>4.5 GB</td>
<td>12 W</td>
</tr>
<tr>
<td>Gen4</td>
<td>0.13u</td>
<td>~120M</td>
<td>450MHz²</td>
<td>5.5M</td>
<td>-750K</td>
<td>700K/1.3M</td>
<td>50000</td>
<td>8 GB</td>
<td>15 W</td>
</tr>
</tbody>
</table>

1 - dual edge clocking

Deep Submicron Effects

The design of each transistor is getting more difficult due to physical effects associated with very small (deep submicron) geometries.

Chris Malachowsky - NVidia
Important Deep Submicron Effects

1. Rising relative delay of interconnect
2. Cross-coupled capacitance
3. IR drop
4. Power
 4a. Dynamic power consumption
 4b. Static power and leakage
5. Electromigration
6. Variability
7. Reliability
Signal integrity

- Crosstalk/Crosscoupled capacitances can not only cause delay degradation in static CMOS digital circuits – it can cause errors in:
 - Analog circuits
 - Dynamic CMOS circuits
- Solutions as before:
 - Shielding
 - Better analysis
 - Signal encoding

<table>
<thead>
<tr>
<th>Wire Length (mm)</th>
<th>Incremental Delay</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.0</td>
<td>0%</td>
</tr>
<tr>
<td>0.5</td>
<td>20%</td>
</tr>
<tr>
<td>1.0</td>
<td>40%</td>
</tr>
<tr>
<td>1.5</td>
<td>60%</td>
</tr>
<tr>
<td>2.0</td>
<td>80%</td>
</tr>
<tr>
<td>2.5</td>
<td>100%</td>
</tr>
<tr>
<td>3.0</td>
<td>120%</td>
</tr>
</tbody>
</table>

- Same Direction
- Opposite Direction

Important Deep Submicron Effects

1. Rising relative delay of interconnect
2. Cross-coupled capacitance
3. IR drop
4. Power
 4a. Dynamic power consumption
 4b. Static power and leakage
5. Electromigration
6. Variability/Reliability
Power, timing inter-related:

Instance IR drop impact on delay

A. Khan - Cadence

- Buffers get different VDD voltage
- Causes timing closure problems if not accounted for
 - Additional failed paths
 - Race conditions
- Working solution – better analysis tools

Important Deep Submicron Effects

1. Rising relative delay of interconnect
2. Cross-coupled capacitance
3. IR drop
4. Power
 - 4a. Dynamic power consumption
 - 4b. Static power and leakage
5. Electromigration
6. Variability/Reliability
Power dissipation going forward

- **Sun’s Surface**
- **Rocket Nozzle**
- **Nuclear Reactor**
- **Hot Plate**

Power Ingredients

- **Dynamic Dissipation**
 \[P_{dyn} = C_L V_{DD} V_{sw} f \]

- **Short-Circuit Currents**
 \[P_{sc} = V_{DD} I_{sc} \]

- **Static Dissipation**
 \[P_{stat} = V_{DD} I_{leak} \]
Dynamic Power Dissipation

\[P_{\text{dyn}} = C_L V_{DD} V_{sw} f \]

How do these scale?

- \(C_L \)
- \(V_{DD} \)
- \(V_{sw} \)
- \(f \)

Scaling Relationships for Long Channel Devices

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Relation</th>
<th>Full Scaling</th>
<th>General Scaling</th>
<th>Fixed Voltage Scaling</th>
</tr>
</thead>
<tbody>
<tr>
<td>(W, L, t_{ox})</td>
<td>(1/S)</td>
<td>(1/S)</td>
<td>(1/S)</td>
<td></td>
</tr>
<tr>
<td>(V_{DD}, V_{T})</td>
<td>(1/S)</td>
<td>(1/U)</td>
<td>(1)</td>
<td></td>
</tr>
<tr>
<td>(N_{\text{SUB}})</td>
<td>(V/W_{\text{dep}})</td>
<td>(S)</td>
<td>(S^2/U)</td>
<td>(S^2)</td>
</tr>
<tr>
<td>Area/Device</td>
<td>(WL)</td>
<td>(1/S^2)</td>
<td>(1/S^2)</td>
<td>(1/S^2)</td>
</tr>
<tr>
<td>(C_{\text{ox}})</td>
<td>(1/t_{ox})</td>
<td>(S)</td>
<td>(S)</td>
<td>(S)</td>
</tr>
<tr>
<td>(C_L)</td>
<td>(C_{\text{ox}} W/L)</td>
<td>(1/S)</td>
<td>(1/S)</td>
<td>(1/S)</td>
</tr>
<tr>
<td>(k_w, k_p)</td>
<td>(C_{\text{ox}} W/L)</td>
<td>(S)</td>
<td>(S)</td>
<td>(S)</td>
</tr>
<tr>
<td>(t_{sw})</td>
<td>(k_{n,p} V^2)</td>
<td>(1/S)</td>
<td>(S/U^2)</td>
<td>(S)</td>
</tr>
<tr>
<td>(t_p) (intrinsic)</td>
<td>(C_L V / t_{sw})</td>
<td>(1/S)</td>
<td>(U/S^2)</td>
<td>(1/S^2)</td>
</tr>
<tr>
<td>(P_{sw})</td>
<td>(C_L V^2 / t_p)</td>
<td>(1/S^2)</td>
<td>(S/U^3)</td>
<td>(S)</td>
</tr>
<tr>
<td>PDP</td>
<td>(C_L V^2)</td>
<td>(1/S^3)</td>
<td>(1/SU^2)</td>
<td>(1/S)</td>
</tr>
</tbody>
</table>

Table 3.1: Scaling Relationships for Long Channel Devices

\(f \) – scaling faster than \(1/S \) - why?
Dynamic Power Dissipation

- Dynamic Dissipation
 \[P_{\text{dyn}} = C_L V_{\text{DD}} V_{\text{sw}} f \]

 How do these scale?

 - \(C_L \) - 1/S
 - \(V_{\text{DD}} \) – Full 1/S, Fixed 1, General \(U \)
 - \(f \) - S ASIC, \(>> S \) for uP

 All adds up to higher power density for high-performance designs

Important Deep Submicron Effects

1. Rising relative delay of interconnect
2. Cross-coupled capacitance
 - 2a. Delay degradation in static CMOS
 - 2b. Signal integrity in Analog and Dynamic CMOS
3. IR drop
4. Power
 - 4a. Dynamic power consumption
 - 4b. Static power and leakage
5. Electromigration
6. Variability/Reliability
Leakage current components

1: pn junc reverse bias
2: weak inversion
3: DIBL – drain induced barrier lowering
4: GIDL – gate induced drain leakage
5: Punchthrough
6: Narrow width effect
7: gate oxide tunneling
8: hot carrier injection

These Slides are derived from Design of High-Performance Microprocessor Circuits, A. Chandrakasan, W. Bowhill, F. Fox, IEEE, 2001

Leakage Current Trends

\[I_{\text{off}} = I_0 \exp\left(-\frac{qV_t}{mkT}\right) \]

- Leakage current exponentially increases with reduction in threshold voltage \(V_t \)
- Leakage projected to grow to 40% of total power on future microprocessors
Subthreshold Leakage – Borkar Intel

![Graph showing subthreshold leakage vs. temperature](image)

Important Deep Submicron Effects

1. Rising relative delay of interconnect
2. Cross-coupled capacitance
3. IR drop
4. Power
 4a. Dynamic power consumption
 4b. Static power and leakage
5. Electromigration
6. Variability
7. Reliability
Electromigration (1)

Limits dc-current to 1 mA/µm

Rabaey, Nikolic

Solution – Materials: Copper

- With cladding and other effects, Cu ~ 2.2 μΩ·cm vs. 3.5 for Al(Cu) ⇒ 40% reduction in resistance
- Electromigration improvement; 100X longer lifetime (IBM, IEDM97)
 - Electromigration is a limiting factor beyond 0.18 µm if Al is used (HP, IEDM95)

Rabaey, Nikolic
Important Deep Submicron Effects

1. Rising relative delay of interconnect
2. Cross-coupled capacitance
3. IR drop
4. Power
 4a. Dynamic power consumption
 4b. Static power and leakage
5. Electromigration
6. Variability – covered in earlier lecture
7. Reliability – covered in earlier lecture

DSM Effects

- During the golden era of ASIC (3.5u to .18u) there was little concern for physical effects during design.
 - Area
 - Delay
 - Power
- Were all relatively predictable and insurable
- With smaller geometries (.18u and below) physical effects began to demand greater and greater attention in design. Basic design parameters were neither predictable or insurable
- But moving higher in the design hierarchy (RTL → Behavioral → “System-level”) requires building on top of predictable layers
- As a result the design process has been stalled at the RTL level as we try to bring netlist implementation back to the predictability and reliability that we had 20 years ago!
- Focus of research in the RTL design flow has been on managing these DSM effects
Process Variability

- Increased device variation
- Increased interconnect variation
- Result
 - Slower/unpredictable speed of digital circuits
 - Greater uncertainty about parameter values
 - Over-conservatism
 - Reduced signaling robustness
 - Increased clock skew

The march of technology

Is this worth a huge (multi B) investment?
Where does it Come from?

- Inter-Die Variation
- Intra-Die Variation

Device Parameter Variations

- W, L variations
 - Due to photolithography proximity effect or etching
 - Layout density dependent
 - Location dependent
- Tox variation
 - Well controlled by a product spec.
- Vth variation
 - Due to doping
Device Worst Case Model

Comparison Corner vs Real Data

- FF: Fast NMOS & Fast PMOS
- SF: Slow NMOS & Fast PMOS
- FS: Slow NMOS & Slow PMOS

3 corner Model: TT, SS, FF
5 corner model: all

- Corners from SPICE document

Within Wafer Channel Length Variation

- The most important source of variation is L_{gate} variation
 - Determines speed of the transistor through effective channel length
Sources of CD Variation

- Among lithography people, Lgate is known as CD – the critical dimension (because it’s so important)

SIA thinks that CD should be allowed a 10% error budget – why?

<table>
<thead>
<tr>
<th>Source</th>
<th>CD Error</th>
<th>Defects</th>
<th>Aberrations</th>
<th>Lens Heating</th>
<th>Focus</th>
<th>Leveling</th>
<th>Dose</th>
<th>Power</th>
<th>Pressure</th>
<th>Flow Rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wafer Flatness Reflectivity</td>
<td></td>
</tr>
<tr>
<td>Reticule Reflectivity</td>
<td></td>
</tr>
<tr>
<td>Stepper Reflectivity</td>
<td></td>
</tr>
<tr>
<td>Etch Reflectivity</td>
<td></td>
</tr>
<tr>
<td>Resist Reflectivity</td>
<td></td>
</tr>
<tr>
<td>PEB Reflectivity</td>
<td></td>
</tr>
</tbody>
</table>

Table 39a Lithography Technology Requirements—Near Term

<table>
<thead>
<tr>
<th>Year</th>
<th>Technology Node</th>
<th>1999</th>
<th>2000</th>
<th>2001</th>
<th>2002</th>
<th>2003</th>
<th>2004</th>
<th>2005</th>
</tr>
</thead>
<tbody>
<tr>
<td>DRIE</td>
<td>Half pitch (nm)</td>
<td>160</td>
<td>165</td>
<td>170</td>
<td>175</td>
<td>180</td>
<td>185</td>
<td>190</td>
</tr>
<tr>
<td></td>
<td>Contacts (nm)</td>
<td>200</td>
<td>195</td>
<td>190</td>
<td>195</td>
<td>200</td>
<td>205</td>
<td>210</td>
</tr>
<tr>
<td></td>
<td>Overlay (nm mean + 3 sigma)</td>
<td>65</td>
<td>60</td>
<td>55</td>
<td>50</td>
<td>45</td>
<td>40</td>
<td>35</td>
</tr>
<tr>
<td></td>
<td>CD control (nm, 3 sigma, post-etch)</td>
<td>15</td>
<td>15</td>
<td>15</td>
<td>15</td>
<td>15</td>
<td>15</td>
<td>15</td>
</tr>
<tr>
<td>MPU</td>
<td>Half pitch</td>
<td>230</td>
<td>219</td>
<td>218</td>
<td>216</td>
<td>214</td>
<td>210</td>
<td>205</td>
</tr>
<tr>
<td></td>
<td>Gate length (nm, in resist)</td>
<td>140</td>
<td>120</td>
<td>100</td>
<td>90</td>
<td>80</td>
<td>70</td>
<td>60</td>
</tr>
<tr>
<td></td>
<td>Contact length (nm, post-etch)</td>
<td>140</td>
<td>120</td>
<td>100</td>
<td>90</td>
<td>80</td>
<td>70</td>
<td>60</td>
</tr>
<tr>
<td></td>
<td>Gate CD control (nm, 3 sigma, post-etch)</td>
<td>14</td>
<td>12</td>
<td>10</td>
<td>9</td>
<td>8</td>
<td>7</td>
<td>6</td>
</tr>
</tbody>
</table>

76
Every nm of CD spread reduction means about $10 of more revenue per CPU chip.

Source: ITRS 1999

Decomposition of Sources of Variability

- Reticule error, lens aberration → Intra-field
- Exposure/focus → Die-to-die
- CVD, coating, develop, etching → Across wafer
- Batch to batch variability in materials, long term variability in equipment → Lot-to-lot
- Optical diffraction, proximity effect, micro-loading in etching and development → Pattern dependent
Why is Intra-field Variation Critical?

Field size increases by 12%/year to accommodate 59% more components per year by Moore’s Law.

- Spatial variability is mainly systematic instead of random.
- It could be compensated by process optimization or circuit design, or special mask design.

Lgate Varies Depending on Local Layout Patterns

- For full characterization, gates classified by their local layout patterns

- Gate are classified by:
 - **A) Distance** to neighboring gate (proximity effect)
 - **B) Left vs right** neighbor position (coma effect)
 - **C) Vertical vs horizontal orientation**
Spatial Maps for Different Gate Categories

- Two spatial profiles are statistically different
- Separate models need to be used at the CAD level

![Spatial Maps for Different Gate Categories](image)

Interconnect Parameter Variations

- Line width(w), spacing(s)
 - Due to photolithography proximity effect or etching
 - Layout dependent
 - Location dependent
- Metal thickness(T)
 - Due to erosion, dishing
 - Layout density dependent
- Inter-layer Dielectric (ILD) thickness(H)
 - Due to CMP
 - Dielectric Constant(ro)
All layer Cu/Low-K Interconnect

Current process technology for interconnect with multiple layers of metal/dielectric

From TSMC 0.13um technology

Planarity of Al Metal CMP Processes

- Chemical-mechanical polish (CMP) rate is different for sparse and dense areas
- Tiling: adds new features in sparse areas to ensure better planarity
- Design problem: determine location and amount of dummy features needed to achieve a planarity

(Grobman, DAC2001)
Planarity In Copper CMP Processes

- For Cu processes have two problems
 - Oxide erosion
 - Copper ‘dishing’

(Grobman, DAC2001)

Intra-Die ILD Thickness Variation

- Within die variation
ILD Thickness Variation

- TSMC specs on ILD Variation
 - Variation is up to 20%
 - Modest (3% ?) impact on timing

<table>
<thead>
<tr>
<th>Dielectric layers</th>
<th>Thickness</th>
<th>% Var</th>
<th>Dielectric constant</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>FOX</td>
<td>3500</td>
<td>± 17.1%</td>
<td>3.9</td>
<td></td>
</tr>
<tr>
<td>ILD</td>
<td>7000</td>
<td>± 21.4%</td>
<td>4.0</td>
<td>See NOTE 1.</td>
</tr>
<tr>
<td>IMD1a</td>
<td>11300</td>
<td>± 20%</td>
<td>3.7</td>
<td>See NOTE 1.</td>
</tr>
<tr>
<td>IMD1b</td>
<td>2000</td>
<td>± 3%</td>
<td>4.2</td>
<td></td>
</tr>
<tr>
<td>IMD2a</td>
<td>11300</td>
<td>± 20%</td>
<td>3.7</td>
<td>See NOTE 1.</td>
</tr>
<tr>
<td>IMD2b</td>
<td>2000</td>
<td>± 3%</td>
<td>4.2</td>
<td></td>
</tr>
<tr>
<td>IMD3a</td>
<td>11300</td>
<td>± 20%</td>
<td>3.7</td>
<td>See NOTE 1.</td>
</tr>
<tr>
<td>IMD3b</td>
<td>2000</td>
<td>± 3%</td>
<td>4.2</td>
<td></td>
</tr>
<tr>
<td>IMD4a</td>
<td>11300</td>
<td>± 20%</td>
<td>3.7</td>
<td>See NOTE 1.</td>
</tr>
<tr>
<td>IMD4b</td>
<td>2000</td>
<td>± 3%</td>
<td>4.2</td>
<td></td>
</tr>
<tr>
<td>IMD5a</td>
<td>11300</td>
<td>± 20%</td>
<td>3.7</td>
<td>See NOTE 1.</td>
</tr>
<tr>
<td>IMD5b</td>
<td>2000</td>
<td>± 3%</td>
<td>4.2</td>
<td></td>
</tr>
<tr>
<td>PASS1</td>
<td>10000</td>
<td>± 10%</td>
<td>4.2</td>
<td>See NOTE 2.</td>
</tr>
<tr>
<td>PASS2</td>
<td>7000</td>
<td>± 10%</td>
<td>7.9</td>
<td>Conformal material.</td>
</tr>
</tbody>
</table>

NOTE 1: The dielectric layers of ILD, IMD1a, IMD2a, IMD3a, IMD4a and IMD5a outside the metal are overetched 1000.

Tiling for Better Planarity

- **Untiled reticle (768A)**
 - (unmanufacturable)

- **Conventional Rule-Based Tiling (702A)**
 - (9% uniformity improvement)

- **Model-Based Tiling (152A)**
 - (80% uniformity improvement)
 - Motorola DSP
 - (Grobman, DAC2001)
Important Deep Submicron Effects

1. Rising relative delay of interconnect
2. Cross-coupled capacitance
3. IR drop
4. Power
 - 4a. Dynamic power consumption
 - 4b. Static power and leakage
5. Electromigration
6. Variability
7. Reliability

Reliability

- **Soft Error FIT/Chip (Logic & Mem)**
- **Extreme device variations**
- **Time dependent device degradation**
- **Burn-in may phase out…? Chip infant mortality?**
SER Mitigation in Microprocessors

Manufacturing Techniques
- SOI technology (e.g., AMD Opteron™ processor) reduces SER compared to bulk
 - Charge generated below BOX cannot be collected
- Eliminate alpha-producing materials from chip environment
 - BPSG
- Low-alpha package materials and underfill
- Low-alpha lead for C4 bumps reduces emissivity by >1000X

Design Techniques
- Parity: Detects SEU upsets
- ECC: Corrects single bit fails; detects dual-bit fails.
 - Reduces SER by several orders of magnitude in the protected arrays.
 - Typically, over 90% of SER-susceptible bit are either parity or ECC-protected in Server processors
- Cache Line Interleaving: Physical separation of logically adjacent bits to greatly reduce multibit fails
- Scrubbing: Cache scrubbing in background to do background correction of SEU
- Hardening: selective nodes made SEU-resistance by device size tweaks

Operational Techniques
- For mission-critical applications, operate at highest voltage possible
 - SER is strongly voltage dependent
- Try to avoid high-altitude operation! In fact, try to operate in deep mines!
 - At airline altitudes, Neutron flux is ~300X higher than sea level