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Design Process

Design : specify and enter the design 
intent

Implement:
refine the 
design 
through all 
phases

Verify:
verify the 
correctness of 
design and 
implementation
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Design Verification
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Manufacture Verification (Test)
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Design Verification

RTL
Synthesis

HDL

netlist

logic
optimization

netlist

Library/
module
generators

physical
design

layout

manual
design

specification

Is the 
design

consistent
with the original
specification?

Is what I think I want
what I really want?



4

Kurt Keutzer 7

Verification is an Industry-Wide Issue

Intel: Processor project verification: 
“Billions of generated vectors”
“Our VHDL regression tests take 27 days to run. ”

Sun: Sparc project verification: 
Test suite ~1500 tests > 1 billion random simulation cycles

“A server ranch ~1200 SPARC CPUs”

Bull: Simulation including PwrPC 604
“Our simulations run at between 1-20 CPS.”  
“We need 100-1000 cps.”

Cyrix : An x86 related project
“We need 50x Chronologic performance today.”
“170 CPUs running simulations continuously”

Kodak: “hundreds of 3-4 hour RTL functional simulations”
Xerox: “Simulation runtime occupies ~3 weeks of a design cycle”
Ross: 125 Million Vector Regression tests

Design Teams are Desperate for Faster SimulationDesign Teams are Desperate for Faster Simulation
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The Verification Crisis

2002 PhysicalPhysical
ImplementationImplementation

DesignDesign
CreationCreation VerificationVerification

1995 VerificationVerification PhysicalPhysical
ImplementationImplementation

DesignDesign
CreationCreation

Verification Consumes Hardware Design CycleVerification Consumes Hardware Design Cycle
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Verification Gap
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logic_transistors
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The Verification Bottleneck

Verification problem grows even faster due to the

combination of increased gate count and increased vector count
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1 million instructions, assume 2 million cycles

Today’s verification choices:

50M cps: 40 msec Actual system HW

5M cps: 400 msec Logic emulator1 (QT Mercury)

500K cps: 4 sec Cycle-based gate accelerator1 (QT CoBALT)

50K cps: 40 sec Hybrid emulator/simulator2 (Axis)

5K cps: 7 min Event-driven gate accelerator2 (Ikos NSIM)

500 cps: 1.1 hr

50 cps: 11 hr CPU and logic in HDL simulator3 (VCS)

5 cps: 4.6 days

1: assumes CPU chip  2: assumes RTL CPU  3: assumes HDL CPU

Time to boot VxWorks M. Butts - Synopsys
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Aspects of Design Verification

Initial Specification
Validation

Initial Specification
Validation

HDL Functional
Verification
(interactive)

HDL Functional
Verification
(interactive)

HDL Functional
Verification

(regressions)

HDL Functional
Verification

(regressions)

Implentatation In-System
Verification

Implentatation In-System
Verification
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Phases of Design Verification
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Basic Functionality Tapeout

Finding tough bugs is ad hoc & brute force
takes 80% of time, effort, & resources
represents most of the risk
is an unbounded problem
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Software Simulation 
– Application of simulation stimulus to model of circuit

Hardware Accelerated Simulation
– Use of special purpose hardware to accelerate 

simulation of circuit
Emulation

– Emulate actual circuit behavior - e.g. using FPGA’s
Rapid prototyping 

– Create a prototype of actual hardware
Formal verification

– Model checking - verify properties relative to model
– Theorem proving - prove theorems regarding 

properties of a model

Technologies for Design Verification

Kurt Keutzer 20

Matching Problems and Technologies

Event Driven
– Interactive Phase
– High flexibility
– Quick turnaround time
– Good debug capabilities

Cycle-based simulation
– Regression Phase
– Highest performance
– Highest capacity

Emulation and Acceleration
– In-System Verification
– Highest performance 
– Highest Capacity
– Real system environment

Emulation/
Rapid Protyping

Cycle-base
simulation

Specification
Validation

Specification
Validation

Functional
Verification
(interactive)

Functional
Verification
(interactive)

Implementation
Verification

Implementation
Verification

Functional
Verification

(regressions)

Functional
Verification

(regressions)

In-System
Verification
In-System

Verification

Equivalence Checking

Event-driven Simulation
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Axis (Emulator) View
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Software Simulation 
– Application of simulation stimulus to model of circuit

Hardware Accelerated Simulation
– Use of special purpose hardware to accelerate 

simulation of circuit
Emulation

– Emulate actual circuit behavior - e.g. using FPGA’s
Rapid prototyping 

– Create a prototype of actual hardware
Formal verification

– Model checking - verify properties relative to model
– Theorem proving - prove theorems regarding 

properties of a model

Approaches to Design Verification
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Simulation: The Current Picture

Simulation
driver

Simulation
engine Monitors

SHORTCOMINGS:

• Hard to generate high quality input stimuli

– A lot of user effort
– No formal way to identify unexercised aspects

• No good measure of comprehensiveness of validation

– Low bug detection rate is the main criterion
• Only means that current method of stimulus generation 

is not achieving more.

Kurt Keutzer 24

Simulation Drivers

Input stimuli consistent with circuit
interface must be generated

Environment of circuit must be represented faithfully

Tests can be generated

– pre-run (faster, hard to use/maintain)
– on-the-fly (better quality: can react to circuit state)

Environment and input generation programs written in
– HDL or C, C++, or
– Object-oriented simulation environment

• VERA, Verisity
Sometimes verification environment and test suite come with 

product, e.g. PCI implementations, bridges, etc.

Simulation
driver

Simulation
engine Monitors

Symbolic
simulation

Coverage
analysis

Diagnosis of
unverified
portions

Vector
generation
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Simulators

EVENT DRIVEN
• VCS
• Affirma
• Verilog-XL, ...
CYCLE-BASED
• Cyclone VHDL
• Cobra, ...
HYBRID
• VSS

Simulation
driver

Simulation
engine Monitors

Symbolic
simulation

Coverage
analysis

Diagnosis of
unverified
portions

Vector
generation
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Monitors

Reference models (e.g. ISA model)
Temporal and snapshot “checkers”

Can be written in C, C++, HDLs, and
VERA and Verisity: A lot of flexibility
Assertions and monitors can be automatically generated: 0-in’s 
checkers

Protocol specification can be given as 
a set of monitors
a set of temporal logic formulas

(recent GSRC work)

Simulation
driver

Simulation
engine Monitors

Symbolic
simulation

Coverage
analysis

Diagnosis of
unverified
portions

Vector
generation
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Types of software simulators

Circuit simulation 
– Spice, Advice, Hspice
– Timemill + Ace, ADM

Event-driven gate/RTL/Behavioral simulation
– Verilog - VCS, NC-Verilog, Turbo-Verilog, Verilog-XL
– VHDL - VSS, MTI, Leapfrog

Cycle-based gate/RTL/Behavioral simulation
– Verilog - Frontline, Speedsim
– VHDL - Cyclone

Domain-specific simulation
– SPW, VCC, COSSAP, 

Architecture-specific simulation

Kurt Keutzer 28

Event-driven simulation

Key elements:
– Circuit models and libraries

• cells
• interconnect

– Event-wheel
• Maintains schedules of events
• Enables sub-cycle timing

Advantages
– Timing accuracy 
– Handles asynchronous

Disadvantage - performance and data management
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Event versus cycle-based simulation

Combo
Logic 

Q

QN

Ddata

clock

clock

clock
Q

QN

D

Q

QN

D

Event-Driven Simulator:
• Simulates Function
• Tracks event activities and timing

clock

data

Cycle Based Simulator:
• Simulates Function
• Accurate at Clock boundaries

data

Which approach is faster?
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Software Simulation 
– Application of simulation stimulus to model of circuit

Hardware Accelerated Simulation
– Use of special purpose hardware to accelerate 

simulation of circuit
Emulation

– Emulate actual circuit behavior - e.g. using FPGA’s
Rapid prototyping 

– Create a prototype of actual hardware
Formal verification

– Model checking - verify properties relative to model
– Theorem proving - prove theorems regarding 

properties of a model

Approaches to Design Verification
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Gate-level Event-driven Sim Acceleration

HW implementation of gate-level event-driven 
algorithm

– Full timing, many states
– Exploits low-level parallelism (pipelining)

Design partitioned for high-level parallelism

– Limited: irregular topology, event 
distribution

– Much work in the 1980’s: order 10X, not 
100X

Performance

– 5G/eval * 100 MHz * 10 procs @ Max. 5B 
eps

– “7-25X HDL simulator”, “500 to 5K cps” 
(NSIM)

Usability

– Easy to use, quick compilation
– Full timing and states

Event Detector

Event Scheduler

Primitive Evaluators

Netlist Fanout

Event Detector

Event Scheduler

Primitive Evaluators

Netlist Fanout

E
vent Interconnect

M. Butts - Synopsys
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Gate-level Event-driven Simulation Accelerator

Just one: Ikos NSIM

– 4-input table primitives, RTL 
synthesis front-ends

– 8 to 64 processors, 0.5M to 15M 
gates

Value

– Much faster than unaccelerated
simulators

– Not quite fast enough to run 
much code on the design

Competition

– Modern compiled or cycle-based 
SW on standard multi-processor 
platforms

– Gate-level event-driven HW 
accelerator usually isn’t enough 
better

• Today’s GP multiprocessors 
exploit low and high-level 
parallelism
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Software Simulation 
– Application of simulation stimulus to model of circuit

Hardware Accelerated Simulation
– Use of special purpose hardware to accelerate 

simulation of circuit
Emulation

– Emulate actual circuit behavior - e.g. using FPGA’s
Rapid prototyping 

– Create a prototype of actual hardware
Formal verification

– Model checking - verify properties relative to model
– Theorem proving - prove theorems regarding 

properties of a model

Approaches to Design Verification
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FPGAs as logic evaluators

Today: 2 trillion gate evaluations per second per FPGA (200K gates, 10M cps)

– Growing with Moore’s Law as designs do
– $1.5B industry behind it (XLNX+ALTR+ACTL)

Potent tool for logic verification and validation

How best to put the FPGA to use?

M. Butts - Synopsys



18

Kurt Keutzer 35

Logic Emulation

Ultra-large “FPGA”
Live hardware, gate-for-gate. 
Entire design or major module is 

flattened, and compiled at 
once into multi-FPGA form. 

Logically static circuit-switched 
interconnect.

In-circuit or vector-driven 
Regular clock rate, > 1M cps.

M. Butts - Synopsys
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Verification using Emulation

System Hardware
– Customized parallel 

processor system for 
emulating logic

– In-circuit target interface
Software Compiler

– Mapping RTL & Gate 
designs to emulator

Runtime Software 
– C-API 
– Open SW architecture for 

tight integration
– Flexible modes of stimulus

In-circuit Target Board

Compiler

RTL or Gate 
design

Mapper

SBUS i/f

uP

Emulation Box
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General Logic Emulation HW

Tens to hundreds of large FPGAs
Interconnect, either:

– Programmable crossbars 
(QT), or

– Nearest-neighbor with time-
multiplexing (Ikos).

SRAMs for modeling memory
CPUs for behavioral simulation & 
testbenches (QT Mercury)
Dedicated logic analyzer / pattern 
generator for visibility & vectors
In-circuit cable plugs into target

FPGA

Logic Board

XBar

FPGA

XBar

FPGA

Logic Board

XBar

FPGA

XBar

Control 
Computer

Network

XBarXBar

Logic Analyzer 
Pattern Generator In-Circuit Cable

M. Butts - Synopsys
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General Logic Emulation SW

Entire design is flattened
– Emulation-specific HDL synthesis

Clock tree timing analysis 
– To avoid functional errors when 

gated clocks get split across 
FPGAs

Multi-level, multi-way partitioning
– NP-hard, very compute intensive

System placement (Ikos only)
Place & route for every FPGA

– Can be run in parallel
– Interdependent due to 

interconnect
Design database system
Needs to be automatic and totally successful

Design Reader

HDL Synthesis

Tech Mapper
Clock Analysis

System Partitioner

Input 
Design

D 
A 
T 
A 
B 
A 
S 
E        System Placer (if needed)

System Router

FPGA Place&RouteFPGA Place&RouteFPGA Place&Route

Binary Chip Programming Files

M. Butts - Synopsys
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Cycle-based Emulator

Levelized compiled simulation in massively parallel hardware form

– All gates evaluate every cycle
– No run-time data dependencies, so processors and IPC network 

are scheduled at compile time
Severe design constraints

– No asynchronous feedback, latches, etc.
– No timing: multiple related clock domains only by LCD slowdown
– Commonly OK for microprocessors, much less so in general

Compilation

– Given design constraints, relatively easy to use
– Fast: 2M gates per hour (CoBALT)

History

– IBM: Yorktown Simulation Engine, ET3 / Quickturn CoBALT
– Arkos=> Synopsys => Quickturn => Cadence

M. Butts - Synopsys
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Cycle-based Emulator
Just one: Cadence/Quickturn CoBALT
IBM Poughkeepsie ET3 technology

– 500 MHz custom chip, compiler core
– Up to 20M ASIC gates: 

• 128 3-input prims / processor               
(CE, new CL: 2.5X)

• 64 processors per chip
• 64 chips per board, 8 boards

Performance
– 32 trillion gate evaluations /sec (max) 

(2 gate equivalents / processor cycle * 
64 processors/chip * 64 chips/board * 
8 boards * 500 MHz)

– 10K to 500K cps in actual practice
Usage

– Vector memories or in-circuit cable
– PCI link to workstation simulator

M. Butts - Synopsys
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Cycle-based Emulator
Much faster than SW or event-driven accelerator

Runs actual code and data, in actual target systems
Harder to use than SW or event-driven accelerator, but easier than emulator

Severe restrictions on design style

- Purely synchronous design OK, else No.
Expensive, complex, proprietary HW, SW

- Custom chips, interconnect, PCBs, connectors, chassis, 
instrumentation

- Compiler is substantial effort to develop & maintain
Isolated from simulation, separate environment, proprietary simulator

Conclusion: 

– Good solution for large fully synchronous projects that can afford 
it

– Not a mainstream technology

M. Butts - Synopsys
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State-of-art in CBE: Cobalt Ultra

• 112 Million ASIC gates
• 64 Gbytes Memory
• 4224 Bi-Directional I/O
• Compiles 4M ASIC gates/hour
• Performance up to 600KHz
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Characteristics of Logic Emulation
Maximum Validation, fastest runtime speed

Runs actual code and data, in actual target systems
No restrictions on design style

- Gated clocks split across FPGAs may cause correctable functional errors
Expensive, complex, proprietary HW, SW

- Interconnect, PCBs, connectors, instrumentation; big FPGA tech. lag
- Compiler is hard to develop & maintain, user must be full-time expert

Inflexible

- Interconnect architecture makes FPGAs interdependent - changes often 
cause long recompile 

Isolated from simulation or integrated with proprietary simulator

It's HW speed, but not design speed; target HW slowdown required

FPGA logic capacity tracks Moore's Law...

But interconnect capacity does not track Moore's Law.

M. Butts - Synopsys
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The Emulation Interconnect Problem

Rent's Rule (p = Kg r) applies to partitioned designs.

FPGA logic capacity: 2X / 1.5 yr  (Moore's Law)

FPGA pins needed by emulator: 2X / 2.5 yr  (Moore + Rent)

Package pins: 2X / 4 yr - Can't keep up.

Vendors are time-multiplexing pins more and more to compensate.

– But that’s only a linear effect; it does not change the doubling time.

1000

10000

100000

1000000

10000000

1990 1995 2000 2005 2010
100

1000

10000

100000

gates pinsPackage Pins

Pins needed
FPGA capacity FPGA capacity is emulation usage:        

8 gates / 4-LUT+FF, 75% packing.

Pins needed is for emulation usage:     
p = 2.75g 0.58

Package pins are Xilinx FPGA IOBs
(1991-2000, extrapolated afterwards).

M. Butts - Synopsys
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Emulation Conclusions

Market is flat at $100M/year
Expensive HW, SW, cost of sales

– High-end supercomputer-like business
Current competition

– Simulation farms have similar $/cycle/sec for regression 
vector sets

– FPGA-based rapid prototyping for validation, SW execution

Good solution for large projects that can afford it
Ultimately the basic concept is limited by IC packaging

M. Butts - Synopsys
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Axis Reconfigurable Computing 
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The Traditional Problem:
Different environments create varying degrees of verification 
gaps during the design flow

Verification 
Environment 

GAP
In-Circuit

System

Emulation

Multimedia 
Set-Top Box 

>10M

Emulator

When?

How?

Module
Level
Simulation

Adder + 
Multiplier

5-10K

Block
Level
Simulation

ALU + 
Sequencer

10-200K

Sub

System

Simulation

Digital 
Filter + 
uP

200-1000K

System

Simulation

MPEG 
Video 
Decoding

1-10M

Simulator

Accelerator

Kurt Keutzer 48

Axis Product Overview

1998 1999 2000 2001 2002

Hardware Platforms 

Recently announced Xtreme-II & Mixed HDL

Capacity

Xcite 1000
Xcite 2000

Xtreme

Xtreme-II

Verilog

Mixed HDL

IP Builder Xpert

Verification Solutions
Xchange3rd Parties
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Axis Product Characteristics

Xcite 1000  2M gate 100K cycle/sec
Xcite 2000  10M gate 200K cycle/sec
Xtreme 10M gate 500K cycle/sec
XtremeII 100M gate 1,000K c/sec

Kurt Keutzer 50

Axis Extreme Characteristics

1. Hardware Architecture  
2. Design Format 
3. Verilog Software Simulator: Xsim

4. Capacity
5. Simulation Performance 
6. Emulation Performance 
7. Memory
• Debugger Native Verilog interface. 

Built-in Clock Generators 
Supports up to 48 clock domains

• Programmable Trigger Generators 
Supports up to 1024 probes per 
trigger and up to 48 separate 
trigger generators

1. Re-configurable computing engine
2. RTL and Gate Level
3. Native compiled with event look-

ahead. Supports all Verilog
constructs including PLI

4. Up to 20M gates
5. Up to 100K cycles/second
6. Up to 500K cycles/second
7. Up to 384M bits of on-board RCC 

memory. Up to 18.75M bits of 
internal cache. Expanding up to 
4G of memory mapped 
workstation memory

• All internal nodes visible. Real 
time emulation/simulation state 
swap between software and 
hardware
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Axis Xtreme

Kurt Keutzer 52

Software Simulation 
– Application of simulation stimulus to model of circuit

Hardware Accelerated Simulation
– Use of special purpose hardware to accelerate 

simulation of circuit
Emulation

– Emulate actual circuit behavior - e.g. using FPGA’s
Rapid prototyping 

– Create a prototype of actual hardware
Formal verification

– Model checking - verify properties relative to model
– Theorem proving - prove theorems regarding 

properties of a model

Approaches to Design Verification
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Rapid System Prototyping Environment

Debug Environment

Aptix System Explorer™
MP3C or MP4

Aptix System Explorer™ 
Development Software

Sun, HP

Ethernet

Need lowNeed low--cost, instrumentcost, instrument--like system prototyping environmentlike system prototyping environment
Must be wellMust be well--integrated into overall componentintegrated into overall component--based flowbased flow

Kurt Keutzer 54

Rapid Prototyping of ASICs and SoCs

Target-specific tools

– ASIC/core+FPGA: 
Philips/VLSI Velocity, ARM 
($5K)

– FPGA+RAM: Altera/ARC 
“SoC” board (100KG, $5K)

GP tool

– Aptix: daughtercards, prog. 
breadboard, > $100K

Rapid Prototyping Characteristics

Real HW running at MHz, 
low cost HW

- Isolated from simulation, 
throwaway effort

M. Butts - Synopsys
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Summary

Design Verification IS the biggest problem in IC design today
Verification teams ARE getting larger than design teams
No silver-bullet solutions on the horizon
Successful groups 

– Intel, NVidia, IBM – use a bit of everything
– Leading adopters of new technology

Buying behaviors in software verification are poor
– All software solutions seen as ``simulators’’ – poor ASPs

Kurt Keutzer 56

Software Simulation 
– Application of simulation stimulus to model of circuit

Hardware Accelerated Simulation
– Use of special purpose hardware to accelerate 

simulation of circuit
Emulation

– Emulate actual circuit behavior - e.g. using FPGA’s
Rapid prototyping 

– Create a prototype of actual hardware
Formal verification

– Model checking - verify properties relative to model
– Theorem proving - prove theorems regarding 

properties of a model

Approaches to Design Verification



29

Kurt Keutzer 57

How to make it smarter: Intelligent Simulation

Simulation
driver

Simulation
engine Monitors

Symbolic
simulation

Coverage
analysis

Diagnosis of
unverified
portions

Vector
generation

Conventional

Novel
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How to make it smarter: Intelligent Simulation

Simulation
driver

Simulation
engine Monitors

Symbolic
simulation

Coverage
analysis

Diagnosis of
unverified
portions

Vector
generation

Conventional

Novel

CLOSED FEEDBACK LOOP
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Symbolic Simulation Simulation
driver

Simulation
engine Monitors

Symbolic
simulation

Coverage
analysis

Diagnosis of
unverified
portions

Vector
generation

IDEA: One symbolic run covers many 
runs with concrete values.

Some inputs driven with symbols instead of concrete values
•2(# symbols) equivalent binary coverage

Kurt Keutzer 60

Coverage Analysis

Why?
• To quantify comprehensiveness 

of validation effort
– Tells us when not to stop
– Even with completely formal methods, verification is only as 

complete as the set of properties checked
• To identify aspects of design not adequately exercised

– Guides test/simulation vector generation
• Coordinate and compare verification efforts

– Different sets of simulation runs
– Different methods: Model checking, symbolic simulation, ...

Simulation
driver

Simulation
engine Monitors

Symbolic
simulation

Coverage
analysis

Diagnosis of
unverified
portions

Vector
generation



31

Kurt Keutzer 61

Vector Generation

Classification:
– Algorithmic methods

• Guided search of state-space
–Traverse “more relevant” portion

• Vector generation aimed at coverage
–Generate input stimuli to 

– “Randomized” methods

Trade-off between
– Time to find “good” vectors
– Time to simulate vectors

Simulation
driver

Simulation
engine Monitors

Symbolic
simulation

Coverage
analysis

Diagnosis of
unverified
portions

Vector
generation

Find Simulate

0% 100%
Portion of Computation Time
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Improved Time to Market: More Efficient 
& Effective Verification 

0-In extends the 
value of simulation 

with white-box 
verification

0-In brings the 
power of formal 
verification to a 

simulation-based 
methodology

0-In Check

Standard Verilog
Simulator

Standard Verilog
Simulator 0-In View

InstrumentInstrument

SimulateSimulate

AmplifyAmplify

CheckerWare
Monitors

CheckerWare
Monitors

RTL with
0-In Directives

RTL with
0-In Directives

Verilog
0-In Checkers

Verilog
0-In Checkers

TestbenchTestbench

0-In Search

Standard 
Waveform Tool

Standard 
Waveform Tool

Structural 
Coverage 
Reports

Structural 
Coverage 
Reports

CheckerWare
Library

CheckerWare
Library
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CheckerWare Library

Buses and 
interfaces
• assert_window
• assert_follower
• assert_timer
• change_window
• change_timer
• outstanding_id
• req_ack

Data path 
elements
• back_pressure
• data_used
• data_loaded
• fifo
• memory_access
• multi_clock_fifo
• stack

Control flow 
elements
• arbiter
• case
• sequence
• scoreboard
• value
• state_transition
• timeout

0-In CheckerWare
(Examples)

SDRAM
DDR SDRAM

DDR2 SDRAM
DDR SRAM
QDR SRAM

LPC
PCI

PCI-X
AMBA

HyperTransport
InfiniBand

SPI-4
UTOPIA

POS-PHY
CSIX

CheckerWare Monitors
(Examples)

Unique capability increases adoption 
rate

Reduces assertion specification 
time
Eliminates protocol monitor 
development time

A rich library of 
assertion checkers for 

complex logic 

CheckerWare 
Monitors deliver an 

executable 
specification
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Solving the Critical Problems

Netlist 
Functional 

Checks

Basic 
Properties

Complex
Properties & 

Interface 
Checkers

Protocol 
Monitors and 
Constraints

0-In
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nolo

gy
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 va
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Static
Checks

Basic 
Assertions

CheckerWare 
Library

CheckerWare 
Monitors

systemcluster chipblock
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0-In Check Makes Simulation More 
Efficient

checker

Detects bugs earlier 
when they are less 

expensive

Reduces debugging 
time

Reduces test 
redundancy

Reduces reliance 
on brute-force 

methods

S
tim

ulus
S

tim
ulus

S
tim

ulus
S

tim
ulus

Functional
C

hecks
Functional

C
hecks

Functional
C

hecks
Functional

C
hecks

Black-Box Simulation

Simulation with Checkersbus
monitor
bus

monitor bus
monitor
bus

monitor
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Mem
ory

ID
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ount

Format

Arbiter

Format

Arbiter
ID

Count
ID 

Tabl
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Mem
ory

Structural Coverage

checker

S
tim

ulus
G

eneration
S

tim
ulus

G
eneration

R
esponse

C
hecking

R
esponse

C
heckingCoverage metric drives 

methodology

Testbenches are 
developed with 
Specman, Vera, 

C/C++, Superlog, 
Verilog, etc.

S
tim

ulus
G

eneration
S

tim
ulus

G
eneration

R
esponse

C
hecking

R
esponse

C
hecking

validated

not validated

Structural Coverage is built into CheckerWare
– Effective method for testbench grading
– Implementation-specific

• Checkers capture structural characteristics of design
• Familiar RTL structures (memories, FIFOs, state machines, etc.)
• Checker-specific corner cases (FIFO full, FIFO empty, etc.)

– Objective and actionable
• Guide development of additional tests to plug verification holes
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0-In Search Makes Simulation More Effective 

checker
constraint 0-In Search

Stim
ulus

Stim
ulus

Functional
C

hecks
Functional

C
hecks

Black-Box Simulation

Reduces reliance 
on manually-

written directed 
tests

Finds bugs 
simulation misses
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Software Simulation 
– Too slow
– Moving to higher levels is helping – but not enough

Hardware Accelerated Simulation
– Too expensive

Emulation
– Even more expensive

Rapid prototyping 
– Too ad hoc

Formal verification
– Not robust enough

Intelligent Software Simulation 
– Symbolic simulation – not robust enough
– Coverage metrics – useful, but not compehensive enough
– Automatic vector generation – not robust enough

Status of Design Verification
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Symbolic Simulation

INNOLOGIC:
BDD-based symbolic Verilog simulators

ESP-XV: For processor and networking applications

ESP-CV: For memory verification and sequential 
equivalence checking

Monitors can have symbolic expressions

Can symbolize time, e.g., event occurring after time T, 10 < T < 20. 

If bug is found, computes actual values exercising it

Current “sweet-spots” of technology

– Memory verification: CAMs, caches, register files

– Unit level RTL functional verification: DMA, PCI,100-1000K 
gate blocks

– Data movement, datapath

Simulation
driver

Simulation
engine Monitors

Symbolic
simulation

Coverage
analysis

Diagnosis of
unverified
portions

Vector
generation
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Symbolic Simulation

INNOLOGIC: Limitations
Capacity limits:

– ~ 1 million gate equivalents
– # of symbols - design dependent. 

• < 50 in worst cases (multipliers) 
• several thousand in the best cases 

(memory, data movement). 
• When out of memory, turn symbols into binary values -

coverage lost but simulation completes.
Roughly 10 times slower than Verilog-XL
Can’t use in conjunction with Vera or Verisity currently.
Definitely worth a shot: Extra cost of symbols offset quickly, doesn’t 
require major change in framework.
Full benefits of technology have not been realized yet. 

Simulation
driver

Simulation
engine Monitors

Symbolic
simulation

Coverage
analysis

Diagnosis of
unverified
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generation
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Emulation + Accelerated Simulation

QT Mercury SimServer

Bauer, Bershteyn, Kaplan, Vyedin.  A Reconfigurable Logic Machine for 
Fast Event-Driven Simulation, Proc. 35th DAC, 1998.

– Multiprocessing HW-accelerated Verilog simulator + emulator
– Automatic HDL partitioning: synthesizable modules to emulator, 

behavioral modules to PowerPC CPUs (up to 10)
– Accelerated time wheel, event detection in emulator FPGAs

FPGA

XBar

FPGA

XBar

CPU+
Mem

Logic Board
FPGA

XBar

FPGA

XBar

CPU+
Mem

Logic Board

XBarXBar

Event Backplane
M. Butts - Synopsys


