
1

1

Implementation Verification:
Equivalence Checking

Profs. Kurt Keutzer & Sanjit Seshia

EECS

UC Berkeley

With thanks to Srinivas Devadas, MIT

Keutzer & Seshia 2

Design Process

Design : specify and
enter the design intent

Implement:
refine the

design

through all

phases

Verify:

verify the

correctness of

design and

implementation

2

Keutzer & Seshia 3

Implementation Verification

RTL
Synthesis

HDL

netlist

logic
optimization

netlist

Library/
module
generators

physical
design

layout

manual
design

Is the
implementation

consistent
with the original
design intent?

Is what I
implemented

what I
wanted?

a

b

s

q
0

1

d

clk

a

b

s

q
0

1

d

clk

Keutzer & Seshia 4

Design Verification

RTL
Synthesis

HDL

netlist

logic
optimization

netlist

Library/
module
generators

physical
design

layout

manual
design

specification

Is the
design

consistent
with the original
specification?

Is what I think I want
what I really want?

3

Keutzer & Seshia 5

Manufacture Verification (Test)

RTL
Synthesis

HDL

netlist

logic
optimization

netlist

Library/
module
generators

physical
design

layout

manual
design

Is the
manufactured

circuit
consistent

with the
implemented

design?

Did they
build
what I

wanted?

a

b

s

q
0

1

d

clk

a

b

s

q
0

1

d

clk

Keutzer & Seshia 6

Impl. Verification for ASIC’s by Simulation

RTL
Synthesis

HDL

netlist

logic
optimization

netlist

Library/
module
generators

physical
design

layout

manual
design

Apply gate-level
simulation at each
step to verify

functionality:
• 0-1 behavior on
regression test
set

and timing:
• maximum delay
of circuit across
critical paths

a

b

s

q
0

1

d

clk

a

b

s

q
0

1

d

clk

ASIC
signoff

4

Keutzer & Seshia 7

Advantages of gate-level simulation

– verifies timing and functionality simultaneously

– approach well understood by designers

Disadvantages of gate-level simulation?

Simulation
driver

(vectors)

Simulation
monitor
(yes/no)

and
speed

Software Simulation

a

b

s

q

0

1

d

clk

Keutzer & Seshia 8

Advantages of gate-level simulation

– verifies timing and functionality simultaneously

– approach well understood by designers

Disadvantages of gate-level simulation?

– computationally intensive - only ~10 clock cycles of 100K
gate design per 1 CPU second

– incomplete - results only as good as your vector set - easy
to overlook incorrect timing/behavior

Simulation
driver

(vectors)

Simulation
monitor
(yes/no)

and
speed

Software Simulation

a

b

s

q

0

1

d

clk

5

Keutzer & Seshia 9

Alternative – “Static Sign-off”

RTL
Synthesis

HDL

netlist

logic
optimization

netlist

Library/
module
generators

physical
design

layout

manual
design

a

b

s

q
0

1

d

clk

a

b

s

q
0

1

d

clk

ASIC
signoff

Use static
analysis
techniques to
verify:

functionality:
• formal
equivalence-
checking
techniques

and timing:
• use static timing
analysis –
discussed earlier
in the semester,
but don’t forget
about false paths!

Keutzer & Seshia 10

Problem: RTL to RTL Verification

After verification RTL may still be modified

– RTL level improvements for :

• performance

• power

• area

• testability

Need to verify that new RTL is correct

Specification Implementation

6

Keutzer & Seshia 11

Problem: RTL to Gates Verification

Verify the gate level implementation is
consistent with the RTL level design

Errors may have occurred due to

– synthesis (heaven forbid!!)

– manual intervention
HDL Design Implementation

Keutzer & Seshia 12

Problem: Gates to Gates Verification

Verify the modified gate level implementation
is consistent with the RTL level design

Errors may have occurred due to

– Incorrect synthesis or module generation
(heaven forbid!!)

– Test insertion

– Scan chain reordering

– Clock tree synthesis

– Post layout “tweaks”

Netlist Implementation

7

Keutzer & Seshia 13

Problem: Layout to Gates Verification (LVS)

Verify the modified gate level implementation
is consistent with the RTL level design

Errors may have occurred due to

– Errors in physical design tools

– Manual changes in layout

Verification is primarily graphical or
``topological’’

netlist physical layout

Keutzer & Seshia 15

This Lecture

• Solving the “Gates-to-Gates” verification
problem

– Special case: when only combinational parts differ

• Binary Decision Diagrams (BDDs)

– A very, very useful data structure!

– Many applications, in EDA and elsewhere

8

Keutzer & Seshia 16

Solving Gates to Gates Verification

clk

Combinational
logic

clk

Combinational
logic

clk

Combinational
logic

clk

Combinational
logic

clk

Combinational
logic

clk

Combinational
logic

``specification’’

implementation

Keutzer & Seshia 17

Extract combinational portions

compare
combinational

portions

``spec’’

Flip-flops

Combinational
Logic

inputs outputs

``implementation’’

Flip-flops

Combinational
Logic

inputs outputs

9

Keutzer & Seshia 18

Combinational Equivalence Checking

Given:

• Combinational circuits C1 and C2

(Boolean functions B1 and B2)

How can we prove that C1 is/isn’t equivalent to C2,
in a reasonable amount of time?

Keutzer & Seshia 19

Combinational Equivalence Checking

Presumes equivalence-relation given (or discovered) between
sequential circuits

Approaches

– Boolean satisfiability (SAT)

– Set-theoretic approaches (used in 2-level examples)

– Symbolic simulation

– Structural techniques

• graph isomorphism

– Canonical forms - BDD’s and variants

– Test-oriented methods

These techniques form the foundation of modern equivalence
checking/implementation verification

10

Keutzer & Seshia 20

2-level circuits

Now, treating F and G as sets of cubes we can check if

)()()(FGGFGF →•→⇔⇔

)()(GFGF ∨∧∨⇔

1)()(⇔∪∩∪ GFGF

Which is feasible for most 2-level circuits/SOP expressions

Worked well in the Espresso era – doesn’t generalize to
multilevel

Keutzer & Seshia 21

Multilevel: Structural Methods

Combinational circuit 1

unmapped circuit 1 unmapped circuit 2

Combinational circuit 2

Compare them as graphs.
Is this tough or easy to solve algorithmically?

11

Keutzer & Seshia 22

Structural Methods

Combinational circuit 1

unmapped circuit 1 unmapped circuit 2

Combinational circuit 2

Looks tough – graph isomorphism
Turns out to be easy – DAGs
If this returns “Equivalent”, are the ckts equivalent?
How about when it returns “Not Equivalent”?

Keutzer & Seshia 23

More powerful: Testing

Given two single-output circuits A and B

Are A and B equivalent can be posed as: Is
there a test for F s-a-0?

If F s-a-0 is redundant, A ≡≡≡≡ B else test
vector produces different outputs for A
and B.

x2

B

x4

x1

x3
A

x
s-a-0

12

Keutzer & Seshia 24

Boolean Satisfiability (SAT) Again

a

b

c

d

e

f

g

h

i

1

hf if

t = 1?

This time ask whether there is an input on which Circuit 1
and Circuit 2 differ? This time we don’t expect one!

Circuit 1

Circuit 2 –
Any structural
simularities (found earlier)
are shared

Keutzer & Seshia 25

Looking at the Problem Afresh

Primary Inputs, Register and Black Box Outputs

spec implementation

COMPARE

0 or 1

Two different circuits
Same Boolean function

13

Keutzer & Seshia 26

Strategy

• For each combinational circuit, compute the
Boolean function that it represents

• Compare the two Boolean functions you get

– Circuits are equivalent iff functions are identical

What is a Boolean function representation of a
circuit?

– Syntactic

– Semantic (Captures the meaning)

What we need is a canonical form (why?)

Keutzer & Seshia 27

Boolean Function Representations

• Syntactic: e.g.: 2-level form (SOP)

• Semantic: e.g.: Truth table

– Is a truth table good enough?

14

Keutzer & Seshia 28

Canonical Form: Binary Decision Tree

If you don’t store entire set of nodes, you
have to enumerate them

– Doing what SAT does

a
b

c
d

0 1

d

c

b

a

b

c

0

0

0

0

1

1

Exponential # nodes.

Keutzer & Seshia 29

1

1

d

Decision Graph

Share nodes in tree ⇒⇒⇒⇒ graph.

1

0

a

b

cc

dd d

0 1

1

1
00

0 0

0 11 0 01

partial
sharing

0 0 0 01 1 11

b

a

c

bb

c

dd

0

0

0

1

0

0
1 1

1 1

FULLY
SHARED

2N nodes

0 1 1 0

0 1 0 1

15

Keutzer & Seshia 30

Definition of a Binary Decision Diagram

A Binary Decision Diagram having root vertex v denotes
a Boolean function fv

1. If v is a terminal vertex:

(a) if value(v) = 1, then fv = 1

(b) if value(v) = 0, then fv = 0

2. If v is a nonterminal vertex with index(v) = n then fv is
the function:

fv(x1, … , xn) = !xn flow(v)(x1, … , xn-1) + xn fhigh(v)(x1, … , xn-1)

Called the “Shannon decomposition”

0 1

v

low(v) high(v)

Keutzer & Seshia 31

Definition of an Ordered BDD

A Binary Decision Diagram is ordered iff:

1. If v is a non-terminal vertex:

(a) if low(v) is a non-terminal then,
index(v) < index(low(v)) and

(b) if high(v) is a non-terminal then,
index(v) < index(high(v)) and

This property implies the property of freedom in BDDs:
In traversing any path from a vertex in a OBDD to its
root then we encounter each decision variable at most
once.

16

Keutzer & Seshia 32

Ordered Binary Decision Diagram

Inputs satisfy ordering restriction. Each node/vertex v in
the graph has index(v). Two children are low(v) and
high(v). 0 and 1 are terminal vertices, others are
non-terminal.

index(v) < index(low(v)) for all v

index(v) < index(high(v))

f = x1 x2 + x3 f = x1x2x3 + x1x2x3 + x1x2x3

1 1

1

3

1

0
1

0

0 1
0

0 1 0

10

0 1 0

1

1

1010

2 22

3 30

Keutzer & Seshia 33

Storage is always a problem for Ordered Binary Decision
Diagram (OBDD) can we simplify them further?

Ordered BDDs Enough?

10 0 1 0

1

2 2

33

0

0 1 0

1

1

1010

f = x1x2x3 + x1x2x3

+ x1x2x3

17

Keutzer & Seshia 34

An Ordered Binary Decision Diagram (OBDD) may still
have ``redundant’’ vertices.

Definition: An OBDD is reduced, if it contains no vertex
v with low(v) = high(v) , nor does it contain distinct
vertices v and v’ such that the subgraphs rooted by v
and v’ are isomorphic.

Can reduce an OBDD in O(|G| log |G|) time.

Reduced, Ordered BDDs

1

3
2

1

0

1

1

0

1

0

10 0 1 0

1

2 2

33

0

0 1 0

1

1

1010

0

f = x1x2x3 + x1x2x3

+ x1x2x3

f = x1x3 + x1x2x3

Keutzer & Seshia 35

Reduced Ordered BDDs

• Invented by Randal E. Bryant in mid-80s

– IEEE Transactions on Computers 1986 paper is
one of the most highly cited papers in EECS

• Key data structure for many EDA problems
including in synthesis & verification

• Commonly known simply as BDDs

• Many variants of BDDs have proved useful
in other tasks

• Links to coding theory (trellises), etc.

18

Keutzer & Seshia 36

ROBDDs are Canonical

a

b
c

d

0 1

0

0

0

0

1
1

1
1

ordering
a b c d

f = ac + abc + acd + abcd
disjoint cover

f

a
c
a
d
b
c
b
d

a
b

c
d

g

Keutzer & Seshia 37

Proof that ROBDDs are canonical - 1

Theorem (R. Bryant): If G, G’ are ROBDD’s of a
Boolean function f with k inputs then G and G’ are
identical.

Exercise for next Wed. class (hint: use induction)

