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Design Process

Design : specify and 
enter the design intent

Implement:
refine the 

design 

through all 

phases

Verify:

verify the 

correctness of 

design and 

implementation
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Implementation Verification
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implementation
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Design Verification

RTL
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HDL

netlist

logic
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netlist
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Is the 
design

consistent
with the original
specification?

Is what I think I want
what I really want?
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Manufacture Verification (Test)
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Is the 
manufactured

circuit
consistent
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build
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Impl. Verification for ASIC’s by Simulation

RTL
Synthesis

HDL

netlist

logic
optimization

netlist

Library/
module
generators

physical
design

layout

manual
design

Apply gate-level 
simulation at each 
step to verify 

functionality:
• 0-1 behavior on 
regression test 
set

and timing:
• maximum delay 
of circuit across 
critical paths
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Advantages of gate-level simulation

– verifies timing and functionality simultaneously

– approach well understood by designers

Disadvantages of gate-level simulation?

Simulation
driver

(vectors)

Simulation
monitor
(yes/no)

and
speed

Software Simulation
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Advantages of gate-level simulation

– verifies timing and functionality simultaneously

– approach well understood by designers

Disadvantages of gate-level simulation?

– computationally intensive - only  ~10 clock cycles of 100K 
gate design per 1 CPU second

– incomplete - results only as good as your vector set - easy 
to overlook incorrect timing/behavior

Simulation
driver

(vectors)

Simulation
monitor
(yes/no)

and
speed

Software Simulation
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Alternative – “Static Sign-off”
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Use static 
analysis 
techniques to 
verify: 

functionality:
• formal 
equivalence-
checking 
techniques

and timing:
• use static timing 
analysis –
discussed earlier 
in the semester, 
but don’t forget 
about false paths!
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Problem: RTL to RTL Verification

After verification RTL may still be modified

– RTL level improvements for :

• performance

• power

• area

• testability

Need to verify that new RTL is correct

Specification Implementation
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Problem: RTL to Gates Verification

Verify the gate level implementation is 
consistent with the RTL level design

Errors may have occurred due to

– synthesis (heaven forbid!!)

– manual intervention
HDL Design Implementation
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Problem: Gates to Gates Verification

Verify the modified gate level implementation 
is consistent with the RTL level design

Errors may have occurred due to

– Incorrect synthesis or module generation 
(heaven forbid!!)

– Test insertion

– Scan chain reordering

– Clock tree synthesis

– Post layout “tweaks”

Netlist Implementation
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Problem: Layout to Gates Verification (LVS)

Verify the modified gate level implementation 
is consistent with the RTL level design

Errors may have occurred due to

– Errors in physical design tools

– Manual changes in layout

Verification is primarily graphical or 
``topological’’

netlist physical layout
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This Lecture

• Solving the “Gates-to-Gates” verification 
problem

– Special case: when only combinational parts differ

• Binary Decision Diagrams (BDDs)

– A very, very useful data structure!

– Many applications, in EDA and elsewhere
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Solving Gates to Gates Verification

clk

Combinational
logic

clk

Combinational
logic

clk

Combinational
logic

clk

Combinational
logic

clk

Combinational
logic

clk

Combinational
logic

``specification’’
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Extract combinational portions

compare
combinational

portions

``spec’’

Flip-flops

Combinational
Logic

inputs outputs

``implementation’’

Flip-flops

Combinational
Logic

inputs outputs



9

Keutzer & Seshia 18

Combinational Equivalence Checking

Given:

• Combinational circuits C1 and C2

(Boolean functions B1 and B2) 

How can we prove that C1 is/isn’t equivalent to C2, 
in a reasonable amount of time? 

Keutzer & Seshia 19

Combinational Equivalence Checking

Presumes equivalence-relation given (or discovered) between 
sequential circuits

Approaches

– Boolean satisfiability (SAT)

– Set-theoretic approaches (used in 2-level examples)

– Symbolic simulation 

– Structural techniques

• graph isomorphism

– Canonical forms - BDD’s and variants

– Test-oriented methods

These techniques form  the foundation of modern equivalence 
checking/implementation verification
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2-level circuits

Now, treating F and G as sets of cubes we can check if

)()()( FGGFGF →•→⇔⇔

)()( GFGF ∨∧∨⇔

1)()( ⇔∪∩∪ GFGF

Which is feasible for most 2-level circuits/SOP expressions

Worked well in the Espresso era – doesn’t generalize to 
multilevel 
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Multilevel: Structural Methods

Combinational circuit 1

unmapped circuit 1 unmapped circuit 2

Combinational circuit 2

Compare them as graphs.
Is this tough or easy to solve algorithmically?
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Structural Methods

Combinational circuit 1

unmapped circuit 1 unmapped circuit 2

Combinational circuit 2

Looks tough – graph isomorphism
Turns out to be easy – DAGs
If this returns “Equivalent”, are the ckts equivalent? 
How about when it returns “Not Equivalent”?
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More powerful: Testing

Given two single-output circuits A and B

Are A and B equivalent can be posed as:  Is 
there a test for F s-a-0?

If  F s-a-0 is redundant, A ≡≡≡≡ B else test 
vector produces different outputs for A
and B.

x2

B

x4

x1

x3
A

x
s-a-0
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Boolean Satisfiability (SAT) Again

a

b

c

d

e

f

g

h

i

1

hf if

t = 1?

This time ask whether there is an input on which Circuit 1 
and Circuit 2 differ? This time we don’t expect one!

Circuit 1

Circuit 2 –
Any structural 
simularities (found earlier)
are shared
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Looking at the Problem Afresh

Primary Inputs, Register and Black Box Outputs

spec implementation

COMPARE

0 or 1

Two different circuits
Same Boolean function
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Strategy

• For each combinational circuit, compute the 
Boolean function that it represents

• Compare the two Boolean functions you get

– Circuits are equivalent iff functions are identical

What is a Boolean function representation of a 
circuit?

– Syntactic

– Semantic (Captures the meaning)

What we need is a canonical form (why?)
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Boolean Function Representations

• Syntactic: e.g.: 2-level form (SOP)

• Semantic: e.g.: Truth table

– Is a truth table good enough?
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Canonical Form: Binary Decision Tree

If you don’t store entire set of nodes, you 
have to enumerate them

– Doing what SAT does
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0 1
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c
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1

Exponential # nodes.
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1

d

Decision Graph

Share nodes in tree ⇒⇒⇒⇒ graph.
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Definition of a Binary Decision Diagram

A Binary Decision Diagram having root vertex v denotes 
a Boolean function fv

1. If v is a terminal vertex:

(a) if value(v) = 1, then fv = 1

(b) if value(v) = 0, then fv = 0

2. If v is a nonterminal vertex with index(v) = n then fv is 
the function:

fv(x1,  … , xn) = !xn flow(v)(x1,  … , xn-1) +  xn fhigh(v)(x1,  … , xn-1) 

Called the “Shannon decomposition”

0 1

v

low(v) high(v)
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Definition of an Ordered BDD

A Binary Decision Diagram is ordered iff:

1. If v is a non-terminal vertex:

(a) if low(v) is a non-terminal then,
index(v) < index(low(v)) and

(b) if high(v) is a non-terminal then,
index(v) < index(high(v)) and

This property implies the property of freedom in BDDs:
In traversing any path from a vertex in a OBDD to its 
root then we encounter each decision variable at most 
once. 
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Ordered Binary Decision Diagram

Inputs satisfy ordering restriction.  Each node/vertex v in 
the graph has index(v).  Two children are low(v) and 
high(v).  0 and  1 are terminal vertices, others are 
non-terminal.

index(v) < index(low(v)) for all v

index(v) < index(high(v))

f = x1 x2 + x3 f = x1x2x3 + x1x2x3 + x1x2x3

1 1

1

3

1

0
1

0

0 1
0

0 1 0

10

0 1 0

1

1

1010

2 22

3 30
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Storage is always a problem for Ordered Binary Decision 
Diagram (OBDD) can we simplify them further?

Ordered BDDs Enough?

10 0 1 0

1

2 2

33

0

0 1 0

1

1

1010

f = x1x2x3 + x1x2x3

+ x1x2x3
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An Ordered Binary Decision Diagram (OBDD) may still 
have ``redundant’’ vertices.

Definition:  An OBDD is reduced, if it contains no vertex 
v with low(v) = high(v) , nor does it contain distinct 
vertices v and v’ such that the subgraphs rooted by v
and v’ are isomorphic.

Can reduce an OBDD in O( |G| log |G| ) time.

Reduced, Ordered BDDs

1

3
2

1

0

1

1

0

1

0

10 0 1 0

1

2 2

33

0

0 1 0

1

1

1010

0

f = x1x2x3 + x1x2x3

+ x1x2x3

f = x1x3 + x1x2x3

Keutzer & Seshia 35

Reduced Ordered BDDs

• Invented by Randal E. Bryant in mid-80s

– IEEE Transactions on Computers 1986 paper is 
one of the most highly cited papers in EECS 

• Key data structure for many EDA problems 
including in synthesis & verification

• Commonly known simply as BDDs

• Many variants of BDDs have proved useful 
in other tasks

• Links to coding theory (trellises), etc.
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ROBDDs are Canonical

a
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d

0 1

0

0

0

0

1
1

1
1

ordering
a b c d

f = ac + abc + acd + abcd
disjoint cover

f

a
c
a
d
b
c
b
d

a
b

c
d

g
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Proof that ROBDDs are canonical - 1

Theorem (R. Bryant): If G, G’ are ROBDD’s of a 
Boolean function f with k inputs then G and G’ are 
identical. 

Exercise for next Wed. class (hint: use induction)


