Testing in Enhanced Fault Models

Srinivas Devadas
MIT
Kurt Keutzer
UC Berkeley

My Midterm

What are the three things you like best about my part of the course?

What are the three things that bug you the most?

What are three specific things you would change?

Manufacture Verification (Test)

Defect-related Yield Loss

fatal defect types (two types of short circuits, one type of open)

Reduce to combinational problem

inputs

Common fault Model

Single stuck-at fault

Implications of Testability

Testability properties of circuits have interesting relationships with other properties of circuits:

- Primality/irredundancy of two-level logic
- Sensitizability of paths/false paths in multilevel logic
To understand these properties it's useful to begin with two-level circuits

Redundancy and Testability

If a fault in a circuit is redundant, i.e., there is no test for it

Replace line on which fault resides with a constant 1 (SA1) or 0 (SA0).

The Boolean n-Cube, B $^{\text {n }}$

- $\mathcal{B}=\{0,1\}$
- $\mathcal{B}^{2}=\{0,1\} \times\{0,1\}=\{00,01,10,11\}$

The Boolean n-Cube and a Cover

What does this imply about the cover?

If a fault in a circuit is redundant, i.e., there is no test for it

a	b	c	f
1	1	-	1
1	-	1	1
-	1	0	1

Replace line on which fault resides with a constant 1 (SA1) or 0 (SA0). What does this do to the 2-level cover?
a
c
b

a	b	c	f
1	-	1	1
-	1	0	1

Removes a cube from the cover

What happens to the n-cube?

Redundancy of inputs

If a stuck-at-fault is redundant at the input to an AND gate then that input can be removed

Implications of redundancy

If a stuck-at-fault is redundant at the input to an AND gate then that input can be removed
What does this do to the 2-level cover?

Implications of redundancy

If a stuck-at-fault is redundant at the input to an AND gate then that input can be removed
What does this do to the 2-level cover?

non-prime irredundant cover
prime \& irredundant cover

What happens to the n-cube?

$F=a b c^{\prime}+a c$

Correspondence

Primality \Leftrightarrow s-a-1 faults on AND gate inputs Irredundancy $\Leftrightarrow s-a-0$ faults on $O R$ gate inputs

prime but redundant cover

prime \& irredundant cover

Primality Test, Redundancy Test

$F=a c+a b+b c^{\prime}$
a

Primality Test
(Prime literal?)
a, b, prime should yield $F(0,0,0)=0$

Redundancy Test
(Redundant Cube?)
Cube irredundant
should yield
$F(1,0,0)=1$

Multiple-Output Functions

Given the two-output function below

000	01
010	01
100	01
101	01
110	11
111	11

They form a cover
11011
1- - 01

- - 001

Prime and irredundant cover

11-11
1- - 01

- - 001

Is it fully testable for single stuck-at faults?

Multiple-Output Functions - 2

abc fg
11-11
1- - 01

- - 001

Multiple-Output Functions - 3

```
abc fg
11-11
1- - 01
- - 0 01
11-10
1-1 01
- - 001
```


redundant connection

Need more than a prime cover
Each cube must be irredundant in each output

Testable Multiple-Output Covers

- Modify Quine-McCluskey method
- Generate primes as usual
- During branch \& bound covering check selected prime for unnecessary 1 's in output part (I.e. check for unnecessary cubes in outputs)
\Rightarrow If there are unnecessary 1 's, replace prime in current solution with maximally (output) reduced cube.
- Any solution will be fully stuck-at-fault testable

Other Defects - other fault models

fatal defect types (two types of short circuits, one type of open) How is this likely to affect circuit?

Fault Models - 2

Multiple Stuck-At Faults

3^{K} Multifaults

Theorem: The set of tests detecting all single faults in a prime and irredundant single-output two-level circuit detect all multifaults.

$$
f=a b+b c+a c
$$

s-a-1 on a in ab

$$
f^{*}=b+b c+a c
$$

Additional
s-a-0 on bc gives
$f^{*}=b+a c$

Multiple Stuck-At Faults - 1

Three cases based on the effect of the multifault:

1. Cubes uniformly removed from f:
s-a-0 test for any removed cube will detect multifault

Multiple Stuck-At Faults - 2

Three cases based on the effect of the multifault:
2. Cubes uniformly raised/expanded in f :
s-a-1 test for some removed literal in cube (primality test) will detect multifault

Multiple Stuck-At Faults - 3

Three cases based on the effect of the multifault:
3. Some cubes removed, some raised:

- s-a-1 test for some removed literal in unremoved cube will detect multifault.
- Why must there be at least one such literal in one such cube?

Multiple-Output Circuits

Theorem does not generalize to multi-outputs

Need to implement each single-output "cone" as prime and irredundant circuit for full multifault testability

Defect-related Yield Loss

fatal defect types (two types of short circuits, one type of open) How is this likely to affect circuit?

Enhanced Model: Path Delay Faults

Need to propagate transition down the path that is to be tested

path from b to f is tested

paths from a, b to fare tested

Robust/Hazard Free Testing

output glitches before transition from c propagate to f

Have to avoid races and hazards \Rightarrow robust testing

Path Delay Fault Testability

Not all paths in a prime and irredundant twolevel circuit are robustly testable

Definitions

A path Π in circuit C is associated with a literal l in cube q
A relatively essential vertex of a cube q is a minterm that is not in any other cube of C but is in q
$l \mathrm{~m}$ lab is a relatively essential vertex of q above

Testability Conditions

Theorem: (Devadas \& Keutzer) Let C be a singleoutput circuit. Let Π be a path in C that starts with l in cube q.
There exists a hazard-free robust delay fault test for Π if and only if:

1) There exists a vertex V_{2} that is a relatively essential vertex of q and
2) Vertex V_{1} distance-1 from V_{2} in l is in the OFF-set of C.

Necessity

Suppose $<W_{1}, V_{2}>$ is a delay-fault test for Π.
Suppose V_{2} is not a relatively essential vertex of q.

So V_{2} has to be a relatively essential vertex of q.
Clearly W_{1} has to be in the OFF-set of C.
But do W_{1} and V_{2} have to differ only in l ?

Necessity - 2

If W_{1} and V_{2} are not distance- 1 in l we can construct a V_{1} and V_{2} distance- 1 in l that are a delay fault test for Π.

not allowed
Need some literal $m_{i} \in d_{i}$ such that $m_{i}=0$ for both W_{1} and V_{2}. Else glitch would invalidate test.
Just arbitrarily set remaining literals in W_{1} other than l to values in V_{2}.

Example - I

abc
10 -

- 01
- 10

Relatively essential vertex of cube ab' 10 - is 100 But 110 (distance-1 from 100 in b) is in the ON-set Therefore, there is no robust path delay fault test for this path

Example - II Another path

$<111,010$ > is a robust path delay fault test
Can construct distance-1 test by setting literals in V_{1} other than c to values in V_{2}

Obtain $<011,010>$, which is also a robust test

Testability of Multilevel Circuits

Were able to obtain necessary and sufficient conditions for robust path-delay-fault and multi-fault testability based on primality and irredundancy for two-level circuits

What about multilevel circuits?

Equivalent Normal Form

ENF is a two-level representation of a multilevel

 circuit

Computing the ENF

Make the circuit fanout-free internally

Computing the ENF - 2

Push inverters to primary inputs

There is a one-to-one correspondence between paths in above circuit and original circuit.

- Compute ENF by "flattening" circuit to sum-ofproducts form without using Boolean identities like $\mathrm{a} . \mathrm{a} \equiv \mathrm{a}, \mathrm{a} . \overline{\mathrm{a}} \equiv 0$, etc.

Rules for ENF Computation

Primary inputs' ENF \equiv primary input literal

$$
\begin{aligned}
& a_{A}=g-a_{A, g} \cdot b_{B, g} \\
& b_{B}=a_{A, g}+b_{B, g} \\
& a_{B}=\bar{a}_{A, g}
\end{aligned}
$$

Do not use Boolean identities

ENF Example

Relatively Essential Vertices (REVs)

In a two-level circuit

Vector which is relatively essential vertex of q was required for robust path delay fault test for path from l in q

We need a similar concept for multilevel circuits

Paths and Path-Cube-Complexes

$$
\begin{aligned}
& E_{M}=b_{4,6} \bar{a}_{3,4,6}+b_{4,6} \bar{c}_{1,3,4,6} d_{1,3,4,6} \\
& +a_{3,5,6} c_{1,3,5,6} \bar{d}_{2,5,6}+a_{3,5,6} c_{1,3,5,6} \bar{b}_{2,5,6} \\
& +a_{3,5,6} \bar{d}_{1,3,5,6} \bar{d}_{3,5,6}+a_{3,5,6} \bar{d}_{1,3,5,6} \bar{b}_{2,5,6}
\end{aligned}
$$

Path a,3,4,6
Path-cube-complex is $b_{4,6} \overline{\mathrm{a}}_{3,4,6}$
Path b,2,5,6
Path-cube-complex $a_{3,5,6} c_{1,3,5,6} \bar{b}_{2,5,6}+a_{3,5,6} \bar{d}_{1,3,5,6} \bar{b}_{2,5,6}$

REVs and Path-Cube-Complexes

Corresponding concept to REV is REV of path cube complex

$$
\begin{aligned}
& E_{m}=b_{4,6} \bar{a}_{3,4,6}+b_{4,6} \bar{c}_{1,3,4,6} d_{1,3,4,6} \\
& +\bar{a}_{3,5,6} c_{1,3,5,6} \bar{d}_{2,5,6}+a_{3,5,6} c_{1,3,5,6} \bar{b}_{2,5,6} \\
& +a_{3,5,6} \bar{d}_{1,3,5,6} \bar{d}_{3,5,6}+a_{3,5,6} \bar{d}_{1,3,5,6} \bar{b}_{2,5,6}
\end{aligned}
$$

R.E.V. of path-cube-complex of path $c_{1,3,5,6}$ is the
R.E.V. of $a_{3,5,6} c_{1,3,5,6} \bar{d}_{2,5,6}+a_{3,5,6} c_{1,3,5,6} \bar{b}_{2,5,6}$

What is this vertex?

Associated Karnaugh Map

R.E.V. of path-cube-complex of path $c_{1,3,5,6}$ is the
R.E.V. of $a_{3,5,6} c_{1,3,5,6} \bar{d}_{2,5,6}+a_{3,5,6} c_{1,3,5,6} \bar{b}_{2,5,6}$

What is the REV?

Associated Karnaugh Map

R.E.V. of path-cube-complex of path $c_{1,3,5,6}$ is the
R.E.V. of $a_{3,5,6} c_{1,3,5,6} \bar{d}_{2,5,6}+a_{3,5,6} c_{1,3,5,6} \bar{b}_{2,5,6}$
$\mathrm{V}_{2}=1011$

Testability Result

Theorem: (Devadas \& Keutzer) A path Π be a path beginning from input l in a multilevel circuit C is testable if and only if there exists a vector pair $\left\langle V_{1}, V_{2}>\right.$ such that

1) V_{2} is a relatively essential vertex of the path-cube-complex of Π
2) Vertex V_{1} distance-1 from V_{2} in l is in the OFF-set of C .

Analogous to the two-level case!

Find a test for path $\mathrm{c}_{1,3,5,6}$

R.E.V. of path-cube-complex of path $c_{1,3,5,6}$ is the
R.E.V. of $a_{3,5,6} c_{1,3,5,6} \bar{d}_{2,5,6}+a_{3,5,6} c_{1,3,5,6} \bar{b}_{2,5,6}$
$\mathrm{V}_{2}=1011, \mathrm{~V}_{1}=$?

Find a test for path $\mathrm{c}_{1,3,5,6}$

R.E.V. of path-cube-complex of path $\mathrm{c}_{1,3,5,6}$ is the
R.E.V. of $a_{3,5,6} c_{1,3,5,6} \bar{d}_{2,5,6}+a_{3,5,6} c_{1,3,5,6} \bar{b}_{2,5,6}$
$\mathrm{V}_{2}=1011, \mathrm{~V}_{1}=1001$

Path Delay Fault Tests

Find a test for path $b_{2,5,6}$

R.E.V. of path-cube-complex of path $\bar{\sigma}_{2,5,6}$ is the
R.E.V. of $a_{3,5,6} d_{1,3,5,6} \bar{b}_{2,5,6}+a_{3,5,6} c_{1,3,5,6} \bar{b}_{2,5,6}$

What is REV?

Find a test for path $b_{2,5,6}$

R.E.V. of path-cube-complex of path $\bar{~}_{2,5,6}$ is the
R.E.V. of $a_{3,5,6} d_{1,3,5,6} \bar{b}_{2,5,6}+a_{3,5,6} c_{1,3,5,6} \bar{b}_{2,5,6}$

$$
\mathrm{V}_{2}=1011, \mathrm{~V}_{1}=?
$$

Find a test for path $b_{2,5,6}$

R.E.V. of path-cube-complex of path $\bar{\sigma}_{2,5,6}$ is the
R.E.V. of $a_{3,5,6} d_{1,3,5,6} \bar{b}_{2,5,6}+a_{3,5,6} c_{1,3,5,6} \bar{b}_{2,5,6}$

$$
\mathrm{V}_{2}=1011, \mathrm{~V}_{1}=?
$$

Path Delay Fault Tests

The World of True Paths

The World of True Paths - 2

Summary and Conclusions

Primarily a "theoretical lecture" - delay fault testing currently done by ad hoc methods
Material does a good job of integrating concepts from:

- 2-level optimization
- Testing
- Path sensitization and static timing analysis

Understand necessary and sufficient conditions for hazard-free delay fault testability
Can translate these into algorithms for producing delay fault tests

Have a constructive procedure for producing 2-level circuits which are multifault testable, delay-fault testable

Algebraic factorization on these circuits preserves testabilty properties - in extra slides

Extras

Synthesizing Testable Circuits

In general, paths in circuits are not hazard-free robust path-delay-fault testable
In a typical circuit perhaps only 15\% of the paths have this property
Nevertheless, this is a desirable property to have
Can we synthesize circuits such that they have this property?

How about multifault testability?

Key Observation: Algebraic Factorization

ENFs of two-level circuit and algebraically factored multilevel circuit are identical except for a renaming of tags.

$$
\begin{aligned}
E_{f}= & a_{1,5} c_{1,5}+b_{2,5} c_{2,5} \\
& +a_{3,5} d_{3,5}+b_{4,5} d_{4,5}
\end{aligned}
$$

$$
\begin{aligned}
E_{g}= & a_{6,8} c_{7,8}+b_{6,8} c_{7,8} \\
& +a_{6,8} d_{7,8}+b_{6,8} d_{7,8}
\end{aligned}
$$

ENF Reducibility

Not only are ENF's syntactically identical there is a many-to-one mapping of tags from two-level circuit to multilevel circuit

$$
\begin{aligned}
E_{f}= & a_{1,5} c_{1,5}+b_{2,5} c_{2,5} & E_{g}= & a_{6,8} c_{7,8}+b_{6,8} c_{7,8} \\
& +a_{3,5} d_{3,5}+b_{4,5} d_{4,5} & & +a_{6,8} d_{7,8}+b_{6,8} d_{7,8}
\end{aligned}
$$

etc.

ENF Reducibility Implications

In two-level circuit each path-cube-complex consists of exactly one cube
In multilevel circuit each path-cube-complex can have more than one cube
OFF-sets of circuits are the same, and relatively essential vertices of cubes stay the same.

Therefore, testability and test vector sets are maintained.

Synthesis Procedures

If two-level circuit has full path-delay fault testability, algebraically factored circuit will have full testability.

Same vectors can be applied for delay fault testability.

This gives a constructive synthesis procedure for multifault testability and path-delay fault testability

- create 2-level circuit with the property
- algebraically factor

Multilevel Circuit

Multiply-out => 2-level circuit and ENF

The Equivalent Normal Form (Armstrong -
IEEETC, 1966) is a simple sum-of-products representation of the multilevel circuit.

$$
\begin{aligned}
\mathrm{M} & =\mathrm{b}\{5,9\} \cdot \bar{a}\{1,4,5,9\}+\mathrm{b}\{5,9\} \cdot \overline{\mathrm{c}}\{2,3,4,5,9\} \cdot \mathrm{d}\{3,4,5,9\} \\
& +\mathrm{a}\{1,4,6,8,9\}
\end{aligned} \cdot \mathrm{c}\{2,3,4,6,8,9\} \cdot \frac{\mathrm{b}}{}\{7,8,9\}
$$

Multifault Equivalence

Test vectors for 2-level cover multifaults in multilevel ckt too

Summary and Conclusions

Understand necessary and sufficient conditions for hazard-free delay fault testability
Can translate these into algorithms for producing delay fault tests
Have a constructive procedure for producing 2-level circuits which are multifault testable, delay-fault testable

Algebraic factorization on these circuits preserves testabilty properties

Path Delay Fault Testability

Not all paths in a prime and irredundant twolevel circuit are robustly testable

