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Logic Optimization

Perform a variety of 
transformations and 
optimizations

– Structural graph 
transformations

– Boolean transformations
– Mapping into a physical 

library
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Combinational Logic Optimization

Input: 

• Initial Boolean network
• Timing characterization for the module

• - input arrival times and drive factors
• - output loading factors

• Optimization goals
• - output required times

• Target library description
Output:

• Minimum-area net-list of library gates which meets timing 
constraints

A very difficult optimization problem !
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Modern Approach to Logic Optimization
Divide logic optimization into two subproblems:

– • Technology-independent optimization
• - determine overall logic structure
• - estimate costs (mostly) independent of 

technology
• - simplified cost modeling

– • Technology-dependent optimization (technology 
mapping)

• - binding onto the gates in the library
• - detailed technology-specific cost model

Orchestration of various optimization/transformation 
techniques for each subproblem
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“Closed Book” Technology Library

A standard cell technology or library may 
contain many hundreds of cells

Typical cells are NAND, NOR, NOT, AOI (AND-
or-Invert), OAI (Or-And-Invert) etc. 
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Library
Contains for each cell:

– Functional  information:  cell = a *b * c
– Timing information: function of

• input slew
• intrinsic delay
• output capacitance
non-linear models used in tabular 

approach
– Physical footprint (area)
– Power characteristics

Wire-load models - function of
– Block size
– Wiring

Library
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Elements of  a library - 1

INVERTER 2

NAND2 3

NAND3 4

NAND4 5

Element/Area Cost Tree Representation (normal form)
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Elements of a library - 2

AOI21 4

AOI22 5

Element/Area Cost Tree Representation (normal form)
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Reasonable Library
Inverter, Buffer

ND2-ND4; NOR2-NOR4; AND2- AND4; 

AOI21 - AOI333; OAI21 - OAI333

XOR, XNOR

MUX, Full Adder

Neg-Edge Triggered D-Flip-Flop

Pos-Edge Triggered D-FF

J-K FF

Above with various clears,  enables 

Scan versions of each of the above

Most of the above in 6 different power sizes:
– 1x, 2x, 4x, 6x, 8x, 16x
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Input Circuit Netlist

``subject DAG’’
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Problem statement

into the technology  library (simple example below)

Find an ``optimal’’ (in area, delay, power) mapping of a  circuit
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History of the Problem - 1

Technology mapping in 1986 was a big problem
• Almost every design group (e.g. AT&T) had their 

own library 
– ASIC – 400 cells
– Microprocessor/DSP – 200 base cells
– Government – 200+ cells

• Everybody had their own approach
– ``Do what you have to do!’’ – handcrafted mappers tied to 

particular libraries and optimization tools
– ``Rule-based’’ systems – e.g. GE Socrates – slow ``expert 

systems’’ that made no guarantee
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Reduce to Combinational Optimization

B
Flip-flops

Combinational
Logic

Since FF’s don’t need to be optimized with surrounding 
combinational logic we can partition them out

inputs outputs
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Is there a problem? Trivial Covering

subject DAG

7 NAND2 (3) =  21
5 INV        (2) =  10

Area cost 31
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Covering #1

2 INV = 4
2 NAND2 = 6
1 NAND3 = 4
1 NAND4 = 5

Area cost 19
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Covering #2

1 INV =  2
1 NAND2 =  3
2 NAND3 =  8
1 AOI21 =  4

Area Cost 17
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History of the Problem - 2

Yes, there are two problems:
– Technology mapping can significant affect the area, 

speed, and power dissipation of a circuit 
– There are over 200 different semiconductors each with 

multiple internal libraries – how to create a tool that can 
utilize a diverse set of libraries??
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A similar problem – code generation

Example of code generation in compilers using 
tree-covering
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Problem Formulation: DAG Covering

Represent input netlist  in normal form
⇒ subject DAG

Represent each library gate with normal 
forms for the logic function
⇒  primitive DAGs

Each primitive DAG has a cost

Goal:  Find a minimum cost covering of the 
subject DAG by the primitive DAGs

Normal form:  2-input NAND gates and 
inverters

K. Keutzer, DAGON: Technology Binding and Local 
Optimization by DAG Matching, in Proceedings of the
24th Design Automation Conference, 1987 and 
25 Years of Design Automation
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Sound Algorithmic approach
NP-hard optimization problem

Tree covering heuristic:  If subject and primitive 
DAGs are trees, efficient algorithm can find 
optimum cover ⇒ dynamic programming 
formulation

DAG Covering

multiple fanout

K. Keutzer, D. Richards, Computation 
Complexity of Logic Synthesis and 
Optimization,  in Proceedings of the
International Workshop on  Logic 
Synthesis, 1989
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Solution formulation

1) Partition input netlist into forest of trees
2) Solve each tree optimally using tree covering
3) Stitch trees back together

Kurt Keutzer 24

Resulting Trees

Break at multiple fanout points
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For each tree - Dynamic Programming

Principle of optimality:  Optimal cover for a tree 
consists of a best match at the root of the 
tree plus the optimal cover for the sub-trees 
starting at each input of the match

x

y

z

p

Best cover for
this match uses
best covers for
x, y, z

Best cover for
this match uses
best covers for
p, z

Choose least
cost tree-cover
at root

K. Keutzer, DAGON: Technology 
Binding and Local Optimization by DAG 
Matching, in Proceedings of the
24th Design Automation Conference, 
1987
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Example of Optimal Tree Covering

NAND2
3

AOI21
4 + 3 = 7

INV
11 + 2 = 13

NAND2
2 + 6 + 3 = 11

NAND2
3 + 3 = 6

NAND2
3

INV
2
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DAG covering in detail

1) partition DAG into a forest of trees
2) normalize netlist
3) optimally cover each tree

a) generate all candidate matches
b) find the optimal match using dynamic 
programming

Kurt Keutzer 28

Partition DAG into Forest of trees

Each gate with fanout >1 becomes root of a new tree
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Normalize netlist
Re-express netlist into 2-input Nand gates and Inverters

Make each tree left-oriented

Kurt Keutzer 30

Generate candidate matches - 1

subject tree

At the end of this segment each gate in the subject tree is annotated
with every possible library cell  that could be rooted at that gate
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Generating candidate matches -2

Naïve approach -
try to match each cell in the library with each node of 
the tree (libraries can be large! - beware of large 
constants!!)

Better approach
build tables such that only potential candidate matches 
are checked

Best approach
fancy string matching - pp. 862-869
Introduction to Algorithms, T. Cormen, C. Lesierson, R. 
Rivest, The MIT Press, Second Printing, 1996. - pp. 862-
869

What’s the complexity 
of each approach?
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Optimal tree covering - 1

``subject tree’’

3

2

2

3
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Optimal tree covering - 2

``subject tree’’

5

8
3

2

2

3
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Optimal tree covering - 3

``subject tree’’

Cover with ND2 or ND3 ?

3

2

2

3

8
13

5

1 NAND2 3
+ subtree 5

1 NAND3 = 4

Area cost 8
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Optimal tree covering – 3b

``subject tree’’

3

2

2

3

8
13

5 4

Label the root of the sub-tree with optimal match and cost
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Optimal tree covering - 4

``subject tree’’

Cover with INV or AO21 ?

5
4

3

8

2

2

13

2

1 Inverter 2
+ subtree  13

Area cost 15

1 AO21 4
+ subtree 1  3
+ subtree 2 2

Area cost 9
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Optimal tree covering – 4b

``subject tree’’5
4

3

8

2

2

13

2

9

Label the root of the sub-tree with optimal match and cost
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Optimal tree covering - 5

``subject tree’’

Cover with ND2 or ND3 ?

subtree 1 9
subtree 2 4
1 NAND2 3

Area cost 16

NAND2 NAND3

8

4

9

subtree 1 8
subtree 2 2
subtree 3 4
1 NAND3 4

Area cost 18

2
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Optimal tree covering – 5b

``subject tree’’

168

4

9

2

Label the root of the sub-tree with optimal match and cost
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Optimal tree covering - 6

``subject tree’’

Cover with INV or AOI21 ?

INV AOI21

Area cost 22

5

16

Area cost 18

subtree 1 16
1 INV 2

subtree 1 13
subtree 2 5
1 AOI21 4

13
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Optimal tree covering – 6b

``subject tree’’5

16

18
13

Label the root of the sub-tree with optimal match and cost
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Optimal tree covering - 7

``subject tree’’

Cover with ND2 or ND3 or ND4 ?



22
Copyright © 2000 K. Keutzer

Kurt Keutzer 43

Cover 1 - NAND2

``subject tree’’

Cover with ND2 ?

16

18

subtree 1 18
subtree 2 0
1 NAND2 3

Area cost 21

4

9
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Cover 2 - NAND3

``subject tree’’

Cover with ND3?

subtree 1 9
subtree 2 4
subtree 3 0
1 NAND3 4

Area cost 17

9

4



23
Copyright © 2000 K. Keutzer

Kurt Keutzer 45

Cover - 3

``subject tree’’

Cover with ND4 ?

Area cost 19

subtree 1 8
subtree 2 2
subtree 3 4
subtree 4 0
1 NAND4 5

8

4

2
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Optimal Cover was Cover 2

``subject tree’’

Cover with ND3?

INV 2
ND2 3
2 ND3 8
AOI21 4

Area cost 17

AOI21
ND2

INV

ND3

ND3

What’s the complexity?
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Computational Complexity
To determine the optimal cover for a tree we only need to 

consider a best cost match at the root of the tree 
This is constant-time in the number of matched cells

Plus the optimal cover for the sub-trees starting at each input 
of the match
This is constant-time in the indegree/fan-in of each match

x

y

z

p

Best cover for
this match uses
best covers for
x, y, z

Best cover for
this match uses
best covers for
p, z

Choose least
cost tree-cover
at rootO(n) - amazing!
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Enhancements to DAG covering

Many enhancements incorporated over the last decade
• Timing optimization incorporating load-dependent 

delays 
– – Rudell - UCB

• Optimization for low power
• Application to FPGAs –

– J. Rose - Chortle
– J. Cong - Flowmap

• Optimal direct DAG covering without tree covering  
approximation (didn’t net much)
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Summary of Technology Mapping
DAG covering formulation

– Separated library issues from mapping algorithm
Heuristics based on tree covering for area and delay

– surprisingly efficient final result - for 
technology/library dependent reasons

Very efficient 
– linear time

Very flexible approach
– applicable to wide range of libraries (standard cell, 

gate array) and technologies (FPGAS)
Best enhancement is integration of technology 

decomposition
Also requires ``follow up’’ rule based approaches for best 

final circuit efficiency
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Why does this approximation work well?

Each gate with fanout >1 becomes root of a new tree
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Why does this approximation work well?

Few non-tree cells – XOR, MUX – one-level deep
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Why does this approximation work well?

Non-tree matching usually requires duplication – rarely an benefit
for area
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Retrospective
DAG covering by tree-covering is effective for three 

reasons 
• separates library definition and characterization from 

mapping algorithm
• Duplication of logic not a win in terms of area 

optimization. Advantage of duplication of logic for 
timing is very (physical) context dependent

• provided efficient mapping in what appears to be a 
relatively flat solution space

Principal weaknesses
• Problems handling multiplexor-trees, full-adders, other 

DAG patterns
• Problems in performing performance optimization 

tricks in tight pipelined logic
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Extra Slides
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Given a function  f to be strong divided by  g
– Add an extra input to f corresponding to  g, 

namely  G and obtain function  h as follows

Minimize  h using two-level minimizer

Strong (or Boolean) Division

hON = fON − hDC

hOFF = fON + hDC

hDC = G g + Gg


