
1
Copyright © 2000 K. Keutzer

1

Technology Dependent
Logic Optimization

Prof. Kurt Keutzer
EECS

University of California
Berkeley, CA

Thanks to S. Devadas

Kurt Keutzer 2

RTL Design Flow

RTL
Synthesis

HDL

netlist

logic
optimization

netlist

Library

physical
design

layout

a

b

s

q
0

1

d

clk

a

b

s

q
0

1

d

clk

Module
Generators

Manual
Design

2
Copyright © 2000 K. Keutzer

Kurt Keutzer 3

Logic Optimization

Perform a variety of
transformations and
optimizations

– Structural graph
transformations

– Boolean transformations
– Mapping into a physical

library

smaller, faster
less power

logic
optimization

netlist

netlist

Library

a

b

s

q
0

1

d

clk

a

b

s

q
0

1

d

clk

Kurt Keutzer 4

Combinational Logic Optimization

Input:

• Initial Boolean network
• Timing characterization for the module

• - input arrival times and drive factors
• - output loading factors

• Optimization goals
• - output required times

• Target library description
Output:

• Minimum-area net-list of library gates which meets timing
constraints

A very difficult optimization problem !

3
Copyright © 2000 K. Keutzer

Kurt Keutzer 5

Modern Approach to Logic Optimization
Divide logic optimization into two subproblems:

– • Technology-independent optimization
• - determine overall logic structure
• - estimate costs (mostly) independent of

technology
• - simplified cost modeling

– • Technology-dependent optimization (technology
mapping)

• - binding onto the gates in the library
• - detailed technology-specific cost model

Orchestration of various optimization/transformation
techniques for each subproblem

Kurt Keutzer 6

Logic Optimization

logic
optimization

netlist

netlist

Library

tech
independent

tech
dependent

2-level
Logic opt

multilevel
Logic opt

Library

Timing
Constraints

4
Copyright © 2000 K. Keutzer

Kurt Keutzer 7

“Closed Book” Technology Library

A standard cell technology or library may
contain many hundreds of cells

Typical cells are NAND, NOR, NOT, AOI (AND-
or-Invert), OAI (Or-And-Invert) etc.

A

A

A

C

A

B

AB+C

B

C

A

Kurt Keutzer 8

Library
Contains for each cell:

– Functional information: cell = a *b * c
– Timing information: function of

• input slew
• intrinsic delay
• output capacitance
non-linear models used in tabular

approach
– Physical footprint (area)
– Power characteristics

Wire-load models - function of
– Block size
– Wiring

Library

5
Copyright © 2000 K. Keutzer

Kurt Keutzer 9

Elements of a library - 1

INVERTER 2

NAND2 3

NAND3 4

NAND4 5

Element/Area Cost Tree Representation (normal form)

Kurt Keutzer 10

Elements of a library - 2

AOI21 4

AOI22 5

Element/Area Cost Tree Representation (normal form)

6
Copyright © 2000 K. Keutzer

Kurt Keutzer 11

Reasonable Library
Inverter, Buffer

ND2-ND4; NOR2-NOR4; AND2- AND4;

AOI21 - AOI333; OAI21 - OAI333

XOR, XNOR

MUX, Full Adder

Neg-Edge Triggered D-Flip-Flop

Pos-Edge Triggered D-FF

J-K FF

Above with various clears, enables

Scan versions of each of the above

Most of the above in 6 different power sizes:
– 1x, 2x, 4x, 6x, 8x, 16x

Kurt Keutzer 12

Input Circuit Netlist

``subject DAG’’

7
Copyright © 2000 K. Keutzer

Kurt Keutzer 13

Problem statement

into the technology library (simple example below)

Find an ``optimal’’ (in area, delay, power) mapping of a circuit

Kurt Keutzer 14

History of the Problem - 1

Technology mapping in 1986 was a big problem
• Almost every design group (e.g. AT&T) had their

own library
– ASIC – 400 cells
– Microprocessor/DSP – 200 base cells
– Government – 200+ cells

• Everybody had their own approach
– ``Do what you have to do!’’ – handcrafted mappers tied to

particular libraries and optimization tools
– ``Rule-based’’ systems – e.g. GE Socrates – slow ``expert

systems’’ that made no guarantee

8
Copyright © 2000 K. Keutzer

Kurt Keutzer 15

Reduce to Combinational Optimization

B
Flip-flops

Combinational
Logic

Since FF’s don’t need to be optimized with surrounding
combinational logic we can partition them out

inputs outputs

Kurt Keutzer 16

Is there a problem? Trivial Covering

subject DAG

7 NAND2 (3) = 21
5 INV (2) = 10

Area cost 31

9
Copyright © 2000 K. Keutzer

Kurt Keutzer 17

Covering #1

2 INV = 4
2 NAND2 = 6
1 NAND3 = 4
1 NAND4 = 5

Area cost 19

Kurt Keutzer 18

Covering #2

1 INV = 2
1 NAND2 = 3
2 NAND3 = 8
1 AOI21 = 4

Area Cost 17

10
Copyright © 2000 K. Keutzer

Kurt Keutzer 19

History of the Problem - 2

Yes, there are two problems:
– Technology mapping can significant affect the area,

speed, and power dissipation of a circuit
– There are over 200 different semiconductors each with

multiple internal libraries – how to create a tool that can
utilize a diverse set of libraries??

Kurt Keutzer 20

A similar problem – code generation

Example of code generation in compilers using
tree-covering

11
Copyright © 2000 K. Keutzer

Kurt Keutzer 21

Problem Formulation: DAG Covering

Represent input netlist in normal form
⇒ subject DAG

Represent each library gate with normal
forms for the logic function
⇒ primitive DAGs

Each primitive DAG has a cost

Goal: Find a minimum cost covering of the
subject DAG by the primitive DAGs

Normal form: 2-input NAND gates and
inverters

K. Keutzer, DAGON: Technology Binding and Local
Optimization by DAG Matching, in Proceedings of the
24th Design Automation Conference, 1987 and
25 Years of Design Automation

Kurt Keutzer 22

Sound Algorithmic approach
NP-hard optimization problem

Tree covering heuristic: If subject and primitive
DAGs are trees, efficient algorithm can find
optimum cover ⇒ dynamic programming
formulation

DAG Covering

multiple fanout

K. Keutzer, D. Richards, Computation
Complexity of Logic Synthesis and
Optimization, in Proceedings of the
International Workshop on Logic
Synthesis, 1989

12
Copyright © 2000 K. Keutzer

Kurt Keutzer 23

Solution formulation

1) Partition input netlist into forest of trees
2) Solve each tree optimally using tree covering
3) Stitch trees back together

Kurt Keutzer 24

Resulting Trees

Break at multiple fanout points

13
Copyright © 2000 K. Keutzer

Kurt Keutzer 25

For each tree - Dynamic Programming

Principle of optimality: Optimal cover for a tree
consists of a best match at the root of the
tree plus the optimal cover for the sub-trees
starting at each input of the match

x

y

z

p

Best cover for
this match uses
best covers for
x, y, z

Best cover for
this match uses
best covers for
p, z

Choose least
cost tree-cover
at root

K. Keutzer, DAGON: Technology
Binding and Local Optimization by DAG
Matching, in Proceedings of the
24th Design Automation Conference,
1987

Kurt Keutzer 26

Example of Optimal Tree Covering

NAND2
3

AOI21
4 + 3 = 7

INV
11 + 2 = 13

NAND2
2 + 6 + 3 = 11

NAND2
3 + 3 = 6

NAND2
3

INV
2

14
Copyright © 2000 K. Keutzer

Kurt Keutzer 27

DAG covering in detail

1) partition DAG into a forest of trees
2) normalize netlist
3) optimally cover each tree

a) generate all candidate matches
b) find the optimal match using dynamic
programming

Kurt Keutzer 28

Partition DAG into Forest of trees

Each gate with fanout >1 becomes root of a new tree

15
Copyright © 2000 K. Keutzer

Kurt Keutzer 29

Normalize netlist
Re-express netlist into 2-input Nand gates and Inverters

Make each tree left-oriented

Kurt Keutzer 30

Generate candidate matches - 1

subject tree

At the end of this segment each gate in the subject tree is annotated
with every possible library cell that could be rooted at that gate

16
Copyright © 2000 K. Keutzer

Kurt Keutzer 31

Generating candidate matches -2

Naïve approach -
try to match each cell in the library with each node of
the tree (libraries can be large! - beware of large
constants!!)

Better approach
build tables such that only potential candidate matches
are checked

Best approach
fancy string matching - pp. 862-869
Introduction to Algorithms, T. Cormen, C. Lesierson, R.
Rivest, The MIT Press, Second Printing, 1996. - pp. 862-
869

What’s the complexity
of each approach?

Kurt Keutzer 32

Optimal tree covering - 1

``subject tree’’

3

2

2

3

17
Copyright © 2000 K. Keutzer

Kurt Keutzer 33

Optimal tree covering - 2

``subject tree’’

5

8
3

2

2

3

Kurt Keutzer 34

Optimal tree covering - 3

``subject tree’’

Cover with ND2 or ND3 ?

3

2

2

3

8
13

5

1 NAND2 3
+ subtree 5

1 NAND3 = 4

Area cost 8

18
Copyright © 2000 K. Keutzer

Kurt Keutzer 35

Optimal tree covering – 3b

``subject tree’’

3

2

2

3

8
13

5 4

Label the root of the sub-tree with optimal match and cost

Kurt Keutzer 36

Optimal tree covering - 4

``subject tree’’

Cover with INV or AO21 ?

5
4

3

8

2

2

13

2

1 Inverter 2
+ subtree 13

Area cost 15

1 AO21 4
+ subtree 1 3
+ subtree 2 2

Area cost 9

19
Copyright © 2000 K. Keutzer

Kurt Keutzer 37

Optimal tree covering – 4b

``subject tree’’5
4

3

8

2

2

13

2

9

Label the root of the sub-tree with optimal match and cost

Kurt Keutzer 38

Optimal tree covering - 5

``subject tree’’

Cover with ND2 or ND3 ?

subtree 1 9
subtree 2 4
1 NAND2 3

Area cost 16

NAND2 NAND3

8

4

9

subtree 1 8
subtree 2 2
subtree 3 4
1 NAND3 4

Area cost 18

2

20
Copyright © 2000 K. Keutzer

Kurt Keutzer 39

Optimal tree covering – 5b

``subject tree’’

168

4

9

2

Label the root of the sub-tree with optimal match and cost

Kurt Keutzer 40

Optimal tree covering - 6

``subject tree’’

Cover with INV or AOI21 ?

INV AOI21

Area cost 22

5

16

Area cost 18

subtree 1 16
1 INV 2

subtree 1 13
subtree 2 5
1 AOI21 4

13

21
Copyright © 2000 K. Keutzer

Kurt Keutzer 41

Optimal tree covering – 6b

``subject tree’’5

16

18
13

Label the root of the sub-tree with optimal match and cost

Kurt Keutzer 42

Optimal tree covering - 7

``subject tree’’

Cover with ND2 or ND3 or ND4 ?

22
Copyright © 2000 K. Keutzer

Kurt Keutzer 43

Cover 1 - NAND2

``subject tree’’

Cover with ND2 ?

16

18

subtree 1 18
subtree 2 0
1 NAND2 3

Area cost 21

4

9

Kurt Keutzer 44

Cover 2 - NAND3

``subject tree’’

Cover with ND3?

subtree 1 9
subtree 2 4
subtree 3 0
1 NAND3 4

Area cost 17

9

4

23
Copyright © 2000 K. Keutzer

Kurt Keutzer 45

Cover - 3

``subject tree’’

Cover with ND4 ?

Area cost 19

subtree 1 8
subtree 2 2
subtree 3 4
subtree 4 0
1 NAND4 5

8

4

2

Kurt Keutzer 46

Optimal Cover was Cover 2

``subject tree’’

Cover with ND3?

INV 2
ND2 3
2 ND3 8
AOI21 4

Area cost 17

AOI21
ND2

INV

ND3

ND3

What’s the complexity?

24
Copyright © 2000 K. Keutzer

Kurt Keutzer 47

Computational Complexity
To determine the optimal cover for a tree we only need to

consider a best cost match at the root of the tree
This is constant-time in the number of matched cells

Plus the optimal cover for the sub-trees starting at each input
of the match
This is constant-time in the indegree/fan-in of each match

x

y

z

p

Best cover for
this match uses
best covers for
x, y, z

Best cover for
this match uses
best covers for
p, z

Choose least
cost tree-cover
at rootO(n) - amazing!

Kurt Keutzer 48

Enhancements to DAG covering

Many enhancements incorporated over the last decade
• Timing optimization incorporating load-dependent

delays
– – Rudell - UCB

• Optimization for low power
• Application to FPGAs –

– J. Rose - Chortle
– J. Cong - Flowmap

• Optimal direct DAG covering without tree covering
approximation (didn’t net much)

25
Copyright © 2000 K. Keutzer

Kurt Keutzer 49

Summary of Technology Mapping
DAG covering formulation

– Separated library issues from mapping algorithm
Heuristics based on tree covering for area and delay

– surprisingly efficient final result - for
technology/library dependent reasons

Very efficient
– linear time

Very flexible approach
– applicable to wide range of libraries (standard cell,

gate array) and technologies (FPGAS)
Best enhancement is integration of technology

decomposition
Also requires ``follow up’’ rule based approaches for best

final circuit efficiency

Kurt Keutzer 50

Why does this approximation work well?

Each gate with fanout >1 becomes root of a new tree

26
Copyright © 2000 K. Keutzer

Kurt Keutzer 51

Why does this approximation work well?

Few non-tree cells – XOR, MUX – one-level deep

Kurt Keutzer 52

Why does this approximation work well?

Non-tree matching usually requires duplication – rarely an benefit
for area

27
Copyright © 2000 K. Keutzer

Kurt Keutzer 53

Retrospective
DAG covering by tree-covering is effective for three

reasons
• separates library definition and characterization from

mapping algorithm
• Duplication of logic not a win in terms of area

optimization. Advantage of duplication of logic for
timing is very (physical) context dependent

• provided efficient mapping in what appears to be a
relatively flat solution space

Principal weaknesses
• Problems handling multiplexor-trees, full-adders, other

DAG patterns
• Problems in performing performance optimization

tricks in tight pipelined logic

Kurt Keutzer 54

Extra Slides

28
Copyright © 2000 K. Keutzer

Kurt Keutzer 55

Given a function f to be strong divided by g
– Add an extra input to f corresponding to g,

namely G and obtain function h as follows

Minimize h using two-level minimizer

Strong (or Boolean) Division

hON = fON − hDC

hOFF = fON + hDC

hDC = G g + Gg

