Discussion: Memory & Computation Considerations

Methods: Lifting Formulation [1]

\[y[i] = w * x = \sum_{i=0}^{N-1} w[i] x[i] \]

Let \(w = Bh \), where \(B \in \mathbb{R}^{N \times N} \) and \(x = Cm \), where \(C \in \mathbb{R}^{N \times K} \).

\[y = \sum_{i=0}^{N-1} (C m_i) * w = \sum_{i=0}^{N-1} m_i (c_i) w \]

\[= \text{circ}(c_1) B \text{ circ}(c_2) B \ldots \text{circ}(c_L) B \]

Let \(A = [\text{circ}(c_1) B \text{ circ}(c_2) B \ldots \text{circ}(c_L) B] \) and let \(X = hm^T \) which is a rank-1 matrix and a reordering of all the elements-wise multiples of \(m \) and \(h \).

\[y = A(X) \]

Methods: Ways to solve the problem

- Non-Convex Formulations
 - Problem Formulation
 - Optimization Methods
 - Extended Approaches

- Semidefinite Program
 - Problem Formulation
 - Optimization Methods
 - Extended Approaches

- Nuclear Norm Minimization
 - Problem Formulation
 - Optimization Methods
 - Extended Approaches

Theoretic Guarantees

- Alternating Methods [3]
 - If \(A \) satisfies RIP conditions then the alternating minimization procedure has geometric convergence, where each iteration involves solving two least-square problems.
 - Jain et al. also outlines method for initialization.

- SDP and Nuclear Norm Minimization [2]
 - Recht et al. shows equivalence between solving nuclear norm minimization problems and the previously written SDP.
 - In Recht et al., it is shown that if \(A \) fulfills a RIP condition then \(X \) can be recovered exactly solving a nuclear norm minimization problem.

- Burer-Monteiro Heuristic [2,8,9]
 - Largely experimental results, but authors conclude that method is not strongly affected by inherent non-convexity.

- Discussion of when local minima provide global minima of SDP formulation.

Discussion: Memory & Computation Considerations

- For applications in imaging, high pixel or voxel count could make \(N \) and \(K \) very large and I would suggest using the original non-convex method solved by either alternating method or method of multipliers as suggested by Burer et al. [7] (also the recommendation for large scale low rank matrix completion).

- In addition, using the non-convex formulation or the Burer-Monteiro heuristic implicitly enforce that your solution is rank-1.

- Useful for enforcing additional constraints (i.e. sparsity on \(u \) or \(v \)).

- For large \(N \) and \(K \), SDP and nuclear norm minimization forms are memory inefficient as they must store a \(N \) by \(K \) matrix.

- Nuclear norm minimization is computationally limited because computing an SVD for large matrices is expensive.

Conclusion

- References
 5. Sturm et al. Using SeDuMi 1.02, a MATLAB Algorithm for solving Semidefinite Programs (1999)