Learning to Optimize

Ke Li
Jitendra Malik
Introduction

• Machine learning operates on a data-driven philosophy that favours automatic pattern discovery over manual design.

• Yet, the algorithms that power machine learning are still manually designed.

• Can we learn these algorithms instead?
Learning to Learn

• Inspired by metacognition (Aristotle, 350 BC), which refers to the ability of humans to reason about their own process of reasoning.

• Goal: learn some general knowledge about the learning outcome or process that is useful across many tasks.
 – Unlike ordinary learning, generalization is not across instances, but across tasks.

• Terms:
 – Base-learning: instance-level learning
 – Meta-learning: task-level learning
Fundamental Challenge

• Key Problem: how do we parameterize the space of all possible learning methods such that it is both:
 1) expressive, and
 2) efficiently searchable?

• Two Extremes:
 – Enumerate a small set of methods: not expressive.
 – Search over all general-purpose programs: takes exponential time.
Learning to Learn

Different methods differ in the type of meta-knowledge they learn.

- Learning *What to Learn*
- Learning *How to Learn*
- Learning *Which Model to Learn*

Berkeley
Learning to Learn

Different methods differ in the type of meta-knowledge they learn.

Learn parameter values of the base-model that are useful across tasks.
Learning to Learn

Different methods differ in the type of meta-knowledge they learn.

- Learn parameter values of the base-model that are useful across tasks.
- Transfer Learning
- Multi-Task Learning
- Few-Shot Learning

Learning to Optimize
Learning to Learn

Different methods differ in the type of meta-knowledge they learn.

- Learn parameter values of the base-model that are useful across tasks.
 - Transfer Learning
 - Multi-Task Learning
 - Few-Shot Learning

- Learn which base-model is best suited for a task.

- Learning to Learn
 - Learning Which Model to Learn
 - Learning How to Learn
 - Learning What to Learn

Learning to Optimize
Learning to Learn

Different methods differ in the type of meta-knowledge they learn.

- Learn parameter values of the base-model that are useful across tasks.
 - Transfer Learning
 - Multi-Task Learning
 - Few-Shot Learning

- Learn which base-model is best suited for a task.
 - Hyperparameter Optimization

Learning to Optimize
Learning to Learn

Different methods differ in the type of meta-knowledge they learn.

- Transfer Learning
- Multi-Task Learning
- Few-Shot Learning
- Hyperparameter Optimization

Our Contribution:
Learn how to train the base-model.

Learn parameter values of the base-model that are useful across tasks.

Learning to Learn

Learning What to Learn

Learning How to Learn

Learning Which Model to Learn

Learning to Optimize
Learning to Learn

Different methods differ in the type of meta-knowledge they learn.

- Learn parameter values of the base-model that are useful across tasks.
 - Transfer Learning
 - Multi-Task Learning
 - Few-Shot Learning

- Learn which base-model is best suited for a task.
 - Hyperparameter Optimization

Our Contribution:
Learn how to train the base-model.
(Focus of this talk)
Learning How to Learn
Setting

• Most learning algorithms optimize some objective function.
 – Learning how to learn reduces to learning an optimization algorithm.
• We train an optimization algorithm on a set of objective functions.
• The learner searches the space of possible optimization algorithms and outputs an optimization algorithm that performs well on the set of objective functions.
Learning to Optimize

Algorithm 1 General structure of optimization algorithms

Require: Objective function f

$x^{(0)} \leftarrow$ random point in the domain of f

for $i = 1, 2, \ldots$ do

$\Delta x \leftarrow \phi(\{x^{(j)}, f(x^{(j)}), \nabla f(x^{(j)})\}_{j=0}^{i-1})$

if stopping condition is met then

return $x^{(i-1)}$

end if

$x^{(i)} \leftarrow x^{(i-1)} + \Delta x$

end for
Learning to Optimize

Algorithm 1 General structure of optimization algorithms

Require: Objective function f

$x^{(0)} \leftarrow$ random point in the domain of f

for $i = 1, 2, \ldots$ do

$\Delta x \leftarrow \phi(\{x^{(j)}, f(x^{(j)}), \nabla f(x^{(j)})\}_{j=0}^{i-1})$

if stopping condition is met then

return $x^{(i-1)}$

end if

$x^{(i)} \leftarrow x^{(i-1)} + \Delta x$

end for

Gradient Descent $\phi(\cdot) = -\gamma \nabla f(x^{(i-1)})$

Momentum $\phi(\cdot) = -\gamma \left(\sum_{j=0}^{i-1} \alpha^{i-1-j} \nabla f(x^{(j)})\right)$
Learning to Optimize

Algorithm 1 General structure of optimization algorithms

Require: Objective function f

$x^{(0)} \leftarrow \text{random point in the domain of } f$

for $i = 1, 2, \ldots$ do

$\Delta x \leftarrow \phi(\{x^{(j)}, f(x^{(j)}), \nabla f(x^{(j)})\}_{j=0}^{i-1})$

if stopping condition is met then

return $x^{(i-1)}$

end if

$x^{(i)} \leftarrow x^{(i-1)} + \Delta x$

end for

Gradient Descent $\phi(\cdot) = -\gamma \nabla f(x^{(i-1)})$

Momentum $\phi(\cdot) = -\gamma \left(\sum_{j=0}^{i-1} \alpha^{i-1-j} \nabla f(x^{(j)}) \right)$

Learned Algorithm $\phi(\cdot) = \text{Neural Net}$
Learning to Optimize

Algorithm 1 General structure of optimization algorithms

Require: Objective function f

$x^{(0)} \leftarrow \text{random point in the domain of } f$

for $i = 1, 2, \ldots$ do

$\Delta x \leftarrow \phi(\{x^{(j)}, f(x^{(j)}), \nabla f(x^{(j)})\}_{j=0}^{i-1})$

if stopping condition is met then

return $x^{(i-1)}$

end if

$x^{(i)} \leftarrow x^{(i-1)} + \Delta x$

end for

How do we learn $\phi(\cdot)$?
Learning to Optimize

Algorithm 1 General structure of optimization algorithms

Require: Objective function \(f \)
\begin{align*}
 x^{(0)} &\leftarrow \text{random point in the domain of } f \\
 \text{for } i = 1, 2, \ldots \text{ do} \\
 &\Delta x \leftarrow \phi(\{x^{(j)}, f(x^{(j)}), \nabla f(x^{(j)})\}_{j=0}^{i-1}) \\
 \quad \text{if stopping condition is met then} \\
 &\quad \text{return } x^{(i-1)} \\
 \quad \text{end if} \\
 &x^{(i)} \leftarrow x^{(i-1)} + \Delta x \\
 \text{end for}
\end{align*}

How do we learn \(\phi(\cdot) \)? We use reinforcement learning.

Berkeley UNIVERSITY OF CALIFORNIA
Background on Reinforcement Learning

• Set of states: \(S \subseteq \mathbb{R}^D \)
• Set of actions: \(\mathcal{A} \subseteq \mathbb{R}^d \)
• Probability density over initial states: \(p_i(s_0) \)
• State transition probability density: \(p(s_{t+1} | s_t, a_t) \)
• Cost function: \(c : S \rightarrow \mathbb{R} \)
• Time horizon: \(T \)
• Typically, the reinforcement learning algorithm does not know what \(p(s_{t+1} | s_t, a_t) \) is.
Background on Reinforcement Learning

- Set of states: \(S \subseteq \mathbb{R}^D \)
- Set of actions: \(\mathcal{A} \subseteq \mathbb{R}^d \)
- Probability density over initial states: \(p_i(s_0) \)
- State transition probability density: \(p(s_{t+1} \mid s_t, a_t) \)
- Cost function: \(c : S \rightarrow \mathbb{R} \)
- Time horizon: \(T \)
- Typically, the reinforcement learning algorithm does not know what \(p(s_{t+1} \mid s_t, a_t) \) is.

This is crucial.
Background on Reinforcement Learning

- **Policy:** $\pi(a_t | s_t, t)$
 - When it is independent of t, it is known as stationary.

- The goal is to find:

$$\pi^* = \arg \min_{\pi} \mathbb{E}_{s_0, a_0, s_1, \ldots, s_T} \left[\sum_{t=0}^{T} c(s_t) \right]$$

where the expectation is taken w.r.t.

$$q(s_0, a_0, s_1, \ldots, s_T) = p_i(s_0) \prod_{t=0}^{T-1} \pi(a_t | s_t, t) p(s_{t+1} | s_t, a_t)$$
Reduction to Reinforcement Learning

Algorithm 1 General structure of optimization algorithms

Require: Objective function f

$x^{(0)} \leftarrow$ random point in the domain of f

for $i = 1, 2, \ldots$ do

$\Delta x \leftarrow \phi(\Phi \left(\{x^{(j)}, f(x^{(j)}), \nabla f(x^{(j)})\}_{j=0}^{i-1} \right))$

if stopping condition is met then

return $x^{(i-1)}$

end if

$x^{(i)} \leftarrow x^{(i-1)} + \Delta x$

end for
Reduction to Reinforcement Learning

Algorithm 1 General structure of optimization algorithms

Require: Objective function f

$x^{(0)} \leftarrow$ random point in the domain

for $i = 1, 2, \ldots$ do
 $\Delta x \leftarrow \phi(\Phi(\{x^{(j)}, f(x^{(j)}), \nabla f(x^{(j)})\}_{j=0}^{i-1}))$
 if stopping condition is met then return $x^{(i-1)}$
 end if
 $x^{(i)} \leftarrow x^{(i-1)} + \Delta x$
end for

Policy

State

Action

Cost

Learning to Optimize
Reduction to Reinforcement Learning

• Under this formulation, the state transition probability density \(p\left(s_{t+1} \mid s_t, a_t\right) \) captures how the gradient and objective value are likely to change for any given step vector.
 – In other words, it encodes the distribution of local geometries of the objective functions of interest.

• The geometry of an unseen objective function is unknown.
 – This is OK, since reinforcement learning does not assume knowledge of \(p\left(s_{t+1} \mid s_t, a_t\right) \).
Why Reinforcement Learning?
Simultaneous Discovery

• A similar idea was also proposed independently by Andrychowicz et al. soon after our paper appeared:
Simultaneous Discovery

• A similar idea was also proposed independently by Andrychowicz et al. soon after our paper appeared:

- Learning to Optimize

 Uses Reinforcement Learning

- Learning to learn by gradient descent by gradient descent

 Uses Supervised Learning
Problem is Harder Than It Looks

Learning to Optimize
Problem is Harder Than It Looks

- Optimization algorithm trained using supervised learning does reasonably well initially.
Problem is Harder Than It Looks

- But it diverges in later iterations.
Problem is Harder Than It Looks

- The optimization algorithm trained using reinforcement learning does not diverge in later iterations.
What Generalization Means

• Each example is an objective function.
 – In the learning-to-learn setting, it is the loss function for training a base-model on a task.
 – Objective functions can differ in two ways:
 • The base-model
 • The task
• Generalization is across objective functions.
 – In the learning-to-learn setting, it is across base-models and/or tasks.
• We should train the optimization algorithm on some base-models and tasks, and test it on different base-models and tasks.
Experimental Setting

• The training set consists of one objective function: the cross-entropy loss function for training a neural net on MNIST.

• The test set consists of the loss functions for training neural nets with different architectures on different datasets, i.e.: the Toronto Faces Dataset (TFD), CIFAR-10 and CIFAR-100.

• In other words, the optimization algorithm is:
 – *Meta-trained* on the problem of training a neural net on MNIST.
 – *Meta-tested* on the problems of training neural nets on TFD, CIFAR-10 and CIFAR-100.
Larger Architecture (TFD)
Larger Architecture (CIFAR-100)
Noisier Gradients (TFD)
Noisier Gradients (CIFAR-10)
Noisier Gradients (CIFAR-100)

![Graph showing the convergence of various optimization algorithms with iteration.](chart)

The graph illustrates the convergence of gradients for different optimization algorithms: Gradient Descent, Momentum, Conjugate Gradient, L-BFGS, AdaGrad, ADAM, RMSprop, L2LBGDBGD, and Predicted Step Descent. The x-axis represents the number of iterations, and the y-axis represents the objective value. Each curve represents a different optimization method, with Gradient Descent showing the fastest convergence in this context.

The title suggests an exploration of optimization techniques under noisy conditions, which is a common challenge in machine learning, particularly with large-scale datasets like CIFAR-100.
Longer Time Horizon (TFD)
Longer Time Horizon (CIFAR-10)
Longer Time Horizon (CIFAR-100)
2D Logistic Regression

Dimension 1 vs Dimension 2

- Blue: Gradient Descent (4 Steps)
- Purple: Momentum (21 Steps)
- Orange: Conjugate Gradient (8 Steps)
- Green: L-BFGS (9 Steps)
- Brown: Learning to Optimize (5 Steps)
Generalization
Importance of Generalization

- Suppose we evaluate the performance of the optimizer on the training set.
- To learn an optimizer, we can simply run a traditional optimizer and memorize the solution.
- This is the best optimizer, since it gets to the optimum in one step.
Importance of Generalization

• Suppose we evaluate the performance of the optimizer on the training set.
• To learn an optimizer, we can simply run a traditional optimizer and memorize the solution.
• This is the best optimizer, since it gets to the optimum in one step.
Importance of Generalization

• Suppose we evaluate the performance of the optimizer on the training set.
• To learn an optimizer, we can simply run a traditional optimizer and memorize the solution.
• This is the best optimizer.

It would be pointless to learn the optimizer if we didn’t care about generalization.
Extent of Generalization

- Generalization to similar base-models on similar tasks
 - Learned optimizer could memorize parts of the optimal parameters that are common across tasks and base-models.
 - E.g.: Weights of the lower layers in neural nets
 - Essentially the same as learning what to learn.
Extent of Generalization

• Stronger notion: Generalization to *similar* base-models on *dissimilar* tasks
 – The optimal parameters for dissimilar tasks are likely completely different.
 – An optimizer that memorizes any part of the optimal parameters will fail.
 – An optimizer that works in this setting must have learned not what the optimum is, but how to find it.
Extent of Generalization

• Even stronger notion: Generalization to *dissimilar* base-models on *dissimilar* tasks
 – The objective functions at test time could be arbitrarily different from the objective functions seen during training.
 – This is impossible – there is no optimizer that works well on all possible objective functions.
Extent of Generalization

• Given any optimizer, we can always find an objective function that it performs poorly on.
• We can simply change the objective function so that the final objective value is large.
Extent of Generalization

- Given any optimizer, we can always find an objective function that it performs poorly on.
- We can simply change the objective function so that the final objective value is large.
Extent of Generalization

- Given any optimizer, we can always find an objective function that it performs poorly on.
- We can simply change the objective function so that the final objective value is large.

It is not possible for the learned optimizer to generalize to all possible objective functions.
Problem of Supervised Learning

- Supervised learning requires one of the following:
 - Observations at each time step are i.i.d., or
 - The dependence of the future observation on the current observation is known.

- In our setting, neither is true:
 - The step the optimizer takes affects future gradients.
 - How the current step affects the next gradient, i.e. the local geometry, is not known at test time.
Problem of Supervised Learning

- When backpropagating through time, supervised learning essentially assumes the local geometry of an unseen objective function is the same as the local geometry of one of the training objective functions at all time steps.
 - In other words, it assumes $p(s_{t+1} | s_t, a_t)$ is known and models it using the Hessians of the training objective functions.
 - This is incorrect, since the Hessians of an unseen objective function will be different.
- Hence, supervised learning overfits to the geometries of training objective functions.
Problem of Supervised Learning

• When an optimizer trained with supervised learning is applied to an unseen objective function:
 – It takes a step,
 ➔ sees an unexpected gradient at the next iteration,
 ➔ takes a step that is slightly off,
 ➔ finds out the next gradient is even more unexpected,
 ➔ takes another step that is more off,
 ...
 ➔ eventually diverges.
Problem of Supervised Learning

- This is known as the problem of compounding errors.
 - Supervised learning leads to a cumulative error that grows quadratically in the time horizon, rather than linearly. (Ross & Bagnell, 2010)
Why RL Solves This Problem

• Reinforcement learning algorithm does not assume knowledge of $p(s_{t+1} | s_t, a_t)$, which characterizes the geometries of training objective functions.
 – So, conditions at meta-training and meta-test times match.
 – The learned policy must account for the uncertainty in $p(s_{t+1} | s_t, a_t)$, and must know how to recover from mistakes.
Guided Policy Search

• An (approximate) policy search algorithm for continuous state and action spaces. (Levine et al., 2015)
• Maintains two policies, ψ and π.
 – ψ lies in a time-varying linear policy class.
 • Optimal policy can be found in closed form.
 – π lies in a stationary non-linear policy class.
• Alternates between solving for ψ and π.
ADMM

• Alternating direction method of multipliers (Boyd et al., 2011) solves the following problem:

\[
\min_{\theta \in \Theta, \eta \in H} f(\theta) + g(\eta) \quad \text{s.t.} \quad A\theta + B\eta = c
\]

where \(f \) and \(g \) are convex functions, and \(\Theta \) and \(H \) are closed convex sets.

• It alternates between the following updates:

\[
\begin{align*}
\theta^{(t+1)} &\leftarrow \arg \min_{\theta \in \Theta} f(\theta) + \langle \lambda^{(t)}, A\theta + B\eta^{(t)} - c \rangle + \frac{\rho}{2} \left\| A\theta + B\eta^{(t)} - c \right\|_2^2 \\
\eta^{(t+1)} &\leftarrow \arg \min_{\eta \in H} g(\eta) + \langle \lambda^{(t)}, A\theta^{(t+1)} + B\eta - c \rangle + \frac{\rho}{2} \left\| A\theta^{(t+1)} + B\eta - c \right\|_2^2 \\
\lambda^{(t+1)} &\leftarrow \lambda^{(t)} + \rho \left(A\theta^{(t+1)} + B\eta^{(t+1)} - c \right)
\end{align*}
\]
Bregman ADMM

- Bregman ADMM (Wang & Banerjee, 2014) generalizes ADMM and uses Bregman divergence as penalty. It solves:

\[
\min_{\theta \in \Theta, \eta \in H} f(\theta) + g(\eta) \text{ s.t. } A\theta + B\eta = c
\]

where \(f \) and \(g \) are convex functions, and \(\Theta \) and \(H \) are closed convex sets.

- It alternates between the following updates:

\[
\theta^{(t+1)} \leftarrow \arg \min_{\theta \in \Theta} f(\theta) + \langle \lambda^{(t)}, A\theta + B\eta^{(t)} - c \rangle + \rho B_{\phi}(c - A\theta, B\eta^{(t)})
\]

\[
\eta^{(t+1)} \leftarrow \arg \min_{\eta \in H} g(\eta) + \langle \lambda^{(t)}, A\theta^{(t+1)} + B\eta - c \rangle + \rho B_{\phi}(B\eta, c - A\theta^{(t+1)})
\]

\[
\lambda^{(t+1)} \leftarrow \lambda^{(t)} + \rho \left(A\theta^{(t+1)} + B\eta^{(t+1)} - c \right)
\]
Reinforcement Learning Problem

• Recall the reinforcement learning problem:

$$\min_{\theta} \mathbb{E}_{s_0, a_0, s_1, \ldots, s_T} \left[\sum_{t=0}^{T} c(s_t) \right]$$

where the expectation is taken w.r.t.

$$q(s_0, a_0, s_1, \ldots, s_T) = p_i(s_0) \prod_{t=0}^{T-1} \pi(a_t|s_t; \theta) p(s_{t+1}|s_t, a_t)$$
Recall the reinforcement learning problem:

\[
\min_\theta \mathbb{E}_\theta \left[\sum_{t=0}^{T} c(s_t) \right]
\]

where the expectation is taken w.r.t.

\[
q(s_0, a_0, s_1, \ldots, s_T) = p_i(s_0) \prod_{t=0}^{T-1} \pi(a_t \mid s_t; \theta) p(s_{t+1} \mid s_t, a_t)
\]
Guided Policy Search

• Guided Policy Search performs dual decomposition:

\[
\min_{\theta, \eta} \mathbb{E}_\psi \left[\sum_{t=0}^{T} c(s_t) \right] \quad \text{s.t.} \quad \psi(a_t \mid s_t, t; \eta) = \pi(a_t \mid s_t; \theta) \quad \forall a_t, s_t, t
\]

• It relaxes the problem by only enforcing equality on the first moments*:

\[
\min_{\theta, \eta} \mathbb{E}_\psi \left[\sum_{t=0}^{T} c(s_t) \right] \quad \text{s.t.} \quad \mathbb{E}_\psi [a_t] = \mathbb{E}_\psi [\mathbb{E}_\pi [a_t \mid s_t]] \quad \forall t
\]

*The Bregman divergence penalty is applied on the original distributions.
Guided Policy Search

• To solve the problem, it uses Bregman ADMM, which alternates between the following updates:

\[
\eta \leftarrow \arg \min_{\eta} \sum_{t=0}^{T} \mathbb{E}_{\psi} [c(s_t) - \lambda_t^T a_t] + \nu_t \mathbb{E}_{\psi} [D_{KL}(\psi(a_t|s_t,t;\eta)\| \pi(a_t|s_t;\theta))] \\
\theta \leftarrow \arg \min_{\theta} \sum_{t=0}^{T} \lambda_t^T \mathbb{E}_{\psi} [\mathbb{E}_{\pi} [a_t|s_t]] + \nu_t \mathbb{E}_{\psi} [D_{KL}(\pi(a_t|s_t;\theta)\| \psi(a_t|s_t,t;\eta))] \\
\lambda_t \leftarrow \lambda_t + \alpha \nu_t (\mathbb{E}_{\psi} [\mathbb{E}_{\pi} [a_t|s_t]] - \mathbb{E}_{\psi} [a_t]) \quad \forall t
\]

• The optimization in the first update can be solved in closed form using a modification of linear-quadratic regulator (LQR).
Landscape of Meta-Learning Methods
Forms of Learning to Learn

Learn parameter values of the base-model that are useful across tasks.
- Transfer Learning
- Multi-Task Learning
- Few-Shot Learning

Learn which base-model is best suited for a task.
- Hyperparameter Optimization

Learning to Optimize

Learning What to Learn

Learning How to Learn

Learning Which Model to Learn

Learn how to train the base-model.
Learning *What* to Learn

- **Goal**: Learn what parameter values of the base-model are useful across tasks.

- **Meta-knowledge**: Intermediate features that are shared by tasks across the family, e.g., Gabor filters for vision tasks.

- **Extent of Generalization**: Need to generalize across *similar* tasks.

- **Parameterization Challenges**: Need to parameterize the space of intermediate features – this is straightforward.

- **Examples**: Transfer & multi-task learning, e.g., (Suddarth & Kergosien, 1990); Few-shot learning, e.g., (Finn et al., 2017), (Snell et al., 2017)

Learning to Optimize
Learning *Which Model* to Learn

<table>
<thead>
<tr>
<th>Goal</th>
<th>• Learn which base-model is best suited for a task.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Meta-knowledge</td>
<td>• Correlations between different base-models and their performance on different tasks.</td>
</tr>
<tr>
<td>Extent of Generalization</td>
<td>• Need to generalize across base-models, and ideally, across tasks.</td>
</tr>
<tr>
<td>Parameterization Challenges</td>
<td>• Need to parameterize the space of base-models – unclear how we can do this.</td>
</tr>
</tbody>
</table>
| Examples | • Hyperparameter optimization – does not generalize across tasks
• (Bradzil et al., 2003), (Schmidhuber, 2004), (Hochreiter et al., 2001) |
Learning Which Model to Learn

- Learn which base-model is best suited for a task.
- (Schmidhuber, 2004): Search over the space of all possible programs – takes exponential time.
- Hyperparameter optimization: Search over a predefined set of hyperparameters – not expressive.

- Need to generalize across base-models, and ideally, across tasks.

- Need to parameterize the space of base-models – unclear how we can do this.

- Hyperparameter optimization – does not generalize across tasks
 - (Bradzil et al., 2003), (Schmidhuber, 2004), (Hochreiter et al., 2001)

- Examples

- Meta-knowledge

- Goal

- Extent of Generalization

- Parameterization Challenges
Learning How to Learn

| Goal | • Learn how to train the base-model.
 • Learn about the *process*, rather the *outcome* of learning. |
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Meta-knowledge</td>
<td>• Commonalities in the behaviours of learning algorithms that achieve good performance.</td>
</tr>
<tr>
<td>Extent of Generalization</td>
<td>• Need to generalize across dissimilar tasks and/or similar base-models.</td>
</tr>
</tbody>
</table>
| Parameterization Challenges | • Need to parameterize the space of learning algorithms.
 • Key Idea: Parameterize the update formula in optimizer. |
| Examples | • (Bengio et al., 1991) – learned algorithm indep. of tasks/base-models
 • (Li & Malik, 2016), (Andrychowicz et al., 2016), etc. |
For More Details...

Learning to Optimize
Ke Li, Jitendra Malik
arXiv:1606.01885, 2016 and *ICLR*, 2017

Learning to Optimize Neural Nets
Ke Li, Jitendra Malik
arXiv:1703.00441, 2017