Systems approach to sizing of C-HALO

Venkatesan Ekambaram, Christian Manasseh, Adam Goodliss, Raja Sengupta, Kannan Ramchandran
University of California Berkeley

Authors gratefully acknowledge gift from ATLIS wireless, LLC that made part of this work possible
Outline

• Motivation

• Model for GPS satellite coverage estimation

• Experiments and Results
Motivation

- HALO needed for ITS applications.
- Benefits are huge ($160B - $320B).
- Questions:
 - What fraction of the US has good GPS coverage?
 - Where are the “dark” areas?
 - Can we estimate these with available data?
- Goal:
 - Estimate of GPS coverage and accuracy in different US cities.
Modeling Ground-based Satellite Visibility in San Francisco
Results

- 0.3 %– 4% of San Francisco has a GPS visibility of less than 6 satellites.

- Model prediction accuracy is 87%
 - validated on experimental data collected.
Model for satellite coverage

- GIS Database
- Experimental Satellite Visibility data
- Model for satellite coverage
Basic idea

- Calculate mask angle from building heights.

- Estimate number of satellites visible in the cone defined by the mask angle.
Data from GIS Systems

- About 200,000 parcels from city of San Francisco
- Building heights
- Street widths
 - Google
 - SFPParcel
- Mapped data into USNG reference grids
Real data collected using Smartphone GPS

6 Satellites – Green, 4 to 6 Satellites – Yellow, < 4 Satellites - Red
Model I accuracy

<table>
<thead>
<tr>
<th>Satellites</th>
<th>True < 4</th>
<th>True 4 to 6</th>
<th>True >6</th>
</tr>
</thead>
<tbody>
<tr>
<td>Predicted < 4</td>
<td>0.74</td>
<td>0.16</td>
<td>0.02</td>
</tr>
<tr>
<td>Predicted 4 to 6</td>
<td>0.24</td>
<td>0.25</td>
<td>0.07</td>
</tr>
<tr>
<td>Predicted > 6</td>
<td>0.02</td>
<td>0.59</td>
<td>0.91</td>
</tr>
</tbody>
</table>

- 1657 data points
- Overall prediction accuracy 69%.
A better metric (HDOP)
Model II – Using HMM

- Satellite counts in adjacent grids are correlated
- Model parameters are empirically estimated
HMM Model accuracy

<table>
<thead>
<tr>
<th>Satellites</th>
<th>True < 4</th>
<th>True 4 to 6</th>
<th>True >6</th>
</tr>
</thead>
<tbody>
<tr>
<td>Predicted < 4</td>
<td>0.70</td>
<td>0.01</td>
<td>0</td>
</tr>
<tr>
<td>Predicted 4 to 6</td>
<td>0.08</td>
<td>0.41</td>
<td>0.11</td>
</tr>
<tr>
<td>Predicted > 6</td>
<td>0.22</td>
<td>0.58</td>
<td>0.89</td>
</tr>
</tbody>
</table>

- 87% prediction accuracy.
Zoomed-in View of DT SF

6 Satellites – Green, 4 to 6 Satellites – Yellow, < 4 Satellites - Red
Use of the model

- Can predict satellite visibility in all cities
 - Building heights from assessor’s office.

- Help in phased deployment of CHALO

- Benefits can be better understood by overlaying other data like accident data.
Locate areas of Highest Benefit from deploying C-HALO
Comparison to existing models

- Taylor et al – LiDAR, Digital Surface Map – 54% accuracy

- Higher accuracy LiDAR data gives better results.

- LiDAR, DSM expensive to obtain.

- Our method – rough estimate but cheaper.
Conclusions

- Simple but effective model to estimate satellite visibility.
 - Estimated that 0.3% to 4% of San Francisco has a coverage less than 6 satellites.
 - 87% accuracy on real data.

- Required data sources to extend to other cities
 - GIS database – heights of buildings and street widths.
 - Training data would help get better estimates.

- Time and satellite almanac to be included.