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Abstract

Many real world applications can be framed as
multi-objective optimization problems, where
we wish to simultaneously optimize for multi-
ple criteria. Bayesian optimization techniques
for the multi-objective setting are pertinent
when the evaluation of the functions in ques-
tion are expensive. Traditional methods for
multi-objective optimization, both Bayesian
and otherwise, are aimed at recovering the
Pareto front of these objectives. However,
in certain cases a practitioner might desire to
identify Pareto optimal points only in a sub-
set of the Pareto front due to external con-
siderations. In this work, we propose a strat-
egy based on random scalarizations of the ob-
jectives that addresses this problem. Our ap-
proach is able to flexibly sample from desired
regions of the Pareto front and, computation-
ally, is considerably cheaper than most ap-
proaches for MOO. We also study a notion of
regret in the multi-objective setting and show
that our strategy achieves sublinear regret. We
experiment with both synthetic and real-life
problems, and demonstrate superior perfor-
mance of our proposed algorithm in terms of
the flexibility and regret.

1 INTRODUCTION

Bayesian optimization (BO) is a popular recipe for op-
timizing expensive black-box functions where the goal
is to find a global maximizer of the function. Bayesian
optimization has been used for a variety of practical op-
timization tasks such as hyperparameter tuning for ma-
chine learning algorithms, experiment design, online ad-
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vertising, and scientific discovery (Snoek et al., 2012;
Hernández-Lobato et al., 2017; Martinez-Cantin et al.,
2007; González et al., 2015; Kandasamy et al., 2017).

In many practical applications however, we are required
to optimize multiple objectives, and moreover, these ob-
jectives tend to be competing in nature. For instance,
consider drug discovery, where each evaluation of the
functions is an in-vitro experiment and as the output of
the experiment, we measure the solubility, toxicity and
potency of a candidate example. A chemist wishes to
find a molecule that has high solubility and potency, but
low toxicity. This is an archetypal example for Bayesian
optimization as the lab experiment is expensive. Fur-
ther, drugs that are very potent are also likely to be toxic,
so these two objectives are typically competing. Other
problems include creating fast but accurate neural net-
works. While smaller neural networks are faster to eval-
uate, they suffer in terms of accuracy.

Due to their conflicting nature, all the objectives cannot
be optimized simultaneously. As a result, most multi-
objective optimization (MOO) approaches aim to recover
the Pareto front, defined as the set of Pareto optimal
points. A point is Pareto optimal if it cannot be improved
in any of the objectives without degrading some other
objective. More formally, given K objectives f(x) =
(f1(x), . . . , fK(x)) : X → RK over a compact domain
X ⊂ Rd, a point x1 ∈ X is Pareto dominated by another
point x2 ∈ X iff fk(x1) ≤ fk(x2) ∀k ∈ [K] and ∃k ∈
[K] s.t. fk(x1) < fk(x2), where we use the notation
[K] throughout the paper to denote the set {1, . . . ,K}.
We denote this by f(x1) ≺ f(x2). A point is Pareto op-
timal if it is not Pareto dominated by any other point. We
use X ?f to denote the Pareto front for a multi-objective
function f , and f(X ?f ) to denote the set of Pareto opti-
mal values, where f(X) = {f(x) | x ∈ X} for any
X ⊆ X . The traditional goal in the MOO optimiza-
tion regime is to approximate the set of Pareto optimal
points (Hernández-Lobato et al., 2016; Knowles, 2006;
Ponweiser et al., 2008; Zuluaga et al., 2013).



However, in certain scenarios, it is preferable to explore
only a part of the Pareto front. For example, consider the
drug discovery application described above. A method
which aims to find the Pareto front, might also invest its
budget to discover drugs that are potent, but too toxic to
administer to a human. Such scenarios arise commonly
in many practical applications. Therefore, we need flex-
ible methods for MOO that can steer the sampling strat-
egy towards regions of the Pareto front that a domain ex-
pert may be interested in. Towards this end, we propose
a Bayesian approach based on random-scalarizations in
which the practitioner encodes their preferences as a
prior on a set of scalarization functions.

A common approach to multi-objective optimization is to
use scalarization functions1 sλ(y) : RK → R (Roijers
et al., 2013), parameterized by λ belonging to a set Λ,
and y ∈ RK denoting K-dimensional objective values.
Scalarizations are often used to convert multi-objective
values to scalars, and standard Bayesian optimization
methods for scalar functions are applied. Since our goal
is to sample points from the Pareto front, we need ad-
ditional assumptions to ensure that the utility functions
are maximized for y ∈ f(X ?f ). Following Roijers et al.
(2013) and Zintgraf et al. (2015) we assume that sλ(y)
are monotonically increasing in all coordinates. Opti-
mizing for a single fixed scalarization amounts to the
following maximization problem, which returns a single
optimal point lying on the Pareto front.

x?λ = argmax
x∈X

sλ(f(x)) (1)

One can verify that x?λ ∈ Pf follows from the mono-
tonicity of the scalarization. In this work, we are inter-
ested in a set of pointsX? = {x?i }Ti=1 of size at most T ,
spanning a specified region of the Pareto front rather than
a single point. To achieve this we take a Bayesian ap-
proach and assume a prior p(λ) with support on Λ, which
intuitively translates to a prior on the set of scalarizations
SΛ = {sλ | λ ∈ Λ}. Thus, in place of optimizing a sin-
gle scalarization, we aim to optimize over a set of scalar-
izations weighted by the prior p(λ). Each λ ∈ Λ maps
to a pareto optimal value f(x?λ) ∈ f(X ?f ). Thus, the
prior p(λ) defines a probability distribution over the set
of Pareto optimal values, and hence encodes user prefer-
ence, which is depicted in Figure 1.

In this paper, we propose to minimize a Bayes regret
which incorporates user preference through the prior and
scalarization specified by the user. We propose multi-
objective extensions of classical BO algorithms: upper

1Also known as utility functions in decision theory litera-
ture. To avoid confusion with acquisition functions which are
sometimes referred to as utility functions in BO, we use the
term scalarization function.

confidence bound (UCB) (Auer, 2002), and Thompson
sampling (TS) (Thompson, 1933) to minimize our pro-
posed regret. At each step the algorithm computes the
next point to evaluate by randomly sampling a scalariza-
tion sλ using the prior p(λ), and optimizes it to get x?λ.
Our algorithm is fully amenable to changing priors in an
interactive setting, and hence can also be used with other
interactive strategies in the literature. The complete al-
gorithm is presented in Algorithm 1 and discussed in de-
tail in Section 3. While random scalarizations have been
previously explored by Knowles (2006) and Zhang et al.
(2010), our approach is different in terms of the under-
lying algorithm. Furthermore, we study a more general
class of scalarizations and also prove regret bounds. As
we shall see, this formulation fortunately gives rise to an
extremely flexible framework that is much simpler than
the existing work for MOO and computationally less ex-
pensive. Our contributions can summarized as follows:

1. We propose a flexible framework for MOO using the
notion of random scalarizations. Our algorithm is
flexible enough to sample from the entire Pareto front
or an arbitrary region specified by the user. It is also
naturally capable of sampling from non-convex re-
gions of the Pareto front. While other competing ap-
proaches can be modified to sample from such com-
plex regions, this seamlessly fits into our framework.
In contrast to the prior work on MOBO, we consider
more general scalarizations that are only required to
be Lipschitz and monotonic.

2. We prove sublinear regret bounds making only as-
sumptions of Lipschitzness and monotonicity of the
scalarization function. To our knowledge the only
prior work discussing theoretical guarantees for MOO
algorithms is Pareto Active Learning (Zuluaga et al.,
2013) with sample complexity bounds.

3. We compare our algorithm to other existing MOO ap-
proaches on synthetic and real-life tasks. We demon-
strate that our algorithm achieves the said flexibility
and superior performance in terms of the proposed re-
gret, while being computationally inexpensive.

Related Work

Most multi-objective bayesian optimization approaches
aim at approximating the whole Pareto front. Predictive
Entropy Search (PESMO) by Hernández-Lobato et al.
(2016) is based on reducing the posterior entropy of the
Pareto front. SMSego by Ponweiser et al. (2008) uses an
optimistic estimate of the function in an UCB fashion,
and chooses the point with the maximum hypervolume
improvement. Pareto Active Learning (PAL) (Zuluaga
et al., 2013) and ε-PAL (Zuluaga et al., 2016) are similar
to SMSego, and with theoretical guarantees. Campigotto



et al. (2014) introduce another active learning approach
that approximates the surface of the Pareto front. Ex-
pected hypervolume improvement (EHI) (Emmerich and
Klinkenberg, 2008) and Sequential uncertainty reduc-
tion (SUR) (Picheny, 2015) are two similar approaches
based on maximizing the expected hypervolume. Com-
puting the expected hypervolume is an expensive process
that renders EHI and SUR computationally intractable in
practice when there are several objectives.

The idea of random scalarizations has been previously
explored in the following works aimed at recovering the
whole Pareto front: ParEGO (Knowles, 2006) which
uses random scalarizations to explore the whole Pareto
front; MOEA/D (Zhang and Li, 2007), an evolution-
ary computing approach to MOO; and MOEA/D-EGO
(Zhang et al., 2010), an extension of MOEA/D using
Gaussian processes that evaluates batches of points at a
time instead of a single point. At each iteration, both
ParEGO and MOEA/D-EGO sample a weight vector uni-
formly from theK−1 simplex, which is used to compute
a scalar objective. The next candidate point is chosen
by maximizing an off-the-shelf acquisition function over
the GP fitted on the scalar objective. Our algorithm on
the other hand, maintains K different GPs, one for each
objective. Furthermore, our approach necessitates using
acquisitions specially designed for the multi-objective
setting for any general scalarization; more specifically,
they are generalizations of single-objective acquisitions
for multiple objectives (see Table 1). These differences
with ParEGO are not merely superficial – our approach
gives rise to a theoretical regret bound, while no such
bound exists for the above methods.

Another line of work involving scalarizations include
utility function based approaches. Roijers et al. (2013);
Zintgraf et al. (2015) propose scalar utility functions as
an evaluation criteria. Zintgraf et al. (2018); Roijers et al.
(2018, 2017) propose interactive strategies to maximize
an unknown utility. In contrast to our approach the utility
in these works is assumed to be fixed.

While there has been ample work on incorporating pref-
erences in multi-objective optimization using evolution-
ary techniques (Deb and Sundar, 2006; Thiele et al.,
2009; Kim et al., 2012; Branke and Deb, 2005; Branke,
2008), there has been fewer on using preferences for op-
timization, when using surrogate functions. Surrogate
functions are essential for expensive black-box optimiza-
tion. PESC (Garrido-Merchán and Hernández-Lobato,
2016) is an extension of PESM allowing to specify pref-
erences as constraints. Hakanen and Knowles (2017)
propose an extension of ParEGO in an interactive set-
ting, where users provide feedback on the observations
by specifying constraints on the objectives in an online

fashion. Yang et al. (2016) propose another way to take
preferences into account by using truncated functions.
An interesting idea proposed by Sato et al. (2007) uses
a modified notion of Pareto dominance to prevent one
or more objectives from being too small. The survey
by Ishibuchi et al. (2008) on evolutionary approaches to
MOO can be referred for a more extensive review.

When compared to existing work for MOO, our approach
enjoys the following advantages.

1. Flexibility: Our approach allows the flexibility to
specify any region of the Pareto front including non-
connected regions of the Pareto front, which is not an
advantage enjoyed by other methods. Furthermore,
the approach is flexible enough to recover the entire
Pareto front when necessary. Our approach is not re-
stricted to linear scalarization and extends to a much
larger class of scalarizations.

2. Theoretical guarantees: Our approach seamlessly
lends itself to analysis using our proposed notion of
regret, and achieves sub-linear regret bounds.

3. Computational simplicity: The computational com-
plexity of our approach scales linearly with the num-
ber of objectives K. This is in contrast to EHI and
SUR, whose complexity scales exponentially with
K. Our method is also computationally cheaper than
other entropy based methods such as PESMO.

2 BACKGROUND

Most BO approaches make use of a probabilistic model
acting as a surrogate to the unknown function. Gaussian
processes (GPs) Rasmussen and Williams (2006) are a
popular choice for their ability to model well calibrated
uncertainty at unknown points. We will begin with a
brief review of GPs and single objective BO.

Gaussian Processes. A Gaussian process (GP) defines
a prior distribution over functions defined on some in-
put space X . GPs are characterized by a mean func-
tion µ : X 7→ R and a kernel κ : X × X 7→ R. For
any function f ∼ GP(µ, κ) and some finite set of points
x1, . . . ,xn ∈ X , the function values f(x1), . . . , f(xn)
follow a multivariate Gaussian distribution with mean
µ and covariance Σ given by µi = µ(xi), Σij =
κ(xi,xj) ∀1 ≤ i, j ≤ n. Examples of popular kernels
include the squared exponential and the Matérn kernel.
The mean function is often assumed to be 0 without any
loss of generality. The posterior process, given observa-
tions D = {(xi, yi)}t−1

i=1 where yi = f(xi) + εi ∈ R,
εi ∼ N (µ, σ2), is also a GP with the mean and kernel



function given by

µt(x) = kT (Σ + σ2I)−1Y,

κt(x,x
′) = κ(x,x′)− kT (Σ + σ2I)−1k′. (2)

where Y = [yi]
t
i=1 is the vector of observed values, Σ =

[κ(xi,xj)]
t
i,j=1 is the Gram matrix, k = [κ(x,xi)]

t
i=1,

and k′ = [κ(x′,xi)]
t
i=1. Further details on GPs can be

found in Rasmussen and Williams (2006).

Bayesian Optimization. BO procedures operate se-
quentially, using past observations {(xi, yi)}t−1

i=1 to de-
termine the next point xt. Given t − 1 observations
Thompson Sampling (TS) (Thompson, 1933) draws a
sample gt from the posterior GP. The next candidate xt
is choosen as xt = argmax gt(x). Gaussian Process
UCB (Srinivas et al., 2010) constructs an upper confi-
dence bound Ut as Ut(x) = µt−1(x) +

√
βtσt−1(x).

Here µt−1 and σt−1 are the posterior mean and covari-
ances according to equations 2. βt is a function of t and
the dimensionality of the input domainX . GP-UCB stip-
ulates that we choose xt = argmaxx∈X Ut(x).

In this paper, we assume that the K objectives
f1, . . . , fK are sampled from known GP priors
GP(0, κk), (k ∈ [K]), with a common compact do-
main X ⊂ Rd. Without loss of generality, we assume
X ⊆ [0, 1]d. The feasible region is defined as f(X ).
We further assume that the observations are noisy, that
is, yk = fk(x) + εk, where εk ∼ N (0, σ2

k), ∀k ∈ [K].

3 OUR APPROACH

We first provide a formal description of random scalar-
izations, then we formulate a regret minimization prob-
lem, and finally propose multi-objective extensions of
the classical UCB and TS algorithms to optimize it.

3.1 Random Scalarizations

As discussed earlier in Section 1 in this paper we con-
sider a set of scalarizations sλ parameterized by λ ∈ Λ.
We assume a prior p(λ) with support Λ. We further as-
sumed that, for all λ ∈ Λ, sλ is Lλ-Lipschitz in the
`1-norm and monotonically increasing in all the coordi-
nates. More formally,

sλ(y1)− sλ(y2) ≤ Lλ‖y1 − y2‖1,
∀λ ∈ Λ, y1,y2 ∈ Rd,

and, sλ(y1) < sλ(y2) whenever y1 ≺ y2. (3)

The Lipschitz condition can also be generalized to `p-
norms using the fact that ‖y‖1 ≥ K1− 1

p ‖y‖p for any

Figure 1: A prior p(λ) imposes a distribution on the set
of Pareto optimal values. The imposed probability den-
sity is illustrated using the dotted lines. The imposed dis-
tribution leads to a concentration of the sampled values
(blue circles) in the high probability region.

p ∈ [1,∞] and y ∈ RK . Monotonicity ensures that

x?λ = argmax
x∈X

sλ(f(x)) ∈ X ?f ,

since otherwise, if f(x?λ) ≺ f(x) for some x 6= x?λ,
then we have sλ(f(x?λ)) < sλ(f(x)), leading to a con-
tradiction. Each λ ∈ Λ maps to an x?λ ∈ X ?f and a
y? = f(x?λ) ∈ f(X ?f ). Assuming the required mea-
sure theoretic regularity conditions hold, the prior p(λ)
imposes a probability distribution on f(X ?f ) through the
above mapping as depicted in Figure 1.

3.2 Bayes Regret

In contrast to (1), which returns a single optimal point,
in this work, we aim to return a set of points from the
user specified region. Our goal is to compute a subset
X ⊂ X such that f(X) spans the high probability re-
gion of f(X ?f ). This can be achieved by minimizing the
following Bayes regret denoted byRB ,

RB(X) = Eλ∼p(λ)

(
max
x∈X

sλ(f(x))−max
x∈X

sλ(f(x))︸ ︷︷ ︸
Pointwise regret

)
,

X? = argmin
X⊂X ,|X|≤T

RB(X) (4)

We now elaborate on the above expression. The point-
wise regret maxx∈X sλ(f(x)) − maxx∈X sλ(f(x))
quantifies the regret for a particular λ and is analo-
gous to the simple regret in the standard bandit setting
(Bubeck et al., 2012). RB(T ) similarly corresponds to
the Bayes simple regret in a bandit setting. The point-
wise is minimized when x?λ = argmaxx∈X sλ(f(x))
belongs to X . Since X is finite, the minimum may
not be achieved for all λ, as the set of optimial points
can be potentially infinite. However, the regret can be
small when ∃x ∈ X such that f(x), f(x?λ) are close,



Figure 2: Three scenarios which incur a high regret: (1)
The points are clustered in a small region. (2) The points
are not from the desired distribution. (3) The points are
not Pareto optimal.

from which it follows using the Lipschitz assumption
that sλ(f(x?λ))− sλ(f(x)) is small. Therefore, roughly
speaking, the Bayes regret is minimized when the points
in X are Pareto optimal and f(X) well approximates
the high probability regions of f(X ?f ). In this case,
sλ(f(x?λ)) − sλ(f(x)) is small for λs with high proba-
bilities. Even though the rest of the regions are not well
approximated, it does not affect the Bayes regret since
those regions do not dominate the expectation by virtue
of their low probability. This is what was desired from
the beginning, that is, to compute a set of points with the
majority of them spanning the desired region of interest.
This is also illustrated in Figure 2 showing three scenar-
ios which can incur a high regret.

It is interesting to ask, why cannot one simply maximize

max
x∈X

Eλ∼p(λ) [sλ(f(x))] .

The above expression can be maximized using a single
point x which is not the purpose of our approach. On the
other hand, our proposed Bayes regret is not minimized
by a single point or multiple points clustered in a small
region of the Pareto front. Minimizing the pointwise re-
gret for a single λ does not minimize the Bayes regret, as
illustrated in Figure 2. Our proposed regret has some re-
semblance to the expected utility metric in Zintgraf et al.
(2015). However, the authors present it as an evaluation
criteria, whereas we propose an optimization algorithm
for minimizing it and also prove regret bounds on it.

3.3 Scalarized Thompson Sampling and UCB

In this section we introduce Thompson Sampling and
UCB based algorithms for minimizing the Bayes regret.
In contrast to other methods based on random scalariza-
tions (Knowles, 2006; Nakayama et al., 2009), our algo-
rithm does not convert each observation to a scalar value
and fit a GP on them, but instead models them separately
by maintaining a GP for each objective separately. In
each iteration, we first fit a GP for each objective using
the previous observations. Then we sample a λ ∼ p(λ),

which is used to compute a multi-objective acquisition
function based on the scalarization sλ. The next candi-
date point is chosen to be the maximizer of the acqui-
sition function. The complete algorithm is presented in
Algorithm 1 and the acquisition functions are presented
in Table 1. The acquisition function for UCB is a scalar-
ization of the individual upper bounds of each of the ob-
jectives. Similarly, the acquisition function for TS is a
scalarization of posterior samples of the K objectives.

The intuition behind our approach is to choose the xt
that minimizes the pointwise regret for the particular λt
sampled in that iteration. Looking at the expression of
the Bayes regret, at a high level, it seems that it can be
minimized by sampling a λ from the prior and choosing
an xt that minimizes the regret for the sampled λ. We
prove regret bounds for both TS and UCB in Section 4
and show that this idea is indeed true.

Practical Considerations. In practice, our method re-
quires the prior and class of scalarization functions to be
specified by the user. These would typically be domain
dependent. In practice, a user would also interactively
update their prior based on the observations, as done
in Hakanen and Knowles (2017); Roijers et al. (2017,
2018). Our approach is fully amenable to changing the
prior interactively, and changing regions of interest. In
this paper we do not propose any general methods for
choosing or updating the prior, as it is not possible to do
so for any general class of scalarizations. The interested
readers can refer to the literature on interactive methods
for MOBO. However, for the sake of demonstration we
propose a simple heuristic in the experimental section.

3.4 Computational Complexity

At each step all algorithms incur a cost of at most
O(KT 3), for fitting K GPs, except for ParEGO, which
fits a single GP at each time step with a cost of O(T 3).
The next step of maximizing the acquisition function dif-
fers widely across the algorithms. Computing the acqui-
sition function at each point x costs O(T ) for ParEGO,
and O(KT ) for our approach. The additional factor K
is the price one must pay when maintaining K GPs.

Apart from fitting theK GPs, SMSEgo requires comput-
ing the expected hypervolume gain at each point which
is much more expensive than computing the acquisitions
for UCB or TS. Computing the expected hypervolume
improvement in EHI is expensive and grows exponen-
tially with K. PESM has a cost that is linear in K.
However the computation involves performing expen-
sive steps of expectation-propagation and MC estimates,
which results in a large constant factor.



Algorithm 1 MOBO using Random Scalarizations
(MOBO-RS)

Init D(0) ← ∅, GP(0)
k ← GP(0, κ), ∀k ∈ [K]

for t = 1→ T do
Sample λt ∼ p(λ)
xt ← argmaxx∈X acq(x,λt)

{See Table 1 for acquisition functions}
Evaluate y = f(xt)
D(t) = D(t−1) ∪ {(xt,y)}
GP(t)

k ← post
(
GP(t−1)

k | (xt,yk)
)
,∀k ∈ [K]

end for
return D(T )

Table 1: Acquisition functions used in Algorithm 1.
µ(t)(x), σ(t)(x) areK dimensional vectors denoting the
posterior means and variances at x of the K objectives
respectively, in step t. c is a hyperparameter and d is di-
mension of the input space X . f ′k is randomly sampled
from the posterior of the kth objective function.

acq(x,λ)

UCB sλ
(
µ(t)(x) +

√
βtσ

(t)(x)
)
, βt = cd ln t

TS sλ(f ′(x)), where f ′k ∼ GP
(t)
k , k ∈ [K]

4 REGRET BOUNDS

In this section we provide formal guarantees to prove up-
per bounds on the Bayes regret RB which goes to zero
as T →∞. We also show that our upper bound is able to
recover regret bounds for single objectives when K = 1.

Analogous to the notion of regret in the single-objective
setting (Bubeck et al., 2012), we first define the instanta-
neous and cumulative regrets for the multi-objective op-
timization. The instantaneous regret incurred by our al-
gorithm in step t is defined as,

r(xt,λt) = max
x∈X

sλt(f(x))− sλt(f(xt)), (5)

where λt and xt are the same as in Algorithm 1. The
cumulative regret till step T is defined as,

RC(T ) =

T∑
t=1

r(xt,λt). (6)

For convenience, we do not explicitly mention the depen-
dency ofRC(T ) on {xt}Tt=1 and {λt}Tt=1. Next, we will
make a slight abuse of notation here and define RB(T ),
the Bayes regret incurred till step T , as RB(XT ) (See
Eqn. 4), whereXT = {xt}Tt=1.

We further define the expected Bayes regret as ERB(T ),
where the expectation is taken over the random process
f , noise ε and any other randomness occurring in the
algorithm. Similarly, we also define the expected cumu-
lative regret as ERC(T ), where the expectation is taken
over all the aforementioned random variables and addi-
tionally {λt}Tt=1. We will show that the expected Bayes
regret can be upper bounded by the expected cumula-
tive regret, which can be further upper bounded using
the maximum information gain.

Maximum Information Gain. The maximum infor-
mation gain (MIG) captures the notion of information
gained about a random process f given a set of obser-
vations. For any subset A ⊂ X define yA = {ya =
f(a) + εa|a ∈ A}. The reduction in uncertainty about a
random process can be quantified using the notion of in-
formation gain given by I(yA; f) = H(yA)−H(yA|f),
where H denotes the Shannon entropy. The maximum
information gain after T observations is defined as

γT = max
A⊂X :|A|=T

I(yA; f). (7)

Regret Bounds. We assume that ∀k ∈ [K], t ∈
[T ], x ∈ X , fk(x) follows a Gaussian distribution with
marginal variances upper bounded by 1, and the obser-
vation noise εtk ∼ N (0, σ2

k) is drawn independently of
everything else. Assume upper bounds Lλ ≤ L, σ2

k ≤
σ2, γTk ≤ γT , where γTk is the MIG for the k th ob-
jective. When X ⊆ [0, 1]d, the cumulative regret after T
observations can be bounded as follows.

Theorem 1. The expected cumulative regret for MOBO-
RS after T observations can be upper bounded for both
UCB and TS as,

ERC(T ) = O

(
L

[
K2TdγT lnT

ln (1 + σ−2)

]1/2
)
. (8)

The proof follows from Theorem 2 in the appendix.
The bound for single-objective BO can be recovered
by setting K = 1, which matches the bound of
O(
√
TdγT lnT ) shown in Russo and Van Roy (2014);

Srinivas et al. (2010). The proof is build on ideas for
single objective analyses for TS and UCB (Russo and
Van Roy, 2014; Kandasamy et al., 2018).

Under further assumption of the space Λ being a bounded
subset of a normed linear space, and the scalarizations sλ
being Lipschitz in λ, it can be shown that ERB(T ) ≤
1
T ERC(T ) + o(1), which combined with Theorem 1
shows that the Bayes regret converges to zero as T →∞.
A complete proof can be found in Appendix B.3.



5 EXPERIMENTAL RESULTS

We experiment with both synthetic and real world prob-
lems. We compare our methods to the other existing
MOO approaches in the literature: PESM, EHI, SM-
Sego, ParEGO, and MOEA/D-EGO. EHI being compu-
tationally expensive is not feasible for more than two ob-
jectives. Other than visually comparing the results for
three or lesser objectives we also compare them in terms
of the Bayes regret defined in Eqn. 4.

While our method is valid for any scalarization satisfying
the Lipschitz and monotonicity conditions, we demon-
strate the performance of our algorithm on two com-
monly used scalarizations, the linear and the Tchebyshev
scalarizations (Nakayama et al., 2009) defined as,

slin
λ (y) =

K∑
k=1

λkyk,

stch
λ (y) =

K
min
k=1

λk(yk − zk),

(9)

where z is some reference point. In both cases, Λ =
{λ � 0 | ‖λ‖1 = 1}. It can be verified that the Lipschitz
constant in both cases is upper bounded by 1.

Choosing the weight distribution p(λ). While the user
has the liberty to choose any distribution best suited
for the application at hand, for demonstration we show
one possible way. A popular way of specifying user
preferences is by using bounding boxes (Hakanen and
Knowles, 2017), where the goal is to satisfy fk(x) ∈
[ak, bk], ∀1 ≤ k ≤ K. We convert bounding boxes to a
weight distribution using a heuristic described below.

For the linear scalarization, it can be verified that the
regret is minimized when y is pareto optimal, and the
normal vector at the surface of the Pareto front at y has
the same direction as λ. This is illustrated using a sim-
ple example in Figure 3. Consider two simple objec-
tives f1(x, y) = xy, f2(x, y) = y

√
1− x2. Sampling

λ =
[

u
u+1 ,

1
u+1

]
where u ∼ Unif (0, 0.3), results in

the first figure. In this example we have λ1 smaller
than λ2, resulting in exploration of the region where
f2(x, y) is high. Whereas sampling λ =

[
u
u+v ,

v
u+v

]
where u, v ∼ Unif (0.5, 0.7) results in the second fig-
ure since both components of λ have similar magni-
tudes. This idea leads to the following heuristic to con-
vert bounding boxes to a sampling strategy. We sample
as λ = u/‖u‖1 where uk ∼ Unif (ak, bk) , k ∈ [K].
The intuition behind this approach is shown in Figure 4.
Such a weight distribution roughly samples points from
inside the bounding box.

For the Tchebychev scalarization, at the optimum, y− z

Figure 3: The feasible region is shown in grey. The color
of the sampled points corresponds to the iteration they
were sampled in, with brighter colors being sampled in
the later iterations.

Figure 4: Weight distribution from bounding box.

is inversely proportional to λ. For the purpose of demon-
stration and comparison we would like both the scalar-
ization to obtain similar objective values. Therefore, we
reuse the λ sampled for the linear scalarization to get
λtch = λ′/‖λ′‖1 where λ′ = (1/λ1, . . . , 1/λK). We
have normalized the vector so that it lies in Λ.

In order to explore the whole Pareto front, one can
also specify a flat distribution. For instance con-
sider the Dirichlet distribution on the simplex {x ∈
RK |

∑K
k=1 xk = 1,x � 0}. One can sample from

the Dirichlet distribution as λ ∼ Dir(1, . . . , 1), which
roughly provides equal weight to all the objectives lead-
ing to exploration of the whole Pareto front. Other strate-
gies include λ = |λ′|/‖λ′‖1 where λ′ ∼ N (0, I).

Other possible ways of choosing the weight vector in-
cludes learning the distribution of the weight vector from
interactive user feedback. In fact, our framework also
allows us to perform a joint posterior inference on the
GP model and the weight distribution, thus learning the
weight distribution in a more principled manner. While
we leave these methods to future work, this demonstrates
the flexibility of our framework.

Experimental Setup. For all our experiments, we
use the squared exponential function as the GP ker-
nel (in practice, this is a hyperparameter that must
be specified by the user), given by κ(x1,x2) =
s exp

(
−‖x1 − x2‖2/(2σ2)

)
, where s and σ are param-

eters that are estimated during optimization. We perform



experiments with both TS and UCB using both kinds
of scalarizations. In Eqn. 4, we observe that the term
Eλmaxx∈X sλ(f(x)) is independent of the algorithm,
hence it is sufficient to plot −Eλmaxx∈X sλ(f(x)). In
all our experiments, we plot this expression, thus avoid-
ing computing the global maximum of an unknown func-
tion. For the purposes of computing the Bayes simple re-
gret, we linearly map the objective values to [0, 1] so that
the values are of reasonable magnitude. This however is
not a requirement of our algorithm. Further experimen-
tal details can be found in the Appendix. The implemen-
tation can be found in Dragonfly2, a publicly available
python library for scalable Bayesian optimization (Kan-
dasamy et al., 2019).

Synthetic two-objective function. We construct a
synthetic two-objective optimization problem using the
Branin-4 and CurrinExp-4 functions as the two ob-
jectives respectively. These are the 4-dimensional
counterparts of the Branin and CurrinExp func-
tions (Lizotte, 2008), each mapping [0, 1]4 → R.
For this experiment we specify the bounding boxes
[(a1, b1), (a2, b2)]. We sample from three different re-
gions, which we label as top: [(−110,−95), (23, 27)],
mid:[(−80,−70), (16, 22)], and flat: where we sample
from a flat distribution. We also sample from a mixture
of the top and mid distributions denoted by top/mid, thus
demonstrating sampling from non-connected regions in
the Pareto front. Figure 5 shows a scatter plot of the sam-
pled values for the various methods. The simple regret
plots are shown in Figure 6.

Synthetic six-objective function. To show the viability
of our method in high-dimensions, we sample six ran-
dom functions fk : R6 → R, fk ∼ GP(0, κ), k ∈ [6]
where κ is the squared exponential kernel. Devoid of
any domain knowledge about this random function, we
linearly transform the objectives values to [0, 1] for sim-
plicity. We specify the bounding box as [ak, bk] =
[2/3, 1], ∀k ∈ [6] and denote it as the mid region, as
the weight samples are of similar magnitude. The simple
regret plot for this experiment is shown in Figure 7.

Locality Sensitive Hashing. Locality Sensitive Hashing
(LSH) (Andoni et al., 2015) is a randomized algorithm
for computing the k-nearest neighbours. LSH involves
a number of tunable parameters: the number of hash ta-
bles, number of hash bits, and the number of probes to
make for each query. The parameters affect the average
query time, precision and memory usage. While increas-
ing the number of hash tables results in smaller query
times, it leads to an increase in the memory footprint.
Similarly, while increasing the number of probes leads
to a higher precision, it increases the query time. We

2https://github.com/dragonfly/dragonfly

Figure 5: The feasible region is shown in grey. The color
of the sampled points corresponds to the iteration they
were sampled in, with brighter colors being sampled in
the later iterations. The figure titles denote the method
used and the region sampled. A complete set of results is
presented in the Appendix.

explore the trade-offs between these three objectives.

We run LSH using the publicly available FALCONN li-
brary3 on Glove word embeddings (Pennington et al.,
2014). We use the Glove Wikipedia-Gigaword dataset
trained on 6B tokens with a vocabulary size of 400K and
300-d embeddings. Given a word embedding, finding
the nearest word embedding from a dictionary of word
embeddings is a common task in NLP applications. We
consider the following three objectives to minimize with
their respective bounding boxes: Time (s) [0.0, 0.65],
1−Precision [0.0, 0.35], and the Memory (MB) [0, 1600].
The SR plots are shown in Figure 7 and the sampled ob-
jective values in Figure 8.

Viola Jones. The Viola Jones algorithm (Viola and
Jones, 2001) is a fast stagewise face detection algorithm.
At each stage a simple feature detector is run over the
image producing a real value. If the value is smaller than
a threshold the algorithm exits with a decision, otherwise
the image is processed by the next stage and so on. The
Viola Jones pipeline has 27 tunable thresholds. We treat
these thresholds as inputs and optimize for Sensitivity,
Specificity, and the Time per query. We consider the
following three objectives to minimize with their bound-
ing boxes: 1−Sensitivity [0, 0.3], 1−Specificity [0, 0.13],
and Time per query [0, 0.07]. Figure 7 shows the regret
plot for this experiment.

Results and Discussion. Figures 5 and 8 show the sam-
pling patterns of our proposed approach for the synthetic
2-d and the LSH glove experiment. We observe that our

3https://github.com/falconn-lib/falconn

https://github.com/dragonfly/dragonfly
https://github.com/falconn-lib/falconn
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Figure 6: Bayes regret plots for the synthetic two-objective function. The mean and the 90% confidence interval were
computed over 10 independent runs. The figure titles denote the sampling region and the scalarization used. We refer
the reader to the appendix for results on linear scalarization.

20 40 60 80 100
Number of evaluations (T)

−0.08

−0.07

−0.06

−0.05


B
(T
)

Mid Tch

PESM
SMSego
MOEAD
ParEGO
TS Tch
UCB Tch

(a) Synthetic 6x6 function
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(b) LSH Glove
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(c) Viola Jones

Figure 7: Bayes regret plots. The mean and the 90% confidence interval were computed over 5 runs. The figure titles
denote the region sampled and the scalarization used. A complete set of plots can be found in the appendix.

Figure 8: Sampled values for the LSH-Glove experiment
over 5 independent runs. The figure titles denote the
method used. A complete set of plots can be found in
the appendix.

approach successfully samples from the specified region
after some initial exploration, leading to a high concen-
tration of points in the desired part of the Pareto front in
the later iterations.

In Figures 6 and 7 we observe that the proposed approach
achieves a smaller or comparable regret compared to the
other baselines. We notice that the improvement is most
significant for the high dimensional experiments. A plau-
sible explanation for this could be that learning high di-
mensional surfaces have a much higher sample complex-
ity. However, our since our approach learns only a part

of the Pareto front, it is able to achieve a small regret in
a few number of samples, thus demonstrating the effec-
tiveness of our approach.

6 CONCLUSION

In this paper we proposed a MOBO algorithm for effi-
cient exploration of specific parts of the Pareto front. We
experimentally showed that our algorithm can success-
fully sample from a specified region of the Pareto front
as is required in many applications, but is still flexible
enough to sample from the whole Pareto front. Further-
more, our algorithm is computationally cheap and scales
linearly with the number of objectives.

Our approach also lends itself to a notion of regret in the
MO setting that also captures user preferences; with the
regret being high if not sampled from the specified region
or sampled outside of it. We provided a theoretical proof
of the fact that our algorithm achieves a zero regret in the
limit under necessary regularity assumptions. We exper-
imentally showed that our approach leads to a smaller or
comparable regret compared to the baselines.

Acknowledgements. This project has been been sup-
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Appendix

A Plots

Figure 9 shows the sampling patterns for all baselines,
and all combinations of the sampling region, method
and scalarization for our approach. Figure 10 show the
plots for the Bayes for all sampling regions and scalariza-
tions for the two-objective problem. Figure 11 shows the
Bayes regret for all sampling regions and scalarizations
for all the other multi-objective problems. Figure 12
shows the sampled objective values for the LSH Glove
experiment.

B Proofs

Russo and Van Roy (2014) introduce a general approach
to proving bounds on posterior sampling by decompos-
ing the regret into two sums, one capturing the fact that
the UCB upper bounds uniformly with high probability
and the other that the UCB is not a loose bound. We
begin by making a similar decomposition and bounding
each of the other terms. Our proof for TS needs the as-
sumption that the objectives are sampled independently
from their respective priors. However, no such assump-
tion is needed for UCB.

Denote by HT the history until the T − 1th round
{(xt,yt,λt)}T−1

t=1 . We assume fk ∼ GP(0, κk) have
marginal variances upper bounded by 1 for all x ∈ X
and 1 ≤ k ≤ K. Let x?t = argmaxx∈X sλt

(f(x)). De-
note by Ut(λ,x) = sλ(µ(t)(x)+

√
βtσ

(t)(x)), the UCB
as defined in Table 1 where µ(t)(x), σ(t)(x) ∈ RK are
the posterior means are variances of the K objectives at
x in step t.

We first compute regret bounds for a finite domain X ,
and then use a discretization argument to extend to con-
tinuous spaces. We begin by first proving the following
decomposition of ERC(T ), and then bound each of the
decomposed terms.

Lemma 1. For Ut as defined above, the following holds
for both UCB and TS.

ERC(T ) = E

[
T∑
t=1

(
max
x∈X

sλt(f(x))− sλt(f(xt))

)]

≤ E

[
T∑
t=1

Ut(λt,xt)− sλt
(f(xt))

]
+

E

[
T∑
t=1

sλt(f(x?t ))− Ut(λt,x?t )

]
(10)

where x?t = argmaxx∈X sλt
(f(x)).

Proof. For UCB, we use the fact that at each step
the next point to evaluate is chosen as xt =
argmaxx∈X Ut(λt,x). Thus, conditioned on the history
Ht, Ut(λt,xt) ≥ Ut(λt,x

?
t ). The lemma follows using

the tower property of expectation.

Thompson Sampling samples f ′1, . . . , f
′
k independently

from the posterior in each iteration and produces an
xt maximizing sλt(f(x)). Making use of the inde-
pendence assumption of the GP priors for TS, we ob-
serve that conditioned on the history Ht, xt has the
same distribution as x?t , resulting in E[Ut(λt,xt)|Ht] =
E[Ut(λt,x

?
t )|Ht]. We use the independence assumption

only at this point in the proof and specifically for TS.

Next we bound both the terms in the decomposition for
finite |X |, and then use a discretization based argument
to prove for continuous sets X .

B.1 Upper Bounds for Finite |X |

Lemma 2. For βt = 2 ln
(
t2|X |√

2π

)
, and Ut as defined

earlier, the following can be bounded as,

E

[
T∑
t=1

sλt
(f(x?t ))− Ut(λt,x?t )

]
≤ π2

6
E[Lλ]K (11)

Proof. We first see that,

E [sλt
(f(x?t ))− Ut(λt,x?t )]

≤ E
(
sλt

(f(x?t ))− Ut(λt,x?t )
)

+

≤
∑
x∈X

E
(
sλt

(f(x))− Ut(λt,x)
)

+

where (x)+ is defined as max(0, x). Using Lemma 6 and
the definition of Ut we can further bound,

E
(
sλt

(f(x))− Ut(λt,x)
)

+

≤ E[Lλ]

K∑
k=1

E
[(
f(x)k − µ(t)

k (x)−
√
βtσ

(t)
k (x)

)
+

]
.

Conditioned on Ht, f(x)k − µ
(t)
k (x) −

√
βtσ

(t)
k (x) follows a normal distribution

N
(
−
√
βtσ

(t)
k (x), σ

(t)
k

2
(x)
)

.

Next we use the fact that for X ∼ N (µ, σ2) and µ ≤ 0,

E[X+] ≤ σ√
2π

exp

(
− µ2

2σ2

)
. (12)



Figure 9: The plots show the sampled values for various algorithms and sampling regions. The feasible region is
shown in grey. The color of the sampled points corresponds to the iteration in which they were sampled. Brighter
colors were sampled in the later iterations. The figure titles denote the method used and the region sampled.
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Figure 10: Bayes regret plots for the synthetic two-objective function. The mean and the 90% confidence interval were
computed over 10 independent runs. The figure titles denote the sampling region and the scalarization used.
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Figure 11: Bayes regret plots. The mean and the 90% confidence interval were computed over 5 runs. The figure titles
denote the region sampled and the scalarization used.



Figure 12: Sampled values for the LSH-Glove experiment over 5 independent runs. The figure titles denote the method
used.
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2π
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Using the tower property of expectation, it follows that,

E
[
sλt

(f(x?t ))− Ut(λt,x?t )
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≤ E[Lλ]

K

t2

Summing over t, we get
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completing the proof.

Lemma 3. With the same conditions as in Lemma 2, it
holds that
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π2
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KE[Lλ]
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where L̄λ = E
[√

1
T

∑T
t=1 L

2
λt

]
.

Proof. Conditioned on C = (Ht,λt,xt), the following
holds using Lemma 6,
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where the last inequality follows from (12). Using the
tower property of expectation, we get
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where the second last step follows using Cauchy-
Schwartz inequality, and the last step used the upper
bound in terms of the MIG as shown in Srinivas et al.
(2010). Substituting L̄λ gives us the desired result.

Proposition 1. The cumulative regret incurred in Algo-
rithm 1 for both UCB and TS is upper bounded as,

L̄λ

(
KTβT

K∑
k=1

γTk

ln(1 + σ−2
k )

)1/2

+
π2

3
KE[Lλ] (14)

Proof. The proof follows directly using Lemmas 1, 2,
and 3.

B.2 Extending to continuous X

We begin with the following result due to Ghosal and
Roy (2006). For any differentiable stationary kernel κ
with 4th order derivatives and f ∼ GP(0, κ), we have
the following bound holds for some a, b > 0 such that
for all J > 0, and for all i ∈ {1, . . . , d},

P
(

sup
x

∣∣∣∣∂f(x)

∂xi

∣∣∣∣ > J

)
≤ ae−(J/b)2 . (15)

Consider a continuous set X where X ⊂ Rd. For the
sake of analysis, at each time step t we construct a finite
discretization Xt of X . Xt is constructed using a grid of
uniformly spaced points with a distance of τ−1

j between
adjacent points in each coordinate. Therefore |Xt| = τdj .
Let [x]t denote the point closest to x in Xt. Let M =



supi∈{1,...,d} supx∈X

∣∣∣∂f(x)
∂xi

∣∣∣. E
[
|f(x) − f([x]t)|

]
can

be bounded as

E
[
|f(x)− f([x]t)|

]
≤ d

τt
E[M ] ≤ d

τt

∫ ∞
0

P(M ≥ t)dt

≤ d

τt

∫ ∞
0

ae−(t/b)2dt =
dab
√
π

2τt

Let A = supKk=1 ak, B = supKk=1 bk where ak, bk cor-
respond to the above constants for the kth objective. It
follows that,

E
[
|sλ(f(x))−sλ(f([x]t))|

]
≤ KE[Lλ]

dAB
√
π

2τt
(16)

We choose τt = t2dAB
√
π/2 which gives us

E
[
|sλ(f(x))− sλ(f([x]t))|

]
≤ KE[Lλ]

1

t2
(17)

Having bounded the approximation errors due to the dis-
cretization, we are in a position to use the framework
developed for the finite case. We begin with a similar
decomposition as Lemma 1, which includes the approxi-
mation factors (Kandasamy et al., 2018). For the contin-
uous case, our treatment differs slightly for TS and UCB.
We first look at the decomposition for UCB,

Lemma 4. For the same conditions as in Lemma 1, and
[x]t as defined above, we have the following decomposi-
tion for TS,

TS:

ERC(T ) ≤ E

[
T∑
t=1

sλt(f([xt]t))− sλt(f(xt))

]
︸ ︷︷ ︸

A1

+

E

[
T∑
t=1

Ut(λt, [xt]t)− sλt
(f([xt]t))

]
︸ ︷︷ ︸

A2

+

E

[
T∑
t=1

sλt(f([x?t ]t))− Ut(λt, [x?t ]t)

]
︸ ︷︷ ︸

A3

+

E

[
T∑
t=1

sλt
(f(x?t ))− sλt

(f([x?t ]t))

]
︸ ︷︷ ︸

A4

(18)

The proof is on the same lines as Lemma 1 using the fact
that x?t and xt have the same distribution, when condi-
tioned on theHt.

We now bound each of the individual terms. A1 and
A4 can be bounded by C1KE[Lλ] using (17), for some
global constant C1. Let βt = ln

(
t2|Xt|√

2π

)
. A2 + A3 can

be bounded in the same way as Lemma 2 and 3 by con-
sidering the discretized set Xt at each time step t instead
of X .

For UCB, we have the following decomposition,

Lemma 5. For the same conditions as in Lemma 1, and
[x]t as defined above, we have the following decomposi-
tion for UCB,

UCB:

ERC(T ) ≤ E

[
T∑
t=1

Ut(λt,xt)− sλt
(f(xt))

]
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+

E
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]
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B3

(19)

The proof follows in a similar way as Lemma 1 using the
fact that Ut(λt,xt) ≥ Ut(λt, [x?t ]t).

We now bound each of the decomposed terms by consid-
ering the discretized Xt in each step, and the correspond-
ing βt. B3 can be bounded in the same way as A4 using
(17). B1 can be bounded using Lemma 3. B2 can be
bounded in the same way as Lemma 2.

This leads us to the following theorem.

Theorem 2. For βt = ln
(
t2|Xt|√

2π

)
, where |Xt| =(

t2dAB
√
π

2

)d
, for some global constants C1, C2 > 0,

the following holds for both UCB and TS,

ERC(T ) ≤ C1KE[Lλ]+

C2L̄λ

(
KT (d lnT + d ln d)

K∑
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γTk

ln(1 + σ−2
k )

)1/2

(20)

B.3 Upper bound on Bayes regret

At a high level, optimizing the cumulative regret opti-
mizes the pointwise regret for the observed λt. How-
ever, it generalizes to the unseen λ in RB(T ) that are
close to the sampled λt. This requires us to define a no-
tion of closeness or a metric on Λ. We assume that Λ is



a bounded subset of a RD. We make the assumption that
sλ(y) is J-Lipschitz in λ for all y ∈ RK , that is,

|sλ1(y)− sλ2(y)| ≤ J ‖λ1 − λ2‖1. (21)

Conditioned on the historyHT , consider the Wasserstein
or Earth Movers distance (Monge, 1781; Villani, 2008)
W1(p, p̂) between the sampling distribution p(λ) defined
on Λ, and the empirical distribution p̂ corresponding to
the samples {λt}Tt=1,

W1(p, p̂) =

inf
q

{
Eq‖X − Y ‖1, q(X) = p, q(Y ) = p̂

}
, (22)

where q is a joint distribution on the RVs X,Y , with
marginal distributions equal to p and p̂. We then have,

1

T

T∑
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sλt(f(xt))− E
[
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sλ(f(x))

]

≤ 1
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]
≤ Eq(X,Y )
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x∈X

sY (f(x))−max
x∈X

sX(f(x))

]
≤ Eq(X,Y )

{
J‖X − Y ‖1

}
Taking the infimum w.r.t. q, and the expectation w.r.t. the
historyHt, we get,

E

[
1

T
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sλt
(f(xt))

]
− E

[
max
x∈X

sλ(f(x))

]
≤ J EW1(p, p̂) (23)

Using the fact that E [maxx∈X sλ(f(x))] =
E [maxx∈X sλt

(f(x))], we get,

ERB(T ) ≤ 1

T
ERC(T )︸ ︷︷ ︸

I

+J EW1(p, p̂)︸ ︷︷ ︸
II

. (24)

As T →∞, I converges to zero at a rate of O∗(T−1/2)4

as given by Theorem 2. Term II converges to zero at a
rate of O∗(T−1/D) when D ≥ 2, under mild regulatory
conditions as shown by Canas and Rosasco (2012).

B.4 Auxilliary Results

Lemma 6. Suppose s : RD → R is L-Lipschitz in
the `1-norm, and monotonically increasing in all coor-
dinates. Then it holds that,(

s(x)− s(y)
)

+
≤ L

D∑
d=1

(xd − yd)+ (25)

where (x)+ is defined as max(0, x).
4O∗ ignores logarithmic factors.

Proof. We first note that when s(x) ≤ s(y), it holds
trivially. Now we assume s(x) > s(y). Let Ud, 0 ≤
d ≤ D be defined as

Ud =


s(x), if d = 0

s(y), if d = D

s(y1, . . . ,yd,xd+1, . . . ,xD), otherwise

Then,

0 ≤ s(x)− s(y) =

D−1∑
d=0

Ud − Ud+1.

Using the facts that Ud, Ud+1 differ only in the d + 1
component, and that s is increasing in all the compo-
nents, we get

0 ≤ s(x)− s(y)

≤
D−1∑
d=0

|Ud − Ud+1|I
(
xd+1 − yd+1 ≥ 0

)
≤
D−1∑
d=0

L|xd+1 − yd+1|I
(
xd+1 − yd+1 ≥ 0

)
= L

D∑
d=1

(xd − yd)+

concluding the proof.

C Implementation Details

The two-objective experiment was repeated 10 times
with 150 iterations per run. All other experiments were
repeated 5 time with 120 iterations per run. MOEA/D-
EGO supports batch evaluation of points in every itera-
tion. However, for fair comparison with the other meth-
ods, we set the batch size to 1.

Domain space: For all our experiments we map the in-
put domain appropriately such that X = [0, 1]d.

Initial evaluations: Similar to Kandasamy et al. (2015),
we randomly choose ninit initial points. We then evalu-
ate the MO function at the initial points before using our
optimization strategy.

Hyper-parameter estimation: To estimate the GP
hyper-parameters, the GP is fitted to the observed data
every 10 evaluations. We use the squared exponential
kernel for all our experiments. We have a separate band-
width parameter for each dimension of the input domain.
The bandwidth, scale and noise variance are estimated
by maximizing the marginal likelihood (Rasmussen and
Williams, 2006). We set the mean of the GP as the me-
dian of the observations.



UCB parameter βt: As discussed in Kandasamy et al.
(2015), βt as suggested in Srinivas et al. (2010) is
too conservative in practice, and with unknown con-
stants. Following the recommendation in Kandasamy
et al. (2015), we use βt = 0.125 log(2t + 1) for all our
experiments.

Optimizing the acquisition function We use the DiRect
algorithm (Jones et al., 1993) for optimizing the acquisi-
tion function in each iteration.
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