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Abstract
Bayesian methods for adaptive decision-making,
such as Bayesian optimisation, active learning,
and active search have seen great success in rele-
vant applications. However, real world data collec-
tion tasks are more broad and complex, as we may
need to achieve a combination of the above goals
and/or application specific goals. In such scenar-
ios, specialised methods have limited applicabil-
ity. In this work, we design a new myopic strat-
egy for a wide class of adaptive design of experi-
ment (DOE) problems, where we wish to collect
data in order to fulfil a given goal. Our approach,
Myopic Posterior Sampling (MPS), which is in-
spired by the classical posterior sampling algo-
rithm for multi-armed bandits, enables us to ad-
dress a broad suite of DOE tasks where a practi-
tioner may incorporate domain expertise about the
system and specify her desired goal via a reward
function. Empirically, this general-purpose strat-
egy is competitive with more specialised methods
in a wide array of synthetic and real world DOE
tasks. More importantly, it enables addressing
complex DOE goals where no existing method
seems applicable. On the theoretical side, we
leverage ideas from adaptive submodularity and
reinforcement learning to derive conditions un-
der which MPS achieves sublinear regret against
natural benchmark policies.

1. Introduction
Many problems in adaptive decision-making under uncer-
tainty fall into the design of experiments (DOE) framework,
where one wishes to design a sequence of experiments and
collect data so as to achieve a desired goal. For example, in
electrolyte design for batteries, a chemist would like to con-
duct experiments that measure battery conductivity in order
to identify an electrolyte design that maximises conductiv-
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ity. On a different day, she would like to experiment with
different designs to learn how the viscosity of the electrolyte
changes with the design. These two tasks, black-box optimi-
sation and active learning, fall under the umbrella of DOE
and are pervasive in industrial and scientific applications.

While several methods exist for specific DOE tasks, real
world problems are broad and complex, and specialised
methods have limited applicability. Continuing with the
electrolyte example, the chemist can typically measure both
conductivity and viscosity with a single experiment. Since
such experiments are expensive, it is wasteful to first per-
form a set of experiments to optimise conductivity and then
a fresh set to learn viscosity. Rather, it is desirable to design
a single set of experiments that simultaneously achieves both
goals. A second example is metallurgy, where one wishes to
identify phase transitions in an alloy by carefully selecting
a sequence of X-ray diffraction experiments (Bunn et al.,
2016). Here and elsewhere, the goal of the experimenter
is application specific and cannot be simply shoehorned
into standard DOE formulations such as black-box optimi-
sation, active learning, etc. In addition, domain knowledge
about the problem may need to be considered in selecting
experiments, as it may significantly reduce the number of
experiments needed to achieve the desired goal.

To address these desiderata, we develop a general and flexi-
ble framework for goal oriented DOE, where a practitioner
may specify her desired goal via a reward function λ. λ
can depend on the data collected during the DOE process
and unknown system characteristics, and hence cannot be
directly computed by a decision-maker. We then develop
an adaptive myopic strategy for DOE, inspired by posterior
(Thompson) sampling for multi-armed bandits (Thompson,
1933), which uses results from past experiments to plan
future experiments and achieve the goal, i.e. maximise λ.
Our approach has two key advantages. First, our Bayesian
formulation allows one to straightforwardly specify domain
expertise. Moreover, modern tools for probabilistic pro-
gramming enable pratitioners to apply a Bayesian algorithm
such as ours in a fairly straightforward manner. Second,
our myopic strategy is simple and computationally attrac-
tive in comparison with policies that engage in long-term
planning. Nevertheless, borrowing ideas from submodular
optimisation and reinforcement learning, we derive natural
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conditions under which our myopic policy is competitive
with the globally optimal one. Our contributions are:

1. We propose a flexible framework for DOE that allows a
practitioner to describe their system via a probabilistic
model, and specify their goal via a reward function. We
derive a general purpose algorithm, Myopic Posterior
Sampling (MPS), for this setting.

2. Empirically, we demonstrate MPS performs favourably
in a variety of synthetic and real world DOE tasks.
Despite its generality, MPS is competitive with spe-
cialised methods designed for particular settings. More
importantly, it enables DOE in non-standard application-
specific settings. Our implementation and experiments
are available at github.com/kirthevasank/mps.

3. In our theoretical analysis, we explore conditions under
which MPS, which learns about the system over time, is
competitive with myopic and globally optimal strategies
that have full knowledge of the system.

Related Work: The term DOE has been used to refer to
different settings in the literature. Classically, the focus
has been on learning an unknown system, and as such, the
objective has been framed as maximising some notion of in-
formation gathered about the system. We will refer to these
tasks as L-DOE problems to differentiate it from our set-
ting, which subsumes L-DOE. Classical L-DOE focuses on
discrete settings (Chernoff, 1972; Robbins, 1952) or linear
models (Allen-Zhu et al., 2017; Fedorov, 1972). Recently,
there have been several Bayesian approaches for L-DOE
that adopt probabilistic programming in more complex mod-
els (Ouyang et al., 2016; Rainforth, 2017). However, L-
DOE approaches may not be efficient or appropriate for
an arbitrary user-specified reward λ. Moreover, many of
these approaches are non-adaptive, aiming to find an opti-
mal batch of experiments beforehand without incorporating
feedback from completed experiments. While some do ex-
plore adaptive approaches for L-DOE, they aim for globally
optimal policies (e.g. Rainforth (2017)), which can be com-
putationally prohibitive, except in the most simple cases.

We focus on posterior sampling (PS) (Thompson, 1933) as
the bandit algorithm, since it has proven to be quite general
and admits a clean Bayesian analysis (Russo and Van Roy,
2016a). PS has been studied in a number of bandit set-
tings (Gopalan et al., 2014; Kandasamy et al., 2018; Kawale
et al., 2015), and some episodic RL problems (Gopalan and
Mannor, 2015; Osband and Van Roy, 2014; Osband et al.,
2013), where the agent is allowed to restart. In contrast, here
we study PS on a single long trajectory with no restarts.

Myopic/greedy policies, while computationally simple, are
known to be near-optimal for sequential decision making
problems with adaptive submodularity (Golovin and Krause,
2011), which generalises submodularity (Nemhauser et al.,

1978) and formalises a diminishing returns property. Adap-
tive submodularity has been used for several adaptive DOE
setups (Chen and Krause, 2013; Chen et al., 2014; 2017;
Golovin et al., 2010). However, in these work, the reward
only depends on the data collected and can be directly com-
puted by the decision-maker. In our setting, this translates to
the agent knowing the system characteristics. As such, these
results are complementary to ours: adaptive submodularity
controls the approximation error (the difference between
myopic- and globally-optimal strategies, both of which
know the system), while we control the estimation error
(how close our policy which needs to learn about the system
is to the myopic optimal policy that knows the system). As
we show in Theorem 3, with adaptive submodularity, MPS
can also compete with the globally optimal policy. In a sim-
ilar vein, Frazier et al. (2008); Wang and Powell (2018) use
knowledge gradient approaches for information collection
tasks which are framed as myopic adaptive submodular set
maximisation problems; but as before, the system is known
to the decision-maker. Prior results for learning in submod-
ular environments are episodic and allow restarts (Gabillon
et al., 2013; 2014), which is unnatural in the DOE setup.
In addition to the above, several papers have developed
Bayesian methods for specific DOE applications such as
black-box optimisation (Frazier, 2018), active search (Jiang
et al., 2018), level set estimation (Gotovos et al., 2013a) and
more (Kandasamy et al., 2015; Osborne et al., 2012).

Our theoretical analysis leverages ideas from reinforcement
learning (RL) since at each round the agent makes a decision
(what experiment to perform) with the goal of maximising a
long-term reward. In that light, one goal of our work is to un-
derstand when myopic “bandit-like” strategies perform well
in RL environments with long-term temporal dependencies.
There are two main differences with prior work (Jaksch
et al., 2010; Kearns and Singh, 2002; Liu and Brunskill,
2018; Osband and Van Roy, 2014; Strehl et al., 2009). First,
we make no explicit assumptions about the complexity of
the state and action space, instead placing assumptions on
the reward structure and optimal policy, which is a better fit
for our applications. Crucially, in our setup, the true reward
is never revealed to the agent, and instead it receives side-
observations that provide information about an underlying
parameter governing the environment. Secondly, our focus
is on understanding when myopic strategies have reasonable
performance rather than on achieving global optimality.

2. Set up and Method
Let Θ denote a parameter space, X an action space, and Y
an outcome space. We consider a Bayesian setting where
a true parameter θ? ∈ Θ is drawn from a prior distribu-
tion ρ0. A decision maker repeatedly chooses an action
X ∈ X , conducts an experiment at X , and observes the
outcome YX ∈ Y . We assume YX is drawn from a like-
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lihood P(·|X, θ?), with known distributional form. This
process proceeds for n rounds, resulting in a data sequence
Dn = {(Xj , YXj )}nj=1, which is an ordered multi-set of
action-observation pairs. Unlike, classical formalisms for
DOE, we study a setting where we intend to achieve a de-
sired goal, specified via a reward function λ : Θ×D → R,
that we wish to maximise. Here,D denotes the set of all pos-
sible data sequences. In particular, after n rounds, we focus
on the following two criteria, depending on the application:

(a) Λ(θ?, Dn) =

n∑
t=1

λ(θ?, Dt) (b) λ(θ?, Dn), (1)

Here, Dt = {(Xj , YXj )}tj=1 denotes the prefix of length t
of the data sequence Dn collected by the decision maker.
The former notion is the cumulative sum of all rewards,
while the latter corresponds to the reward once all experi-
ments are complete. Since λ depends on the unknown true
parameter θ?, the decision maker cannot compute the reward
during the data collection process, and instead must infer
the reward from observations in order to maximise it. This
is a key distinction from existing work on reinforcement
learning and sequential optimisation, and one of the new
challenges in our setting.

Example 1. A motivating example is Bayesian active learn-
ing (Chen et al., 2017). Here, actions X correspond to
data points while YX is the label and P(y|x, θ) specifies
an assumed discriminative model. We may set λ(θ,Dn) =

−‖β(θ)− β̂(Dn)‖22 where β is a parameter of interest and
β̂ is a predetermined estimator (e.g. via maximum likeli-
hood). The true reward λ(θ?, Dn) is not available to the
decision maker since it requires knowing β(θ?).

Notation: For each t ∈ N, let Dt = {(Xj , YXj )}tj=1 :
Xj ∈ X , YXj ∈ Y} denote the set of all data sequences
of length t, so that D =

⋃
t∈NDt. Let D ]D′ denote the

concatenation of two sequences. D ≺ D′ and D′ � D both
equivalently denote that D is a prefix of D′. Given a data
sequence Dt, we use Dt′ for t′ < t to denote the prefix of
the first t′ action-observation pairs.

A policy for experiment design chooses a sequence of ac-
tions {Xj}j∈N based on past actions and observations. In
particular, for a randomised policy π = {πj}j∈N, at time
t, an action is drawn from πt(Dt−1) = P(Xt ∈ ·|Dt−1).
Two policies that will appear frequently in the sequel are
π?M and π?G, both of which operate with knowledge of θ?.
π?M is the myopic optimal policy, which, from every data
sequence Dt chooses the action X maximising the expected
reward at the next step: E[λ(θ?, Dt ] {(X,YX)})|θ?, Dt].
On the other hand π?G is the non-myopic, globally optimal
adaptive policy, which in state Dt with n − t steps to go
chooses the action to maximise the expected long-term re-
ward: E[λ(θ?, Dt]{(X,YX)}]Dt+2:n) | π?G, θ?, Dt]. π?G

may depend on the time horizon n while π?M does not.

Design of Experiments via Posterior Sampling

We present a simple and intuitive myopic strategy that aims
to maximise λ based on the posterior of the data collected
so far. For this, first define the expected look-ahead reward
λ+ : Θ × D × X → [0, 1], such that λ+(θ,D, x) is the
expected reward at the next time step if θ ∈ Θ were the true
parameter, D was the current data sequence collected, and
we were to take action x ∈ X . Precisely,

λ+(θ,D, x) = EYx∼P(Y |x,θ)

[
λ
(
θ, D ] {(x, Yx)}

)]
. (2)

The proposed policy, presented in Algorithm 1, is called
MPS (Myopic Posterior Sampling) and is denoted πPS

M . At
time step t, it first samples a parameter value θ from the pos-
terior for θ? conditioned on the data, i.e. θ ∼ P(θ?|Dt−1).
Then, it chooses the action Xt that is expected to maximise
the reward λ by pretending that θ was the true parameter.
It performs the experiment at Xt, collects the observation
YXt , and proceeds to the next time step.

Algorithm 1 MPS (πPS

M )
Require: Prior ρ0 for θ?, Conditional P(Y |X, θ).

1: D0 ← ∅.
2: for t = 1, 2, . . . do
3: Sample θ ∼ ρt−1 ≡ P(θ?|Dt−1).
4: Choose Xt = argmaxx∈X λ

+
t−1(θ,Dt−1, x).

5: YXt ← conduct experiment at Xt.
6: Set Dt ← Dt−1 ∪ {(Xt, YXt)}.
7: end for

A natural question that may arise is the need to sample from
the posterior ρt−1 for θ?, instead of taking an expectation
of λ+ over ρt−1. In fact, many policies for non-adaptive
L-DOE take an expectation over the posterior (Ouyang et al.,
2016). However, in adaptive settings where θ? is unknown,
taking the expectation may fail as it may not explore suffi-
ciently. For example, in bandit problems, which is a special
case of our setting (Section 3.5), this amounts to choosing
the maximum of the posterior mean of the payoff function,
which is known to fail spectacularly.

Computational considerations: It is worth pointing out
some computational considerations in Algorithm 1. First,
sampling from the posterior in step 3 might be difficult, es-
pecially in complex Bayesian models. Fortunately however,
the field of Bayesian inference has made great strides in the
recent past with the development of fast techniques for ap-
proximate inference methods such as MCMC or variational
inference (Hensman et al., 2012; Neiswanger et al., 2015).
Moreover, today we have efficient probabilistic program-
ming tools (Bingham et al., 2018; Carpenter et al., 2017;
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Tran et al., 2017) that allow a practitioner to intuitively incor-
porate domain expertise via a prior and obtain the posterior
given data. Secondly, the maximisation of the look ahead
reward in step 4 can also be non-trivial, especially since it
might involve empirically computing the expectation in (2).
This is similar to existing work in Bayesian optimisation
which assume access to such an optimisation oracle (Bull,
2011; Srinivas et al., 2010). That said, in many practical
settings where experiments can cost significant time and
money, these considerations are less critical.

Despite these concerns, it is worth mentioning that myopic
strategies are still computationally far more attractive than
policies which try to behave globally optimally. For exam-
ple, extending MPS to a k step look-ahead might involve
an optimisation over X k in step 4 of Algorithm 1 which
might be impractical for large values of k. Moreover, in
many problems where system characteristics θ? are known
to the decision maker, myopic policies can be competitive
with globally optimal policies (Golovin and Krause, 2011;
Nemhauser et al., 1978; Wei et al., 2015). In Section 4, we
identify conditions where πPS

M can be competitive with the
globally optimal policy π?G which knows θ?.

3. Examples & Experiments
We now describe some concrete examples of DOE problems
that can be specified by a reward function λ and present
experimental results. We compare πPS

M to random sam-
pling (RAND), the myopically optimal policy π?M which
has access to θ?, and to specialised methods for the particu-
lar problem, when available. In the interest of aligning our
experiments with our theoretical analysis, we compare meth-
ods on both criteria in (1), although in these applications, the
final reward λ(θ?, Dn) is more relevant than the cumulative
one Λ(θ?, Dn). In all cases, except Experiments 2 and 4
which have conjugate priors, We use variational inference
(VI) in Edward (Tran et al., 2017) to approximate the pos-
terior P(θ?|Dt). While VI is known to underestimate the
variance in practice, it worked well in our experiments. For
better visualisation, we plot the negative reward in a semilog
plot. We defer some experimental details to Appendix D.

High-level Takeaways: Despite being a quite general,
πPS

M outperforms, or performs as well as, specialised meth-
ods. πPS

M is competitive, but typically worse than the non-
realisable π?M. Finally πPS

M enables effective DOE in com-
plex settings where no prior methods seem applicable.

3.1. Active Learning

Problem: As described previously, we wish to learn some
parameter β? = β(θ?) which is a function of the true pa-
rameter θ?. Each time we query some X ∈ X , we observe
a label Y ∼ P(Y |X, θ?). We conduct two synthetic exper-

iments in this setting. We use λ(θ?)
∆
= −‖β? − β̂(Dn)‖22

as the reward where β̂ is a regularised maximum likelihood
estimator. In addition to RAND and π?M, we compare πPS

M

to ActiveSetSelect of Chaudhuri et al. (2015).

Experiment 1: We use the following parametric model:
Yx|x, θ ∼ N (fθ(x), η2) where fθ(x) = a

1+eb(x−c)
is a lo-

gistic function. The true parameter is θ? = (a, b, c, η2) and
our goal is to estimate β? = (a, b, c). The MLE is computed
via gradient ascent on the log likelihood. In our experiments,
we used a = 2.1, b = 7, c = 6 and η2 = 0.01 as θ?. We
used normal priors N (2, 1), N (5, 3) and N (5, 3) for a, b, c
respectively and an inverse gamma IG(20, 1) prior for η2.
As the action space, we used X = [0, 10]. For variational
inference, we used a normal approximation for the posterior
for a, b, c and an inverse gamma approximation for η2. The
results are given in the first column of Figure 1.

Experiment 2: In the second example, we use the follow-
ing linear regression model: Yx|x, θ ∼ N (fθ(x), 0.01)

where fθ(x) =
∑16
i=1 θ∗iφ(x − ci). Here, φ(v) =

1√
0.2π

e−5‖v‖22 and the points c1, . . . , c16 were arranged in
a 4 × 4 grid within [0, 1]2. We set θ∗i = g(ci), with
g(v) = sin(3.9π((v1 − 0.1)2 + v2 + 0.1)). Our goal is to
estimate β? = θ?. As the action space, we used X = [0, 1]2.
The posterior for θ? was calculated in closed form using a
normal distribution N (0, I16) as the prior. The results are
given in the second column of Figure 1.

Alternative Problem Formalism: A common formalism
for parameter estimation in discriminative models (Chaud-
huri et al., 2015; Frostig et al., 2015) is to maximise the
expected likelihood of the data for a given sampling distri-
bution Γ on X . Here, one wishes to maximise λ(θ?, Dn)

∆
=

EX∼Γ,Y∼P(Y |X,θ?)[logP(Y |X, θ̂)], where θ̂ is an estimator
for θ obtained from Dn.

Experiments 3 & 4: We use the same models as in Exper-
iment 1 & 2 but with the above reward function. We let Γ
be the uniform distribution on the respective domains and θ̂
be the maximum likelihood estimator for θ. The results are
given in the third and fourth columns of Figure 1.

3.2. Posterior Estimation & Active Regression
Problem: Consider estimating a non-parametric function
fθ? , which is known to be uniformly smooth. An action
x ∈ X queries fθ? , upon which we observe Yx = fθ?(x)+ε,
where E[ε] = 0. If the goal is to learn fθ? uniformly well
in L2 error, i.e. with reward −‖fθ? − f̂(Dn)‖2, adaptive
techniques may not perform significantly better than non-
adaptive ones (Willett et al., 2006). However, if our reward
was λ(θ?, Dn)

∆
= −‖σ(fθ?)−σ(f̂(Dn))‖2 for some mono-

tone super-linear transformation σ, then adaptive techniques
may do better by requesting more evaluations at regions
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Figure 1: Results on the synthetic active learning experiments in Section 3.1. The title states the model and the dimensionality. In all
figures, the x axis is the number of experiments n. In the top four figures, the y axis is the final negative reward −λ(θ?, n) at the nth

iteration. In the bottom figures, it is the corresponding negative cumulative reward −Λ(θ?, n). Lower is better in both cases. The legend
for all plots is given in the top left figure. All curves were averaged over 20 runs, and error bars indicate one standard error.

with high fθ? value. This is because, λ(θ?, Dn) is more
sensitive to such regions due to the transformation σ.

A particularly pertinent instance of this formulation arises
in astrophysical applications where one wishes to estimate
the posterior distribution of cosmological parameters, given
some astronomical data Q (Parkinson et al., 2006). Here,
an astrophysicist specifies a prior Ξ over the cosmological
parameters Z ∈ X , and the likelihood of the data for a
given choice of the cosmological parameters x ∈ X is
computed via an expensive astrophysical simulation. The
prior and the likelihood gives rise to an unknown log joint
density1 fθ? defined on X , and the goal is to estimate the
the joint density p(Z = x,Q) = exp(fθ?(x)) so that we
can perform posterior inference. Adopting assumptions
from Kandasamy et al. (2015), we model fθ? as a Gaussian
process, which is reasonable since we expect a log density to
be smoother than the density itself. As we wish to estimate
the joint density, λ takes the above form with σ = exp.

Experiment 5: We use data on Type I-a supernova
from Davis et al (2007). We wish to estimate the posterior
over the Hubble constantH ∈ (60, 80), the dark matter frac-
tion ΩM ∈ (0, 1) and the dark energy fraction ΩE ∈ (0, 1),
which constitute our three dimensional action space X . The
likelihood is computed via the Robertson-Walker metric.
In addition to π?M and RAND, we compare πPS

M to Gaus-
sian process based exponentiated variance reduction (GP-
EVR) (Kandasamy et al., 2015) designed for this setting. We
evaluate the reward via numerical integration. The results
are presented in the first column of Figure 2.

1 One should not conflate the prior over X specified with the
astrophysics model, with prior over Θ assumed in our set up.

3.3. Level Set Estimation

Problem: In active level set estimation (LSE), one wishes
to determine which regions of a space X fall above or be-
low a given level set of an expensive to evaluate function
fθ? . An experiment evaluates this function and returns
Yx = fθ?(x) + ε, where E[ε] = 0. We adopt the setting
of Gotovos et al. (2013a), where a method for LSE returns
its predictions for being above/below the threshold on a
pre-specified set of discrete points X ′ ⊂ X . The reward
function λ is set to be average prediction accuracy.

Experiment 6: We used data on luminous red galaxies
(LRGs) to compute the galaxy power spectrum of 9 cosmo-
logical parameters including the spatial curvature, cold dark
matter density, and baryonic density. We wish to find re-
gions of the cosmological parameter space, where the power
spectrum is larger than a pre-specified threshold. Software
and data were taken from Tegmark et al (2006). We com-
pare πPS

M to random search, π?M, and the Gaussian process
based level set estimation (GP-LSE) method of Gotovos
et al. (2013a). Following Gotovos et al. (2013a), we model
the power spectrum as a GP, and define the reward function
as described above where X ′ is a set of ∼ 20K points. The
results are presented in the second column of Figure 2.

3.4. Combined and Customised Objectives

Problem: In many real world problems, one needs to design
experiments with multiple goals. For example, an experi-
ment might evaluate multiple objectives, and the task might
be to optimise some of them, while learning the parameters
for another. Classical methods specifically designed for
active learning or optimisation may not be suitable in such
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Figure 2: Results on the real experiments. The first column is for the posterior estimation problem in Sec. 3.2, the second column
is for the level set estimation problem in Sec. 3.3, and the third column is for the combined objective problem in Sec. 3.2, In the top
figures, the y axis is the negative reward −λ(θ?, Dn) and in the bottom figures, it is the negative cumulative reward −Λ(θ?, Dn) for the
corresponding experiment. See caption under Figure 1 for more details.

settings. One advantage to the proposed framework is that it
allows us to combine multiple goals in the form of a reward
function. For instance, if an experiment measures two func-
tions fθ?,1, fθ?,2 and we wish to learn f1 while optimising
f2, we can define the reward as λ(θ?, Dn) = −‖fθ?,1 −
f̂1(Dn)‖2+maxXt,t≤n

(
fθ?,2(Xt)−maxx fθ?,2(x)

)
. Here

f̂1 is an estimate for fθ?,1 obtained from the data, ‖ · ‖ is the
L2 norm and maxXt,t≤n fθ?,2(Xt) is the maximum point
of fθ?,2 we have evaluated so far. Below, we demonstrate
one such application.

Experiment 7: In battery electrolyte design, one tests an
electrolyte composition under various physical conditions.
On an experiment at x ∈ X , we obtain measurements Yx =
(Yx,sol, Yx,vis, Yx,con) which are noisy measurements of the
solvation energy fsol, the viscosity fvis and the specific
conductivity fcon. Our goal is to estimate fsol and fvis

while optimising fcon. Hence,

λ(θ?, Dn) = α
(

max
Xt,t≤n

fcon(Xt)−max
x∈X

fcon(x))

− β‖fsol − f̂sol(Dn)‖2 − γ‖fvis − f̂vis(Dn)‖2,

where, the parameters α, β, γ were chosen so as to scale
each objective and ensure that none of them dominate the
reward. In our experiment, we use the dataset from Gering
(2006). Our action space X is parametrised by the following
three variables: Q ∈ (0, 1) measures the proportion of two
solvents EC and EMC in the electrolyte, S ∈ (0, 3.5) is the
molarity of the salt LiPF6 and T ∈ (−20, 50) is the tempera-

ture in Celsius. We use the following prior which is based off
a physical understanding of the interaction of these variables.
fcon : X → R is sampled from a Gaussian process (GP),
fvis(Q,S, T ) = exp(−aT )gvis(Q,S) where gvis is sam-
pled from a GP, and fsol(Q,S, T ) = b+exp(cQ−dS−eT ).
We use inverse gamma priors for a, b, d, e and a normal prior
for c. For variational inference, we used inverse gamma ap-
proximations for a, b, d, e, a normal approximation for c,
and GP approximations for fcon and gvis. We use the poste-
rior mean of fsol and fvis under this prior as the estimates
f̂sol, f̂vis. We present the results in the third column of Fig-
ure 2 where we compare RAND, πPS

M and π?M. This is an
example of a customised DOE problem for which no prior
method seems directly applicable.

3.5. Bandits & Bayesian Optimisation

Bandits and Bayesian optimisation are self-evident special
cases of our formulation. Here, θ? specifies a function
fθ? : X → R. When we choose a point X ∈ X to eval-
uate the function, we observe YX = fθ?(X) + ε where
E[ε] = 0. In the bandit framework, the reward is the instan-
taneous regret λ(θ?, Dn) = fθ?(Xn) − maxx∈X fθ?(x).
In Bayesian optimisation, one is interested in simply
finding a single value close to the optimum and hence
λ(θ?, Dn) = maxt≤n fθ?(Xt)−maxx∈X fθ?(x). In either
case, πPS

M reduces to the Thompson sampling procedure as
argmaxx∈X λ

+(θ?, Dt−1, x) = argmaxx∈X fθ(x), where
fθ is a random function drawn from the posterior. Since
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prior work has demonstrated that TS performs empirically
well in several real world optimisation tasks (Chapelle and
Li, 2011; Hernández-Lobato et al., 2017; Kandasamy et al.,
2018), we omit experimental results for this example. One
can also cast other variants of Bayesian optimisation, includ-
ing multi-objective optimisation (Hernández-Lobato et al.,
2016; Paria et al., 2018) and constrained optimization (Gard-
ner et al., 2014), in our general formulation.

4. Theoretical Analysis
In this section we derive theoretical guarantees for πPS

M .
Our emphasis is on understanding conditions under which
myopic algorithms which need to learn θ? can perform
competitively with the myopic optimal and the globally
optimal oracles π?M, π

?
G which know θ? (see Section 2).

Going forward, to simplify the exposition, we will assume
that λ is bounded, i.e. λ : Θ × X → [0, 1]. Moreover,
w.l.o.g, we will assume for all θ ∈ Θ, supD∈D λ(θ,D) = 1.
This condition is for free since for any bounded reward λ′,
we can set λ(θ,D)

∆
= 1 + λ′(θ,D)− supD∈D λ

′(θ,D).

For criterion (a), we are interested in upper bounding
E[Λ(θ?, Dn)|Dn ∼ πPS

M ] in terms of E[Λ(θ?, Dn)|Dn ∼
π?M], which yields a cumulative regret bound, and for cri-
terion (b), we wish to bound E[λ(θ?, Dn) | Dn ∼ πPS

M ] in
terms of the analogous quantities for π?M, π

?
G, which serves

as a final regret bound. Note that a comparison with π?G on
(a) is meaningless since it might take low reward actions
in the early stages in order to do well in the long run. In
fact, our bounds for (a) will hold when λ(θ?, D) is an or-
dered multi-set function in D, but for (b) when λ(θ?, D) is
a multi-set function, i.e. the ordering does not matter. Our
bounds will hold in expectation over θ? ∼ ρ0.

The following proposition shows that without further as-
sumptions, a non-trivial regret bound is impossible. Such
results are common in the RL literature, and necessitate
several structural assumptions (Dann and Brunskill, 2015;
Jaksch et al., 2010; Kearns and Singh, 2002). Its proof is
given in Appendix B.4.

Proposition 1. For all policies π which do not know θ?,
there exists a DOE problem where Eθ?∼ρ0 [λ(θ?, D

?
n) −

λ(θ?, Dn)|D?
n ∼ π?M, Dn ∼ π] ≥ 1/2 for all n ≥ 1.

Motivated by this lower bound, we impose the following
condition on the parameter space and reward structure, un-
der which a policy can achieve sub-linear regret. For this,
first note we can assume that, at all time steps, the observa-
tions Y ∼ P(·|x, θ?) are generated for all x ∈ X , but we
only observe those for the chosen Xt. With this in consider-
ation, let EY,t+1:|θ denote expectation over all observations
generated from time t+ 1 onwards when θ? = θ.

Condition 1. Let θ, θ′ denote parameter values in Θ and
πθM, π

θ′

M be the myopically optimal policies when θ? = θ,

and θ? = θ′ respectively. Let H denote a data sequence
and Dn, D′n be the data sequences collected by πθM and
πθ
′

M respectively when starting from H when θ? = θ and
θ? = θ′ respectively, i.e. the myopically optimal policies
operate in their respective environments. Then, there exists
sequences {εn}n≥1, {τn}n≥1 such that the following hold.

1. πθM achieves asymptotically similar reward ∀ θ ∈ Θ.
That is,

sup
θ,θ′∈Θ

sup
H∈D

{
EY,|H|+1:|θ λ(θ,H ]Dn)

− EY,|H|+1:|θ′ λ(θ′, H ]D′n)
}
≤ εn.

2. The rate of convergence is better than O(1/
√
n). That

is, letting
√
τn = 1 +

∑n
j=1 εj , we have τn ∈ o(n).

The condition states that when we execute π?M, the my-
opically optimal policy which knows and depends on the
value of θ?, from any prefix H , it achieves asymptotically
similar λ for all values of θ?. It is worth emphasising that
the condition involves executing πθM in the environment
where θ? = θ. A condition of the above form seems nec-
essary for any myopic algorithm π that does not know θ?
for the following reason. Assume that the myopic π?M can
quickly achieve large λ value when θ? ∈ Θg but is slow
when θ? ∈ Θb. Since π does not know θ? it needs to hedge
against the “bad” situation, i.e. θ? ∈ Θb. However, in do-
ing so, it will necessarily perform poorly against π?M when
θ? ∈ Θg as π?M can quickly achieve large λ. Condition 1
prevents such situations. As we will see shortly, the regret
for πPS

M will depend on τn which dictates how differently
π?M can behave for different values of θ?. In particular,
sublinearity of τn is necessary for sublinear regret with π?M.

In Appendix C we provide a more interpretable sufficient
condition which implies Condition 1, and demonstrate that
it is satisfied with τn ∈ O(1) for bandit and black-box
optimisation problems and τn ∈ O(log n) for an active
learning problem. We also consider a setting where λ has
“state-like” structure; under assumptions similar to standard
assumptions in reinforcement learning with ergodic Markov
decision processes, we are able to show that Condition 1
holds. Finally we mention that if Condition 1 holds for two
reward functions λ1, λ2, it is also true for the sum, λ1 + λ2,
and the product, λ1 ·λ2, and can thus be applied to combined
objective settings such as in Section 3.4.

Before stating the main theorem, we introduce the maxi-
mum information gain, Ψn, which captures the statistical
difficulty of the learning problem.

Ψn = max
Dn⊂Dn

I(θ?;Dn). (3)

Here I(·; ·) is the Shannon mutual information. Ψn

measures the maximum information a set of n action-
observation pairs can tell us about the true parameter θ?.
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The quantity appears as a statistical complexity measure
in many Bayesian adaptive data analysis settings (Gotovos
et al., 2013b; Ma et al., 2015; Srinivas et al., 2010). Below,
we list some examples of common models which demon-
strate that Ψn is typically sublinear in n.

Example 2. We have the following bounds on Ψn for com-
mon models (Srinivas et al., 2010):

1. Finite sets: If Θ is finite, Ψn ≤ log(|Θ|) for all n.

2. Linear models: Let X ⊂ Rd, θ ∈ Rd, and Yx|x, θ ∼
N (θ>x, η2). For a multi-variate Gaussian prior on
θ?, Ψn ∈ O(d log(n)).

3. Gaussian process: For a Gaussian process prior with
RBF kernel over a compact domain X ⊂ Rd, and with
Gaussian likelihood, we have Ψn ∈ O(log(n)d+1).

We now state our main theorem for finite action spaces X .

Theorem 2. Let X be finite and assume Condition 1 holds.
Let τn be as defined in Condition 1. Then,

E[Λ(θ?, π
?
M)− Λ(θ?, π

PS

M )] ≤
√
|X |nτnΨn

2
.

Theorem 2 establishes a sublinear regret bound for πPS

M

against π?M when τnΨn ∈ o(n). The |X | term captures the
complexity of our action space, Ψn captures the complexity
of the prior on θ?. The

√
n dependence is in agreement

with prior results for Thompson sampling (Kaufmann et al.,
2012; Russo and Van Roy, 2016b). Thus, under Condition 1,
πPS

M is competitive with the myopic optimal policy π?M, with
average regret tending to 0.

We now compare πPS

M to the globally optimal policy π?G,
when λ is a multi-set function, i.e. the ordering in Dn

does not matter. For this, we first introduce the notions of
monotonicity and adaptive submodularity.

Condition 2. (Monotonicity and Adaptive Submodular-
ity (Golovin and Krause, 2011)) Let EYx denote the ex-
pectation over the likelihood Yx ∼ P(·|x, θ?). The follow-
ing two statements are true for all θ ∈ Θ, D,D′ ∈ D,
D ≺ D′, and x ∈ X . λ is a monotone, meaning that
EYx [λ(θ,D ] {(x, Yx)})] ≥ λ(θ,D). Moreover, λ is adap-
tive submodular, meaning that,

EYx [λ(θ,D ] {(x, Yx)})]− λ(θ?, D)

≥ EYx [λ(θ,D′ ] {(x, Yx)})]− λ(θ?, D
′).

Monotonicity states that adding more data increases the
reward in expectation, while adaptive submodularity for-
malises a notion of diminishing returns. That is, performing
the same action is more beneficial when we have less data.
It is easy to see that some assumption is needed here, since

even in simple problems π?M can be arbitrarily worse than
π?G. We now state the second main result of this paper.

Theorem 3. Assume that λ satisfies conditions 1 and 2. Let
τn be as defined in Theorem 2. Then, for all γ < 1, we have

E[λ(θ?, Dn)|Dn ∼ π
PS

M ] ≥

(1− γ)E[λ(θ?, D
?
γn)|D?

γn ∼ π?G]−
√
|X |τnΨn

2n
.

The theorem states that πPS

M in n steps is guaranteed to
perform up to a 1 − γ factor as well as π?G executed for
γn < n steps, up to an additive

√
τnΨn/n term. The result

captures both approximation and estimation errors, in the
sense that we are using a myopic policy to approximate a
globally optimal one, and we are learning a good myopic
policy from data. In comparison, prior works on adaptive
submodular optimisation focus on approximation errors and
typically achieve 1−1/e approximation ratios against the n
steps of π?G. Our bound is quantitatively worse, but focusing
on a much more difficult task, and we view the results as
complementary. Observe that an analogous bound holds
against π?M, since it is necessarily worse that π?G.

Finally, we believe that the above results can be generalised
to large or infinite action spaces under additional structure
on λ. For example, when X ⊂ Rd, and the expected re-
wards are linear in the actions taken, we expect an O(d)
dependence similar to linear bandit settings (Agrawal and
Goyal, 2013; Russo and Van Roy, 2016b). Algorithm 1 can
be applied as is when we can execute multiple experiments
in parallel. We expect that similar results to Theorems 2
and 3 should hold, with mild dependence on the number of
workers, using similar analyses to Kandasamy et al. (2018).

5. Conclusion
We study settings for adaptive goal oriented DOE problems
in a Bayesian setting. Our formulation is quite general, al-
lowing practitioners to incorporate domain knowledge via a
probabilistic model, and specify their goal via a reward func-
tion that may depend on system characteristics. We focus
on myopic policies due to their computational simplicity.
Yet, our empirical results demonstrate that MPS has broad
applicability, performing favourably with more specialised
methods, and enabling complex DOE tasks where existing
methods are not applicable. Our theoretical results estab-
lish conditions under which a myopic algorithm based on
posterior sampling is competitive with myopic and globally
optimal policies, both of which know the underlying system
parameters. One interesting avenue for future theoretical
work is to relax and/or find other conditions under which
myopic strategies can do well. For instance, we believe
that Condition 1 is stronger than necessary, and that it is
sufficient if π?M is able to do well in its own environment.



Myopic Posterior Sampling for Adaptive Goal Oriented Design of Experiments

Acknowledgements

This research is partly funded by DOE grant DESC0011114,
NSF grant IIS1563887, the Darpa D3M program, AFRL,
and Toyota Research Institute, Accelerated Materials De-
sign & Discovery (AMDD) program. KK is supported by a
Facebook fellowship and a Siebel scholarship. AK is sup-
ported in part by NSF Award IIS-1763618. KK and AK
would like to thank La Flamenca, Lanzarote for their deli-
cious vegetarian paellas, which fueled the initial ideas for
our theoretical analysis.

References
Shipra Agrawal and Navin Goyal. Thompson sampling for

contextual bandits with linear payoffs. In International
Conference on Machine Learning, pages 127–135, 2013.

Zeyuan Allen-Zhu, Yuanzhi Li, Aarti Singh, and Yining
Wang. Near-optimal design of experiments via regret
minimization. In International Conference on Machine
Learning, pages 126–135, 2017.

Eli Bingham, Jonathan P Chen, Martin Jankowiak, Fritz
Obermeyer, Neeraj Pradhan, Theofanis Karaletsos, Rohit
Singh, Paul Szerlip, Paul Horsfall, and Noah D Goodman.
Pyro: Deep universal probabilistic programming. arXiv
preprint arXiv:1810.09538, 2018.

Adam D. Bull. Convergence Rates of Efficient Global Opti-
mization Algorithms. JMLR, 2011.

Jonathan Kenneth Bunn, Jianjun Hu, and Jason R Hattrick-
Simpers. Semi-supervised approach to phase identifica-
tion from combinatorial sample diffraction patterns. JOM,
68(8):2116–2125, 2016.

Bob Carpenter, Andrew Gelman, Matthew D Hoffman,
Daniel Lee, Ben Goodrich, Michael Betancourt, Mar-
cus Brubaker, Jiqiang Guo, Peter Li, and Allen Riddell.
Stan: A probabilistic programming language. Journal of
statistical software, 76(1), 2017.

Olivier Chapelle and Lihong Li. An empirical evaluation of
thompson sampling. In Advances in neural information
processing systems, pages 2249–2257, 2011.

Kamalika Chaudhuri, Sham M Kakade, Praneeth Netrapalli,
and Sujay Sanghavi. Convergence rates of active learning
for maximum likelihood estimation. In Advances in Neu-
ral Information Processing Systems, pages 1090–1098,
2015.

Yuxin Chen and Andreas Krause. Near-optimal batch mode
active learning and adaptive submodular optimization.
ICML (1), 28:160–168, 2013.

Yuxin Chen, Hiroaki Shioi, Cesar Fuentes Montesinos,
Lian Pin Koh, Serge Wich, and Andreas Krause. Active
detection via adaptive submodularity. In ICML, pages
55–63, 2014.

Yuxin Chen, S Hamed Hassani, Andreas Krause, et al. Near-
optimal bayesian active learning with correlated and noisy
tests. Electronic Journal of Statistics, 11(2):4969–5017,
2017.

Herman Chernoff. Sequential analysis and optimal design.
Siam, 1972.

Christoph Dann and Emma Brunskill. Sample complexity
of episodic fixed-horizon reinforcement learning. In Ad-
vances in Neural Information Processing Systems, pages
2818–2826, 2015.

T. M. Davis et al. Scrutinizing Exotic Cosmological Models
Using ESSENCE Supernova Data Combined with Other
Cosmological Probes. Astrophysical Journal, 2007.

Valerii Vadimovich Fedorov. Theory of optimal experiments.
Elsevier, 1972.

Peter I Frazier. A tutorial on bayesian optimization. arXiv
preprint arXiv:1807.02811, 2018.

Peter I Frazier, Warren B Powell, and Savas Dayanik. A
knowledge-gradient policy for sequential information col-
lection. SIAM Journal on Control and Optimization, 47
(5):2410–2439, 2008.

Roy Frostig, Rong Ge, Sham M Kakade, and Aaron Sidford.
Competing with the empirical risk minimizer in a single
pass. In Conference on learning theory, pages 728–763,
2015.

Victor Gabillon, Branislav Kveton, Zheng Wen, Brian Eriks-
son, and S Muthukrishnan. Adaptive submodular maxi-
mization in bandit setting. In Advances in Neural Infor-
mation Processing Systems, pages 2697–2705, 2013.

Victor Gabillon, Branislav Kveton, Zheng Wen, Brian Eriks-
son, and S Muthukrishnan. Large-scale optimistic adap-
tive submodularity. In AAAI, pages 1816–1823, 2014.

Jacob R Gardner, Matt J Kusner, Zhixiang Eddie Xu, Kil-
ian Q Weinberger, and John P Cunningham. Bayesian
optimization with inequality constraints. In ICML, pages
937–945, 2014.

Kevin L Gering. Prediction of electrolyte viscosity for aque-
ous and non-aqueous systems: Results from a molecular
model based on ion solvation and a chemical physics
framework. Electrochimica Acta, 51(15):3125–3138,
2006.



Myopic Posterior Sampling for Adaptive Goal Oriented Design of Experiments

Daniel Golovin and Andreas Krause. Adaptive submod-
ularity: Theory and applications in active learning and
stochastic optimization. Journal of Artificial Intelligence
Research, 42:427–486, 2011.

Daniel Golovin, Andreas Krause, and Debajyoti Ray. Near-
optimal bayesian active learning with noisy observations.
In Advances in Neural Information Processing Systems,
pages 766–774, 2010.

Aditya Gopalan and Shie Mannor. Thompson sampling for
learning parameterized markov decision processes. In
Conference on Learning Theory, pages 861–898, 2015.

Aditya Gopalan, Shie Mannor, and Yishay Mansour. Thomp-
son sampling for complex online problems. In Interna-
tional Conference on Machine Learning, pages 100–108,
2014.

Alkis Gotovos, Nathalie Casati, Gregory Hitz, and Andreas
Krause. Active Learning for Level Set Estimation. In
IJCAI 2013, Proceedings of the 23rd International Joint
Conference on Artificial Intelligence, Beijing, China, Au-
gust 3-9, 2013, 2013a.

Alkis Gotovos, Nathalie Casati, Gregory Hitz, and Andreas
Krause. Active learning for level set estimation. In IJCAI,
pages 1344–1350, 2013b.

James Hensman, Magnus Rattray, and Neil D Lawrence.
Fast variational inference in the conjugate exponential
family. In Advances in neural information processing
systems, pages 2888–2896, 2012.

Daniel Hernández-Lobato, Jose Hernandez-Lobato, Amar
Shah, and Ryan Adams. Predictive entropy search for
multi-objective bayesian optimization. In International
Conference on Machine Learning, pages 1492–1501,
2016.
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A. Some Information Theoretic Results

We will need the following technical results for our analysis. The first is a version of Pinsker’s inequality.

Lemma 4 (Pinsker’s inequality). LetX,Z ∈ X be random quantities and sup f−inf f ≤ B. Then,
∣∣E[f(X)]−E[f(Z)]

∣∣ ≤
B
√

1
2KL(P (X)‖P (Z)).

The next, taken from Russo and Van Roy (2016b), relates the KL divergence to the mutual information for two random
quantities X,Y .

Lemma 5 (Russo and Van Roy (2016b), Fact 6). For random quantities X,Z ∈ X , I(X;Z) = EX [KL(P (Y |X)‖P (Y ))].

The next result is a property of the Shannon mutual information.

Lemma 6. Let X,Y, Z be random quantities such that Y is a deterministic function of X . Then, I(Y ;Z) ≤ I(X;Z).

Proof. Let Y ′ capture the remaining randomness in X so that X = Y ∪ Y ′. Since conditioning reduces entropy, I(Y ;Z) =
H(Z)−H(Z|Y ) ≤ H(Z)−H(Z|Y ∪ Y ′) = I(X;Z).

B. Proofs

B.1. Notation and Set up

In this subsection, we will introduce some notation, prove some basic lemmas, and in general, lay the groundwork for our
analysis. P,E denote probabilities and expectations. Pt,Et denote probabilities and expectations when conditioned on
the actions and observations up to and including time t, e.g. for any event E, Pt(E) = P(E|Dt). For two data sequences
A,B, A ]B denotes the concatenation of the two sequences. When x ∈ X , Yx will denote the random observation from
P(Y |x, θ).

Let Jn(θ?, π) denote the expected sum of cumulative rewards for fixed policy π after n evaluations under θ?, i.e. Jn(θ?, π) =
E[Λ(θ?, Dn)|θ?, Dn ∼ π] (Recall (1)). Let Dt ∈ Dt be a data sequence of length t. Then, Qπ(Dt, x, y) will denote the
expected sum of future rewards when, having collected the data sequence Dn, we take action x ∈ X , observe y ∈ Y and
then execute policy π for the remaining n− t− 1 steps. That is,

Qπ(Dt, x, y) = λ(θ?, Dj ] {(x, y)}) + EFt+2:n

[ n∑
j=t+2

λ(θ?, Dj ] {(x, y)} ] Ft+2:j)

]
. (4)

Here, the action-observation pairs collected by π from steps t+ 2 to n are Ft+2:n. The expectation is over the observations
and any randomness in π. While we have omitted for conciseness, Qπ is a function of the true parameter θ?. Let dtπ denote
the distribution of Dt when following a policy π for the first t steps. We then have, for all t ≤ n,

Jn(θ?, π) = EDt∼dtπ

[ t∑
j=1

λ(θ?, Dj)

]
+ EDt∼dtπ

[
EX∼π(Dt)[Q

π(Dt, X, YX)]
]
, (5)

where, recall, YX is drawn from P(Y |X, θ?). The following Lemma decomposes the regret Jn(θ?, π
?
M)− Jn(θ?, π) as a

sum of terms which are convenient to analyse. The proof is adapted from Lemma 4.3 in Ross and Bagnell (2014).

Lemma 7. For any two policies π1, π2,

Jn(θ?, π2)− Jn(θ?, π1) =

n∑
t=1

EDt−1∼dt−1
π1

[
EX∼π1(Dt−1) [Qπ2(Dt−1, X, YX)]− EX∼π2(Dt−1) [Qπ2(Dt−1, X, YX)]

]
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Proof. Let πt be the policy that follows π1 from time step 1 to t, and then executes policy π2 from t+ 1 to n. Hence, by (5),

Jn(θ?, π
t) = EDt−1∼dt−1

π

[ t−1∑
j=1

λ(θ?, Dj)

]
+ EDt−1∼dt−1

π1

[
EX∼π1(Dt−1)[Q

π2(Dt−1, X, YX)]
]
,

Jn(θ?, π
t−1) = EDt−1∼dt−1

π

[ t−1∑
j=1

λ(θ?, Dj)

]
+ EDt−1∼dt−1

π1

[
EX∼π2(Dt−1)[Q

π2(Dt−1, X, YX)]
]
.

The claim follows from the observation, J(θ?, π1)− J(θ?, π2) = J(θ?, π
n)− J(θ?, π

0) =
∑n
t=1 J(θ?, π

t)− J(θ?, π
t−1).

We will use Lemma 7 with π2 as the policy π?M which knows θ? and with π1 as the policy π whose regret we wish to bound.
For this, denote the action chosen by π when it has seen data Dt−1 as Xt and that taken by π?M as X ′t. By Lemma 7 and
equation (4) we have,

Eθ? [Jn(θ?, π
?
M)− Jn(θ?, π)] =

n∑
t=1

EDt−1

[
Et−1

[
Qπ

?
M(Dt−1, X

′
t, YX′t)−Q

π?M(Dt−1, Xt, YXt)
]]

= E
n∑
t=1

Et−1

[
qt(θ?, X

′
t, YX′t)− qt(θ?, Xt, YXt)

]
, (6)

where we have defined

qt(θ?, x, y) = Qπ
?
M(Dt−1, x, y). (7)

Note that the randomness in qt stems from its dependence on θ? and future observations.

B.2. Proof of Theorem 2

We will let P̃t−1 denote the distribution of Xt given Dt−1; i.e. P̃t−1(·) = Pt−1(Xt = ·). The density (Radon-Nikodym
derivative) p̃t−1 of P̃t−1 can be expressed as p̃t−1(x) =

∫
Θ
p?(x|θ? = θ)p(θ? = θ|Dt−1)dθ where p?(x|θ? = θ) is the

density of the maximiser of λ given θ? = θ and p(θ? = ·|Dt−1) is the posterior density of θ? conditoned on Dt−1. Note
that p?(x|θ? = θ) puts all its mass at the maximiser of λ+(θ,Dt−1, x). Hence, Xt has the same distribution as X ′t; i.e.
Pt−1(X ′t = ·) = P̃t−1(·). This will form a key intuition in our analysis. To this end, we begin with a technical result, whose
proof is adapted from Russo and Van Roy (2016b). We will denote by It−1(A;B) the mutual information between two
variablesA,B under the posterior measure after having seenDt−1; i.e. It−1(A;B) = KL(Pt−1(A,B)‖Pt−1(A)·Pt−1(B)).

Lemma 8. Assume that we have collected a data sequence Dt−1. Let the action taken by πPS

M at time instant t with Dt−1

be Xt and the action taken by π?M be X ′t. Then,

Et−1[qt(θ?, X
′
t, YX′t)− qt(θ?, Xt, YXt)] =

∑
x∈X

(
Et−1[qt(θ?, x, Yx)|X ′t = x]− Et−1[qt(θ?, x, Yx)]

)
P̃t−1(x)

It−1(X ′t; (Xt, YXt)) =
∑

x1,x2∈X
KL(Pt−1(Yx1

|X ′t = x2)‖Pt−1(Yx1
)) P̃t−1(x1)P̃t−1(x2)

Proof. The proof for both results uses the fact that Pt−1(Xt = x) = Pt−1(X ′t = x) = P̃t−1(x). For the first result,

Et−1[qt(θ?, X
′
t, YX′t)− qt(θ?, Xt, YXt)]

=
∑
x∈X

Pt−1(X ′t = x)Et−1[qt(θ?, X
′
t, YX′t)|X

′
t = x]−

∑
x∈X

Pt−1(Xt = x)Et−1[qt(θ?, Xt, YXt)|Xt = x]

=
∑
x∈X

Pt−1(X ′t = x)Et−1[qt(θ?, x, Yx)|X ′t = x]−
∑
x∈X

Pt−1(Xt = x)Et−1[qt(θ?, x, Yx)]

=
∑
x∈X

(
Et−1[qt(θ?, x, Yx)|X ′t = x]− Et−1[qt(θ?, x, Yx)]

)
P̃t−1(x) .
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The second step uses that the observation Yx does not depend on the fact that x may have been chosen by πPS

M ; this is
because πPS

M makes its decisions based on past data Dt−1 and is independent of θ? given Dt−1. Yx however can depend on
the fact that x may have been the action chosen by π?M which knows θ?. For the second result,

It−1(X ′t; (Xt, YXt)) = It−1(X ′t;Xt) + It−1(X ′t;YXt |Xt) = It−1(X ′t;YXt |Xt)

=
∑
x1∈X

Pt−1(Xt = x1) It−1(Xt;YXt |Xt = x) =
∑
x1∈X

P̃t−1(x1) It−1(X ′t;Yx1
)

=
∑
x1∈X

P̃t−1(x1)
∑
x2∈X

Pt−1(X ′t = x2) KL(Pt−1(Yx1
|X ′t = x2)‖Pt−1(Yx1

))

=
∑

x1,x2∈X
KL(Pt−1(Yx1

|X ′t = x2)‖Pt−1(Yx1
)) P̃t−1(x1)P̃t−1(x2)

The first step uses the chain rule for mutual information. The second step uses that Xt is chosen based on an external source
of randomness and Dt−1; therefore, it is independent of θ? and hence X ′t given Dt−1. The fourth step uses that Yx1

is
independent of Xt. The fifth step uses lemma 5 in Appendix A.

We are now ready to prove theorem 2.

Proof of Theorem 2: Using the first result of Lemma 8, we have,

Et−1[qt(θ?, X
′
t, YX′t)− qt(θ?, Xt, YXt)]

2

=

(∑
x∈X

P̃t−1(x)
(
Et−1[qt(θ?, x, Yx)|X ′t = x]− Et−1[qt(θ?, x, Yx)]

))2

(a)

≤ |X |
∑
x∈X

P̃t−1(x)2
(
Et−1[qt(θ?, x, Yx)|X ′t = x]− Et−1[qt(θ?, x, Yx)]

)2
(b)

≤ |X |
∑

x1,x2∈X
P̃t−1(x1)P̃t−1(x2)

(
Et−1[qt(θ?, x1, Yx1

)]− Et−1[qt(θ?, x1, Yx1
)|X ′t = x2]

)2
(c)

≤ |X |
∑

x1,x2∈X
P̃t−1(x1)P̃t−1(x2)EYx1

[(
Et−1[qt(θ?, x1, y)|Yx1

= y]− Et−1[qt(θ?, x1, y)|X ′t = x2, Yx1
= y]

)2]
(8)

(d)

≤ |X |
2

∑
x1,x2∈X

τn−tP̃t−1(x1)P̃t−1(x2)EYx1
[
KL(Pt−1(Yx1

|X ′t = x2, Yx1
= y)‖Pt−1(Yx1

|Yx1
= y))

]
(e)

≤ |X |
2

∑
x1,x2∈X

τn−tP̃t−1(x1)P̃t−1(x2)KL(Pt−1(Yx1
|X ′t = x2)‖Pt−1(Yx1

))

(f)
=

1

2
|X |τnIt−1(X ′t; (Xt, YXt))

(g)

≤ 1

2
|X |τnIt−1(θ?; (Xt, YXt))

Here, step (a) uses the Cauchy-Schwarz inequality and step (b) uses the fact that the previous line can be viewed as the
diagonal terms in a sum over x1, x2. Step (c) conditions on Yx1

= y and applies Jensen’s inequality. Step (e) uses the
definition of conditional KL divergence. Step (f) uses the second result of Lemma 8, and step (g) uses Lemma 6 and the
fact that X ′t is a deterministic function of θ? given Dt−1. For step (d), we use the version of Pinsker’s inequality given in
Lemma 4 in conjunction with Condition 1. Precisely, we let H in Condition 1 to be Dt−1 ] {(x, y)}. Now using (7) and (4),
and the fact that π?M is deterministic, we can write,

qt(θ1, x, y)− qt(θ2, x, y)

= λ(θ1, Dt−1 ] {(x, y)})− λ(θ2, Dt−1 ] {(x, y)}) +
n∑
j=1

EY,t+1:n|θ1
[
λ(θ1, Dt−1 ] {(x, y)} ] Fj,1)

]
− EY,t+1:n|θ2

[
λ(θ2, Dt−1 ] {(x, y)} ] Fj,2)

]
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≤ 1 +

n∑
t=1

εt ≤
√
τn−t.

Here, Fn,i is the data collected by π?M when θ? = θi, having observed H , and Fj,i is its prefix of length j. The last step uses
Condtion 1. Hence, by Lemma 4, the term with the squared paranthesis in (8) can be bounded by τn−tKL(Pt−1(Yx1

|X ′t =
x2)‖Pt−1(Yx1

)).

Now, using (6) and the Cauchy-Schwarz inequality we have,

E[Jn(θ?, π
?
M)− Jn(θ?, π

PS

M )]2 ≤ n
n∑
t=1

1

2
|X |τnIt−1(θ?; (Xt, YXt)) =

1

2
|X |τnI(θ?;Dn)

Here the last step uses the chain rule of mutual information in the following form,∑
t

It−1(θ?; (Xt, YXt)) =
∑
t

I(θ?; (Xt, YXt)|{(Xj , YXj )}t−1
j=1) = I(θ?; {(Xj , YXj )}nj=1).

The claim follows from the observation, I(θ?;Dn) ≤ Ψn.

B.3. Proof of Theorem 3

In this section, we will let D??
m be the data collected π?G in m steps and D?

n be the data collected by π?M in n steps. We will
use the following result on adaptive submodular maximisation from (Golovin and Krause, 2011).

Lemma 9. (Theorem 38 in Golovin and Krause (2011), modified) Under condition 2, we have for all θ? ∈ Θ,

EY [λ(θ?, D
?
n)] ≥ (1− e−n/m)EY [λ(θ?, D

??
m )]

Lemma 10 controls the approximation error when we approximate the globally optimal policy which knows θ? with the
myopic policy which knows θ?. Our proof of theorem 3, combines the above result with Theorem 2, to show that MPS can
approximate π?G under suitable conditions.

Proof of Theorem 3. Let Dn be the data collected by πPS

M . By monotonicity of λ, and the fact that the maximum is larger
than the average we have E[λ(θ?, Dn)] ≥ 1

n

∑n
t=1 E[λ(θ?, Dt)] = 1

nE[Λ(θ?, Dn)]. Using theorem 2 the following holds
for all m,

E[λ(θ?, Dn)] ≥ 1

n

(
E [Λ(θ?, D

?
n)]−

√
|X |τnnΨn

2

)
=

1

n

n∑
t=1

Eθ? [EY [λ(θ?, D
?
t )]]−

√
|X |τnΨn

2n

≥ E[λ(θ?, D
??
m )]

1

n

n∑
t=1

(1− e−t/m)−
√
|X |τnΨn

2n

≥ E[λ(θ?, D
??
m )](1− m

n
e−1/m − 1

n
e−1/m)−

√
|X |τnΨn

2n
.

Here, the first step uses Theorem 2, the second step rearranges the expectations noting that λ takes the expectation over the
observations. The third step uses Lemma 9 for each t. The last step bounds the sum by an integral as follows,

n∑
t=1

e−t/m ≤ e−1/m +

∫ ∞
1

e−t/mdt ≤ e−1/m +me−1/m.

The result follows by using m = γn.
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B.4. Proof of Lower Bound (Proposition 1)

Consider a setting with uniform prior over two parameters θ0, θ1 with two actions X0, X1. Set λ(θi, D) = 1{Xi /∈ D}. If
θ? = θ0, then π?M will repeatedly choose X1 and achieve reward 1 on every time step, and similarly when θ? = θ1. On the
other hand, conditioned on any randomness of the decision maker (which is external to the randomness of the prior and the
observations), the first decision for the decision maker must be the same for both choices of θ?. Hence, for one of the two
choices for θ?, λ(θ?, Dn) = 0 for all n. Since the prior is equal on both θ0, θ1, the average instantaneous regret is at least
1/2. �

C. On Condition 1

The following proposition shows that when the myopic policy has value 1, and achieves this at a fast enough rate, for all
values of θ, we satisfy Condition 1. For this, let θ, θ′, πθM, π

θ′

M, Dn, D
′
n,EY,t+1: be as defined in Condition 1.

Proposition 10. (π?M has value 1). Let πθM denote the myopically optimal policy when θ? = θ. Assume there exists a
sequence {ε′n}n≥1 such that,

sup
θ∈Θ

sup
H∈D

(
1− EY,|H|+1[λ(θ,H ]Dn)]

)
≤ ε′n.

Then, Condition 1 is satisfied with εn = ε′n.

Proof. Let H ∈ D and θ, θ′ ∈ Θ. Then,

EY,|H|+1|θλ(θ,H ]Dn)− EY,|H|+1|θ′λ(θ′, H ]D′n)

=
(
EY,|H|+1|θλ(θ,H ]Dn)− 1

)
+
(

1− EY,|H|+1|θ′λ(θ′, H ]D′n)
)
≤ ε′n,

since the first term is always negative.

We next show two examples of DOE problems where the condition in Proposition 10 is satisfied.

C.1. Bandits & Bayesian Optimisation

In both settings, the parameter θ? specifies a function fθ? : X → R. When we choose a point X ∈ X to evaluate
the function, we observe YX = fθ?(X) + ε where E[ε] = 0. In the bandit framework, we can define the reward
to be λ(θ?, Dn) = 1 + fθ?(Xn) − maxx∈X fθ?(x) which is equivalent to maximising the instantaneous reward. In
Bayesian optimisation, one is interested in simply finding a single value close to the optimum and hence λ(θ?, Dn) =
1 + maxt≤n fθ?(Xt)−maxx∈X fθ?(x).

In both cases, since π?M knows it will always choose argmaxx∈X fθ?(x) achieving reward 1. Thus Proposition 10 is satisfied
with εn = 0 and τn = 1.

C.2. An Active Learning Example

We describe an active learning task on a Bayesian linear regression problem, and outline how it can be formulated to satisfy
the conditions in Section 4.

In this example, our parameter space is Θ = {θ = (β, η2)|β ∈ Rk, η2 ∈ [a, b]} for some positive numbers b > a > 0. We
will assume the following prior on θ? = (β?, η

2
?),

β? ∼ N (0k,P
−1
0 ), η2

? ∼ Unif(a, b),

where P0 ∈ Rk×k is the non-singular precision matrix of the Gaussian prior for β?. Our domain X = {x ∈ Rk; ‖x‖2 ≤ 1}
is the unit ball in Rk and Y = R. When we query the model at x ∈ X , we observe Yx = β>x+ ε where ε ∼ N (0, η2). Our
goal in DOE is to choose a sequence of experiments {Xt}t ⊂ X so as to estimate β well.

Given a dataset Dn = {(xj , yj)}nj=1, a natural quantity to characterise how well we have estimated β? in the Bayesian
setting is via the entropy of the posterior for β. This ensures that the data is sampled also considering the uncertainty in
the prior. For example, if the prior covariance is small along certain directions, an active learning agent is incentivised
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to collect data so as to minimise the variance along other directions. Specifically, in this example, we wish to minimise
H(β?|Dn = Dn, η

2
? = η2

?), the entropy of β? assuming we have collected data Dn and the true η2
? value were to be revealed

at the end. It is straightforward to see that, P(β?|η2
?, Dn) = N (µn,P

−1
n ), where,

Pn = P0 +
1

η2
?

n∑
j=1

xjx
>
j , µn = Pn

n∑
j=1

yjxj .

The entropy of this posterior is

H(β?|Dn = Dn, η
2
? = η2

?) =
1

2
log det(2πeP−1

n ) =
k

2
log(2πe)− 1

2
log det Pn.

Minimising the posterior entropy can be equivalently formulated as maximising the following reward function,

λ(θ?, Dn) = 1− 1

det Pn
= 1− 1

det
(
P0 + 1

η2?

∑n
j=1 xjx

>
j

) . (9)

The reward depends on θ? due to the η2
? term, and an adaptive policy can be expected to do better than a non-adaptive one

since the observations {yj}nj=1 can inform us about the true value of η2
?.

Note that since λ(θ?, Dn) is a multi-set function, Dn can be viewed as a (non-ordered) mulit-set and the ] operator is
simply the union operator. We will now demonstrate that λ satisfies the two conditions set out in Section 4.

Condition 1: We will show that it satisfies the condition in Proposition 10. Let c be the smallest eigenvalue of P0. For a
given data set H = {(xj , yj)}mj=1 of size m, denote PH0 = P0 + 1

η2?

∑m
i=1 xjx

>
j . Moreover, assume that the points chosen

by π?M in X are z1, z2, . . . . Note that this is a deterministic sequence since π?M knows η2
? and the reward does not depend on

the observations.

Let PHn = PH0 + 1
η2?

∑n
i=1 zjz

>
j and denote its eigenvalues by σ1 > σ2 > · · · > σk. Note that since the myopic policy

chooses actions to maximise the reward at the next step, it will choose zn+1 = argmax‖z‖=1 det(PHn + 1
η2?
zz>). We

therefore have,

det PHn+1 = max
‖z‖=1

det
(

PHn +
1

η2
?

zz>
)
≥
(
σ1 +

1

η2
?

) k∏
j=2

σj

Noting that PH0 − cIk is positive definite, we have, via an inductive argument det PHn ≥ ck−1(c+ nη−2
? ). Letting D?

n be
the data collected by π?M, we have

1− λ(θ?, D
?
n) ≤ 1

ck−1(c+ nb)

∆
= ε′n,

as η2
? ≤ b. This leads to ε′n, εn ∈ O(1/n) and hence τn ∈ O(log n) in Proposition 10 and Condition 1. We next look at the

adaptive submodularity condition.

Condition 2 (Adaptive Submodularity): Let Dn = {(xj , yj)}nj=1 Dm = {(xj , yj)}mj=1 be two data sets such that
Dm ⊂ Dn and m < n. Let Qm = P0 + 1

η2?

∑n
j=1 xjx

>
j and Qn = P0 + 1

η2?

∑m
j=1 xjx

>
j = Qm + 1

η2?

∑n
j=m+1 xjx

>
j . Let

(x, Yx) be a new observation. We then have,

E[λ(θ?, Dn ] {(x, Yx)})]− λ(θ?, Dn) =
1

det(Qn)
− 1

det(Qn + xx>)

=
det(Qn + xx>)− det(Qn)

det(Qn) det(Qn + xx>)
=

x>Q−1
n x

det(Qn + xx>)
,

and similarly for Qm. Here the last step uses the identity det(A+ uv>) = det(A)(1 + v>A−1u). Submodularity follows
by observing that Qm, Qn are positive definite and Qn −Qm is positive semidefinite. Hence,

1 + x>Q−1
m x

det(Qm + xx>)
≥ 1 + x>Q−1

n x

det(Qn + xx>)
.
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C.3. Rewards with State-like structure

Here, we will show that πPS

M can achieve sublinear regret with respect to π?M, when there is additional structure in the rewards.
In particular, we will assume that there exists a set of “states” S and a mapping σ : Θ×D → S from parameter, data sequence
pairs to states. Moreover, λ takes the form λ(θ?, D) = λS(θ?, σ(θ?, D)) for some known function λS : Θ× S → [0, 1].
We will also assume that the state transitions are Markovian, in that for any S ∈ S, let DS = {D ∈ D : σ(θ?, D) = S}.
Then, for all x ∈ X , y ∈ Y and D,D′ ∈ DS , σ(θ?, D ∪ {(x, y)}) = σ(θ?, D

′ ∪ {(x, y)}).

Now, for any policy π, define,

Vn(π,D; θ) =
1

n
E
[ n∑
j=1

λ(θ,D ]Dj)

∣∣∣∣ θ? = θ,D,Dn ∼ π
]

V (π,D; θ) = lim
n→∞

Vn(π,D; θ)

Vn is the expected sum of future rewards in n steps for a policy π when θ? = θ, and it starts from a prefixD. The expectation
is over the observations and any randomness in π. V is the limit of Vn. A common condition used in reinforcement learning
is that the associated Markov chain mixes when starting from any state S ∈ S . Under this condition, V does not depend on
the prefix D and we will simply denote it by V (π; θ). We have the following result.

Proposition 11. Assume that there exists a sequence {νn}n≥1, such that νn ∈ o(1/
√
n), and the following two statements

are true.

1. V (πθM; θ) = V (πθ
′

M; θ′) for all θ, θ′ ∈ Θ.

2. For all θ, and all data sequences H,H ′, |Vn(πθM, H; θ)− V (πθM; θ)| ≤ νn.

Then Theorem 2 holds with
√
τn = 1 + 2nνn.

The second condition is similar to the requirements in Definition 5 in (Kearns and Singh, 2002). However, while they only
use a thresholding behaviour, we assume a uniform rate of convergence, where our bounds depend on this rate. However,
while results for non-episodic RL settings are given in terms of the mixing characteristics of the globally optimal policy, our
results are in terms of the myopic policy.

Proof of Proposition 11. We will turn to our proof of Theorem 2, where we need to bound qt(θ1, x, y)− qt(θ2, x, y). We
will use Proposition 11 with H = Dt−1 ] {(x, y)} and have,

qt(θ1, x, y)− qt(θ2, x, y)

= λ(θ1, Dt−1 ] {(x, y)})− λ(θ2, Dt−1 ] {(x, y)}) +
n∑
j=1

EY,t+1:n|θ1
[
λ(θ1, Dt−1 ] {(x, y)} ] Fj,1)

]
− EY,t+1:n|θ2

[
λ(θ2, Dt−1 ] {(x, y)} ] Fj,2)

]
≤ 1 + (n− t)

(
Vn(πθM, Dt−1 ] {(x, y)}; θ)− Vn−t(πθ

′

M, Dt−1 ] {(x, y)}; θ′)
)

≤ 1 + (n− t)
(
|Vn−t(πθM, Dt−1 ] {(x, y)}; θ)− V (πθM; θ′)|+ |Vn−t(πθ

′

M, Dt−1 ] {(x, y)}; θ′)− V (πθ
′

M; θ′)|
)

≤ 1 + 2(n− t)νn−t =
√
τn−1

Here, the second step uses that λ is bounded in [0, 1], the third step simply uses the first condition in Proposition 11 along
with the triangle inequality, and the fourth step uses the second condition. The remainder of the proof carries through by
applying Pinksker’s inequality with this bound in (8).

Conditions of the above form are necessary in non-episodic undiscounted settings for RL (Kearns and Singh, 2002), and we
show that under similar conditions, πPS

M achieves sublinear regret with π?M.
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D. Some Experimental Details

Specification of the prior: In our experiments, we use a fixed prior in all our applications. In real world applications, the
prior could be specified by a domain expert with knowledge of the given DOE problem. In some instances, the expert may
only be able to specify the relations between the various variables involved. In such cases, one can specify the parametric
form for the prior, and learn the parameters of the prior in an adaptive data dependent fashion using maximum likelihood
and/or maximum a posteriori techniques (Snoek et al., 2012).

Computing the posterior: Experiments 2 and 4 which use a Bayesian linear regression model admit analytical computa-
tion of the posterior. So do experiments 5 and 6 which use a Gaussian process model. For experiments 1, 3, and 7 we use
the Edward probabilistic programming framework (Tran et al., 2017) for a variational approximation of the posterior. The
sample in step 3 is drawn from this approximation.

Optimising λ+: In all our experiments, the look-ahead reward (2) is computed empirically by drawing 50 samples from
Y |X, θ for the sampled θ and a given x ∈ X . For experiments 1 and 3 which are one dimensional, we maximise λ+ by
evaluating it on a fine grid of size 100 and choosing the maximum. Similarly, for experiments 2 and 4 which have two
dimensional domains, we use a grid of size 2500 and for experiments 5 and 7 which are three dimensional, we use a grid of
size 8000. Since experiment 6 is in nine dimensions, on each iteration, we sample 4000 points randomly from the domain
and choose the maximum.

Synthetic Active Learning Experiments: In all 4 experiments, the observations are generated from the true model. In
the log likelihood formalism of Experiments 3 and 4, in order to compute the reward λ, we evaluate the expecation over
X ∼ Γ, Y ∼ P(·|X, θ) empirically by drawing 1000 (x, y) pairs; we first sample 1000 x values uniformly at random and
then draw y from the likelihood for the given θ value.

Level Set Estimation on LRGs: Here we used data on Luminous Red Galaxies (LRGs) to compute the galaxy power
spectrum of 9 cosmological parameters: spatial curvature Ωk ∈ (−1, 0.9), dark energy fraction ΩΛ ∈ (0, 1), cold dark
matter density ωc ∈ (0, 1.2), baryonic density ωB ∈ (0.001, 0.25), scalar spectral index ns ∈ (0.5, 1.7), scalar fluctuation
amplitude As ∈ (0.65, 0.75), running of spectral index α ∈ (−0.1, 0.1) and galaxy bias b ∈ (0, 3). Following Gotovos
et al. (2013a), we model the function as a Gaussian process. The function values vary from approximately −1× 1018 and
−1× 1015. We set the threshold to −3× 1016 which is approximately the 75th percentile when we randomly sampled the
function value at several thousand points.


