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Humans have a remarkable ability to infer the 3D shape of objects from just a single

image. Even for complex and non-rigid objects like people and animals, from just a single

picture we can say much about its 3D shape, configuration and even the viewpoint that

the photo was taken from. Today, the same cannot be said for computers – the existing

solutions are limited, particularly for highly articulated and deformable objects. Hence, the

purpose of this thesis is to develop methods for single-view 3D reconstruction of non-rigid

objects, specifically for people and animals. Our goal is to recover a full 3D surface model

of these objects from a single unconstrained image. The ability to do so, even with some

user interaction, will have a profound impact in AR/VR and the entertainment industry.

Immediate applications are virtual avatars and pets, virtual clothes fitting, immersive games,

as well as applications in biology, neuroscience, ecology, and farming. However, this is a

challenging problem because these objects can appear in many different forms.

This thesis begins by providing the first fully automatic solution for recovering a 3D

mesh of a human body from a single image. Our solution follows the classical paradigm of

bottom-up estimation followed by top-down verification. The key is to solve for the mostly



likely 3D model that explains the image observations by using powerful priors. The rest of

the thesis explores how to extend a similar approach for other animals. Doing so reveals novel

challenges whose common thread is the lack of specialized data. For solving the bottom-up

estimation problem well, current methods rely on the availability of human supervision in the

form of 2D part annotations. However, these annotations do not exist in the same scale for

animals. We deal with this problem by means of data synthesis for the case of fine-grained

categories such as bird species. There is also little work that systematically addresses the 3D

scanning of animals, which almost all prior works require for learning a deformable 3D model.

We propose a solution to learn a 3D deformable model from a set of annotated 2D images

with a template 3D mesh and from a few set of 3D toy figurine scans. We show results on

birds, house cats, horses, cows, dogs, big cats, and even hippos. This thesis makes steps

towards a fully automatic system for single-view 3D reconstruction of animals. We hope this

work inspires more future research in this direction.
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Chapter 1

Introduction

“Nothing is so fleeting as form; yet never does it quite deny itself.”

— Ralph Waldo Emmerson

1.1 Objective

Although there has been a significant progress in the field of 3D reconstruction, most of the

research assumes the availability of multiple views or range sensors and much less attention

has been given to the problem of 3D reconstruction from a single image. This is partly due

to the fact that geometrically, recovering 3D points from a monocular camera is an ill-posed

problem. However, humans have the ability to see the “unseen” from just a single picture.

That is, for a familiar object we can make a good guess of what it would look like from

another viewpoint. Even for complex, non-rigid objects like people and animals, from just a

single picture we can say much about its 3D shape, configuration, and even the viewpoint

that the photo was taken from. Today, the solutions we have for this problem is limited,

and not much has been explored particularly for highly articulated and deformable objects.

Hence, the purpose of this thesis is to develop methods for single-view 3D reconstruction of
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Figure 1-1: Sample results of this thesis.

non-rigid objects, specifically of people and animals.

The ultimate goal is to recover the full 3D surfaces of objects from a single unconstrained

image “in-the-wild” in a fully automatic manner. The object category may be known, but

no other information such as camera calibration, scene, or lighting is known. The kinds of

3D representations explored in this thesis are a set of 3D point clouds or a 3D mesh with

interpretable parameters such as joint angles or axes of shape variations. This thesis develops

the first fully automatic solution for recovering 3D mesh of a human body from a single

image. Extending a similar approach to animals exposes novel challenges and methods to

overcome them are explored. See Figure 1-1 for examples of results that are obtained in this

thesis.

1.2 Motivation

To see why this is a problem worth solving, let us first consider what it means to recover a 3D

representation from a single image. In the traditional multi-view setting, 3D reconstruction

is analogous to solving the correspondence between images of the same object taken from

different views. But in the single-view case, this is analogous to solving the correspondence

between images of different instances of the same category. Because in essence, the 3D shape

is inferred by relating the observed image with images seen in the past or with a model

2



encapsulating the knowledge of the 3D shape of the object category. Since different object

instances have different underlying 3D shapes, the established correspondences between them

are the same in the semantic sense. Such correspondences are one of the key ingredients

for many vision tasks such as recognition, segmentation, image search, image morphing,

synthesis, etc. So in the single-view case, the process by which 3D is recovered is as important

as the final output. For this reason, the resulting 3D representation is a lot more meaningful

than the precise 3D representation of the object that can be geometrically recovered from

multiple views.

This thesis focuses on reconstructing people and animals, leaving man-made objects and

scenes to future work. People and animals are arguably the most interesting subjects; they

occupy a significant portion of the visual data on the Internet. People take approximately 93

million selfies per day from android devices alone [184] and a study shows that people are

twice as likely to upload a picture of cats instead of selfies [153]. Also, they are governed by a

single topology within each class, making the semantic correspondence across its surface well

defined compared to man-made objects like chairs whose topology may vary or categories

that do not have a unified 3D form such as scenes.

There are many practical applications of single-view 3D reconstruction. To begin with,

most of the image data on the Internet are captured from a single camera. Given the

advancements of applications that use 3D models like 3D printing, augmented and virtual

reality (AR/VR), the ability to obtain 3D models from the real world is more relevant than

ever, even if it requires some user assistance. Immediate applications of people and animals

in VR are virtual avatars and pets, virtual clothes fitting, immersive games and much more.

Consumers are also keen on getting their pets 3D printed. Monocular markerless motion

capture is also valuable for the film/entertainment industry. The recovered 3D models can

3



be textured and rendered from novel viewpoints for image synthesis and manipulation in

Computer Graphics. Further, analysis of humans and animals in 3D has many application in

biology, neuroscience, ecology, farming, etc.

1.3 Challenges

One way to solve the single-view 3D reconstruction problem is by applying the classical

paradigm of bottom-up estimation followed by top-down verification. Bottom-up estimation

detects salient image features or key parts by solving some form of a correspondence problem.

The top-down verification takes a deformable 3D model of the object category and fits the

model to the bottom-up observations. The seminal work of Blanz and Vetter [32] began this

direction by learning a low-dimensional 3D model of a face from 3D scans and fitting it to

images using texture cues. However, it’s not straight forward to adapt this approach for

humans and animals because they exhibit a lot more articulation, appearance and shape

variability, making both the correspondence and model fitting problem more challenging.

The few works that attempt 3D mesh reconstruction of human bodies from a single image

require perfect silhouettes and manually annotated correspondences. Even then, the results

have only been shown for simple poses. One reason the fitting is hard is because articulated

limbs exacerbate the inherent depth ambiguity problem in monocular reconstruction. Many

configurations of the body satisfy the same 2D constraints, and not many configurations

produce solutions that are physically plausible or realistic. These problems are even more

challenging for animals where it’s not clear how to even learn a 3D deformable model due to

the lack of 3D scans.
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1.4 A Solution for Human Bodies

This thesis begins by focusing on the case with human bodies, a subject of much interest

and progress in the past years. By combining the recent developments in automatic 2D

joint detection and 3D human modeling, we provide the first fully automatic solution that

produces a 3D mesh of a human body from a single image. Our success owes much to

the availability of deep learning based accurate 2D joint detectors and a high quality, fully

differentiable generative 3D model that models articulation with a kinematic skeleton and

the 3D surface with a statistical shape model. We further endow the model with a pose prior

learned from 3D data and the ability to reason about interpenetration, avoiding impossible

poses. Having a strong model helps reduce ambiguity, making the problem easier. This

result demonstrates that the bottom up and top down paradigm is an effective solution for

articulated and deformable objects. The rest of the thesis explores how to extend these

components to other animals such as birds, house cats, horses, cows, dogs, big cats, and even

hippos.

1.5 Extension to Animals

1.5.1 Weakly-supervised Solution for Correspondences

We first explore the challenges in solving the bottom-up correspondence problem for animals

within the scope of fine-grained categories, taking bird species as an example. Because

semantic correspondences are difficult to find based on appearance similarities alone, many

methods rely on the availability of human supervision in the form of part or keypoint

annotations. These annotations are used to learn part detectors or used as a bootstrap to

establish dense correspondences. While these annotations are readily available for faces and
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humans, they do not exist in the same scale, if at all, for animals. Collecting them is not only

labor-intensive but also ambiguous and difficult. Thus we present a framework for matching

images of objects with some degree of non-rigidity and articulation across sub-categories and

pose variations without requiring supervised annotations. The key idea is to take advantage

of the structure in fine-grained categories to create synthetic data, from which a bird-specific

2D deformation model is learned using a convolutional neural network (CNN). The learned

model is used as a spatial prior, which significantly improves the matching quality.

1.5.2 Learning a Deformable 3D Model of Animals

The rest of the thesis explores 3D model building for animals. The best practices of humans

tell us that 3D deformation is well modeled by separating it into two factors, one that

models changes due to pose and one that models changes due to shape differences between

individuals [17, 93, 143]. However, most prior work learns such models from a large set

of registered 3D scans of people in various shapes and poses. Such 3D scans are hard to

acquire for animals, because it is impractical to bring a large number of animals into a lab

environment for scanning, especially when the animals are wild and rare. Furthermore, unlike

humans, animals are not cooperative – we cannot ask them to stay in a certain pose while

we scan them. Artists may create 3D models of animals, but this is also expensive and may

lack realism.

On the other hand, animal photographs are much easier to acquire. We propose a method

for learning a 3D deformation model for changes due to pose using a set of user-annotated

2D images and a template 3D mesh. We depart from the kinematic skeleton to model pose

since designing such a structure requires a priori knowledge of how the animal deforms (i.e.

how many bones to use). Instead, we model articulation using a continuous stiffness field
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that governs the amount of deformation allowed for each local region. The key intuition is

that highly deformable regions are sparse. We learn this from multiple images at once by

forcing sparsity on the stiffness field while the template is deformed to fit each image. We

demonstrate this on cats and horses.

We then learn a shape model by scanning a few dozen realistic toy figurines of a range

of quadruped animals. Since there are not enough scans for each animal species to learn a

class-specific shape model, we learn a multi-species shape model by sharing information that

is common across quadrupeds. Learning a statistical shape model requires that all the 3D

data must be in correspondence. This involves registering a common template mesh to every

scan, but this is challenging since the shape variation across quadruped species far exceeds

the kind of variation seen between humans. Moreover, these toys have different shape and

pose, while the human data for learning shape consists of various individuals scanned in a

common neutral pose. We propose a multi-stage registration process where a novel analytical

shape model is used to roughly align the scans to kick off the process. During fitting we use

silhouettes to obtain more accurate shape fits. Despite being trained on toy scans, our model

generalizes to images of real animals, capturing their shape well.

1.6 Thesis outline

The structure of the thesis is as follows: Chapter 2 goes over relevant prior art. Chapter 3

proposes the fully automatic solution for human bodies. The rest of the chapters explore

challenges in extending a similar approach to animals and methods to overcome them.

Chapter 4 explores the challenges in solving the bottom-up correspondence problem for a

particular subset of animals like birds. Chapter 5 explores how a model that captures 3D

deformations due to pose changes may be learned from a set of 2D images and a template
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3D mesh. Chapter 6 explores how to model the shape variability across quadrupeds from a

few dozen set of scanned 3D toy figurines. Finally, we conclude and discuss future directions

in Chapter 7.
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Chapter 2

Background

2.1 A Brief History of Point Correspondences

To do any kind of 3D reconstruction, we need to solve the correspondence problem between

image pairs, this problem is also referred to as image matching. Initial efforts in matching

an image pair started in stereo [88] and optical flow [100, 148], which used pixel intensity

values to find correspondences based on the brightness constancy assumption. Since then,

much of the research have been devoted to detecting and designing robust, reliable low and

mid-level appearance features to match, starting from SSD [15], corner detectors [90] filter

banks [113], shape context for silhouettes [29], SIFT [147], HOG[61], DAISY [209], VLAD

[19] and more until the early 2010s. Most of these works focus on matching the same object

instance from different viewpoints or subsequent frames in video.

We focus our discussion on methods that solve for correspondence between images of

different object instances of the same class below. These methods can be divided into

supervised and unsupervised methods, where in this context supervision refers to the use of

human annotated point correspondences.
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2.1.1 Supervised Methods

The point supervision acquired from humans for objects are, for reasons of efficiency and

ease of annotation, 2D locations of salient object landmarks such as parts and body joints,

generally referred to as “keypoints”. This kind of supervision developed from success in object

detection, which led to the problem of object part detection, in which the definition of parts

progressed from rough bounding boxes to finer-scale points. As such, many methods refer to

this semantic correspondence problem as keypoint localization. The first instantiation of this

kind of annotation was for faces, in which from several face parts or “fiducial points” were

labeled for aligning faces and improving face recognition [28, 46, 242, 175]. Many datasets of

fiducial points were proposed such as BioID [110], labeled face parts in-the-wild [28], and

annotated faces in-the-wild [242]. Research in human detection also progressed from simple

bounding box representations [61] to rough parts [174], to appearance and configuration

specific parts or poselets [38], to 2D joint detection [226, 112, 187, 80]. Features extracted at

localized keypoints were shown to be particularly important for fine-grained classification

[138, 72, 232], which motivated keypoint annotation of animal species such as dogs [138] and

birds [217]. There is a large literature in each of these fields and a comprehensive summary

is out of the scope of this thesis. Please see surveys [219] for fiducial point detection, [161]

for human 2D pose detection, and [234] for fine-grained recognition.

Recent approaches use deep learning based methods to predict these keypoints from

images. Initial works used CNNs to directly regress 2D locations for human pose [211] and

fiducial points [200]. More recent works regress keypoint confidence maps [210] from which

the final location is obtained using some form of a spatial prior (possibly another network)

to remove outliers [107, 163, 164, 210, 140, 212, 166, 54] or by iterative refinement [47]. For

human 2D joint detection, the most recent approaches have developed an effective architecture
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that can directly output very accurate confidence maps by making use of multiple stages

[220] or the hourglass structure that allows bottom-up, top-down inference [154]. Particularly

for 2D human pose, these deep learning based approaches can obtain very reliable results

for unconstrained images in-the-wild. But these approaches require a large set of annotated

training data, which is expensive to obtain and even and ambiguous to label for other

categories such as animals.

2.1.2 Unsupervised Methods

The problem of computing dense alignment between images of different scenes was first

explored by the SIFT-flow algorithm [137], which use optical flow methods to match images

with SIFT features. This was followed by Deformable Spatial Pyramid Matching [123],

which uses a pyramid graph to regularize match consistency at multiple spatial extents. The

PatchMatch algorithm [24, 25] uses a randomized search technique for efficiently finding

approximate nearest-neighbors points. Bristow et al . solves for semantic correspondences

by training an exemplar Linear Discriminant Analysis classifier [89] for each pixel; they

show results on animals and humans but objects are in a relatively similar pose [41]. These

approaches use purely geometric spatial priors for regularizing the matches and do not use

category-specific semantic priors. Zhou et al . makes use of the class specific information by

jointly solving correspondences across an image collection of an object category via enforcing

cycle consistency [239]. Their approach is complementary with the method presented in

Chapter 4, which learns a category-specific spatial prior also without any keypoint supervision.
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2.2 3D Deformable Model of People and Animals

Blanz and Vetter [32] began the direction of building a statistical model of 3D faces by

aligning 3D scans of faces and computing a low-dimensional shape model. The variability

among faces, however, is much lower than human bodies or among animal species, making

alignment of the training data much simpler. Additionally faces have much less articulation,

again simplifying the modeling problem.

2.2.1 Modeling Articulated Bodies

Many works assume a model of articulation is provided by users or artists in the form of

kinematic skeletons [84, 9, 203, 22, 228, 203] or painted stiffness [170]. Since obtaining such

priors from users is expensive, many methods learn deformable models automatically from

3D data [32, 18, 17, 56, 63, 131, 183]. Anguelov et al . [18] use a set of registered 3D range

scans of human bodies in a variety of configurations to construct skeletons using graphical

models. Hasler et al . [94] proposes a method to automatically learn the skeletal structure

for both pose and shape from example 3D models in various poses. Popa et al . [170] learn

the material stiffness of animal meshes by analyzing a set of vertex-aligned 3D meshes in

various poses. All methods use 3D data for modeling articulation. In Chapter 5, we propose

a method that can learn a model of articulation from a set of annotated 2D images and a

template 3D mesh.

2.2.2 Modeling Humans

Unlike faces, recovering a 3D model for the human body requires solving for both pose

– the articulated posture of the limbs, and shape – the pose-invariant surface of the 3D

human body. There is a long history of learning 3D shape and pose models of humans
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[14, 17, 55, 93, 143]. See [143] for a more comprehensive overview. Note that pose and

shape are not fully independent; certain poses change the shape of the 3D surface and

joint locations are dependent on the individual body shape. Initial works either focus on

modeling how the 3D surfaces changes with pose [12, 108], or modeling just the space of

human shape variation with principal component analysis [13, 185]. SCAPE [17] is the first

model that captures both body shape variation and pose-dependent shape changes in terms

of triangle deformations. In this thesis we use the most recent SMPL [143] model, which also

models both shape and pose-dependent shape but in terms of vertex displacements. SMPL

combines a low-dimensional shape space with an articulated blend-skinned model, where the

parameters are the coefficients of the shape space and the set of 3D rotations for each of the

23 joints. SMPL is learned from 3D scans of 4000 people in a common pose and another

1800 scans of 60 people in a wide variety of poses. A nice feature of SMPL is that all the

model parameters are linear in its inputs, making it easy to differentiate and optimize.

2.2.3 Modeling Animals

There is little work that systematically addresses the 3D scanning [4] and modeling of animals.

The range of sizes and shapes, together with the difficulty of handling live animals and dealing

with their movement, makes traditional scanning difficult. Previous 3D shape datasets like

TOSCA [42] have a limited set of 3D animals that are artist-designed and with limited

realism. Chen et al. [56] model sharks by registering 11 different 3D shark models from the

Internet and learning a shape space on it. Cashman et al . [50] learn a morphable model

of dolphin shapes from 2D images. Ntouskos et al. [156] take multiple views of different

animals from the same class, manually segment the parts in each view, and then fit geometric

primitives to segmented parts. Favreau et al. [75] animate an artist created rigged 3D model
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of an animal given a 2D video sequence. Reinert et al. [176] take a video sequence of an

animal and extract a textured 3D model by using an interactive sketching and tracking

approach. The 3D shape is obtained by fitting generalized cylinders to each sketched stroke

over multiple frames. No methods try to learn a 3D shape space spanning multiple animal

species. We do this in Chapter 6.

Related are mesh deformation techniques in Computer Graphics [37, 236, 36, 198, 195].

These methods take an existing 3D mesh and deform it to fit some user-supplied 3D positional

constraints. Common objectives are minimization of the elastic energy [205] or preservation

of local differential properties [136]. The solution can be constrained to lie in the space

of natural deformations, by learning from a few set of artist created exemplar meshes

[197, 199, 183, 66, 151, 170]. Often these experiments are carried out on animals and other

non-rigid objects. These methods do not always separate pose and shape (for some non-rigid

animals like octopus this is an advantage), but mostly end up modeling shape changes due

to pose since the number of example meshes are limited. [37] offers an excellent survey on

linear surface deformation methods.

2.3 Methods for Single-view Reconstruction

There are several methods for single-view reconstruction, and we divide the discussion into

three different techniques: model-based, Shape from X, and those that solve for 3D using

image collections.

Related are methods that directly estimate the depth value for general scenes or man-

made objects [231, 98, 182, 86, 68, 223, 58], but we focus our discussion to methods that

recover a 3D representation for non-rigid objects.
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2.3.1 Model-based methods

Attempts to fit a parametric 3D model to a single image dates all the way back, in fact, to the

first Computer Vision paper of Roberts in 1963 [177], where parameters and viewpoints of

simple rectangular blocks were solved to reconstruct a 2D line image. The idea started getting

traction in the early 80s [145, 167], with models like superquadrics [20], well into the 90’s

[146, 104]. Model-based methods were also prominent for 2D image understanding, where

the models progressed from general geometric primitives [230] to class-specific deformable

models that can fit to novel images in ways consistent with the training set, i.e. Active Shape

Models [60]. These works inspired the seminal work of Blanz and Vetter [32], which built a

high-resolution morphable model of a 3D face mesh and its texture from 3D scans and fit it

to a single image. From a user provided initial alignment of the mean 3D face to the image,

the algorithm solved for the parameters of the 3D shape and texture that minimized the

residual differences between the rendered model and the image in an analysis-by-synthesis

loop. Below we discuss recent approaches for faces, human skeletons, human 3D models, and

other object categories. See [181] for a more in depth discussion on deformable surface 3D

reconstruction from monocular images.

Faces Note that there is a long list of work that recover 3D face models from an interactive

video stream where temporal cues such as optical flow [70] help make automatic point

tracking more reliable [70, 165, 216, 51, 45, 180]. But there are only few methods that only

use a single-view image or a collection of single-view images.

Kemelmacher-Shlizerman and Basri [118] use shape from shading cues to morph a single

3D reference mesh of a face to a target image. Hassner and Basri [96] solve for the depth

from examples by referencing a 3D database based on image patch similarity. A 3D mesh
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is recovered from the depth estimate and results are shown for segmented images of faces,

humans, hands, and fish. The availability of accurate fiducial point detectors [28, 46] allows

extension of these approaches to less-constrained, in-the-wild Internet images in a fully

automatic manner [95, 119].

3D human pose Most 3D human reconstruction methods formulate the problem as finding

a 3D skeleton such that its 3D joints project to known or estimated 2D joints. Note that

the previous work often refers to this skeleton in a particular posture as a “shape.”, but in

this thesis we take shape to mean the pose-invariant surface of the human body in 3D and

distinguish this from pose, which is the articulated posture of the limbs.

Initial methods make different assumptions about the statistics of limb-length variation.

Lee and Chen [132] assume known limb lengths of a stick figure while Taylor [202] assumes

the ratios of limb lengths are known. Parameswaran and Chellappa [160] assume that limb

lengths are isometric across people, varying only in global scaling. Barron and Kakadiaris

[26] build a statistical model of shape variation from extremes taken from anthropometric

tables. Jiang [111] takes a non-parametric approach, treating poses in the CMU dataset [5]

as exemplars.

Recent methods typically use the CMU dataset and learn a statistical model of pose.

The formulation of these methods is similar to that of non-rigid structure from motion [40],

except that a 3D basis is learned a priori from the CMU dataset. Both [173, 71] learn a

dictionary of poses and use a fairly weak anthropometric model on limb lengths to resolve

ambiguities. Akhter and Black [9] take a similar approach, but add a novel pose prior that

captures pose-dependent joint angle limits. Zhou et al. [240] also learn a dictionary but they

create a sparse basis that also captures how these poses will appear from different camera
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views. They show that the resulting optimization problem is easier to solve. Pons-Moll et

al. [168] take a different approach to model pose. They estimate qualitative information

(posebits) from mocap and then relate these to 3D pose.

All these previous methods work hard to deal with the fact that the problem is ambiguous,

pose is non-linear, and that optimization is hard. They all use weak models of the body

and the statistics of limb lengths. In several cases they normalize the problem so that limb

lengths do not appear in the formulation. In contrast, in Chapter 3, we argue that using

a much stronger 3D generative model of body shape , learned from thousands of people,

can capture the anthropometric constraints of the population. Having a strong model helps

reduce ambiguity, making the problem easier. Also, the availability of 3D surface allows

modeling of interpenetration, avoiding impossible poses. The result is that our optimization

problem is simpler to formulate and relies on fewer assumptions.

None of the methods above are fully automatic from a single image, most assume known

correspondences, and some involve significant manual intervention. There are, however, a

few methods that try to solve the entire problem of inferring 3D pose from a single image.

Simo-Serra et al. [189, 190] take into account that 2D part detections are unreliable and

formulate a probabilistic model that estimates the 3D pose and 2D joint detections jointly.

Wang et al. [218] use a weak model of limb lengths [132] but exploit automatically detected

joints in the image and match to them robustly using an L1 distance. Zhou et al. [235]

run a 2D pose detector [225] and then optimize 3D pose, automatically rejecting outliers.

Akhter and Black [9] run a different 2D detector [122] and show results for their method

on a few images. Both methods are only evaluated qualitatively. Yasin et al. [227] take a

non-parametric approach in which the detected 2D joints are used to look up the nearest 3D

poses in a mocap dataset, which serves as the prior for 2D and 3D joints. Recent work [241]
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uses a CNN to estimate 2D joint locations. They then fit 3D pose to this using a monocular

video sequence. They do not show results for single images. Similarly [204] also uses a CNN

but directly output the 3D joint locations from video sequences.

None of these automated methods estimate 3D body shape. In Chapter 3 we demonstrate

a complete system that uses 2D joint detections and fits pose and shape to them from a

single image.

3D Human Pose and Shape Here we refer to methods that output a 3D model of

human bodies, by “3D model” we mean a dense 3D surface, such as a 3D mesh. Early works

on humans fit coarse human models consisting of primitive geometric shapes related by a

kinematic skeleton to silhouettes [191, 82, 7]. Several methods fit body shape and pose to

multi-camera images or sequences: Balan et al . [21] fit SCAPE to multi-camera silhouettes.

Jain et al . [106] fit a body to multiple frames with manual intervention. We focus our

discussion on single-image methods.

Sigal et al . [188] assume that silhouettes are given, compute shape features from them,

and then use a mixture of experts to predict 3D body pose and shape from the features.

They use the SCAPE model to fit to the image silhouettes. This is not fully automatic

because very accurate silhouettes are required. Guan et al. [84, 83] take manually marked

2D joints and first estimate the 3D pose of a stick figure using classical methods [132, 202].

They use this stick figure to pose the SCAPE model, project the model into the image and

use this to segment the image with GrabCut [179]. They then fit the SCAPE shape and

pose to a variety of features including the silhouette, image edges, and shading cues. They

assume the camera focal length is known or approximated, the lighting is roughly initialized,

and that the height of the person is known. They use an interpenetration term that models
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each body part by its convex hull. They then check each of the extremities to see how many

other body points fall inside it and define a penalty function that penalizes interpenetration.

This does not admit easy optimization.

In similar work, Hasler et al. [92] fit a parametric body model to silhouettes. Typically,

they require a known segmentation and a few manually provided correspondences. In cases

with simple backgrounds, they use four clicked points on the hands and feet to establish a

rough fit and then use GrabCut to segment the person. They demonstrate this on one image.

Zhou et al. [237] also fit a parametric model of body shape and pose to a cleanly segmented

silhouette using significant manual intervention. Chen et al. [56] fit a parametric model of

body shape and pose to manually extracted silhouettes; they do not evaluate quantitative

accuracy.

Most recently Kulkarni et al. [128] use an articulated 3D mesh model, together with a

probabilistic programming framework to estimate body pose from single images. The use

hand defined pose priors, deal with visually simple images, and do not evaluate 3D pose

accuracy. In related work they estimate object shapes from single images but do this for

simple rigid shapes and not human bodies.

To our knowledge, no previous method estimates 3D body shape and pose directly from

only 2D joints. A priori, it may seem impossible, but we show in Chapter 3 that given a

good statistical model, recovering shape works surprisingly well. This is enabled by using

SMPL [143], which unlike SCAPE has explicit 3D joints that can be directly projected to

2D joints. SMPL also models how joint locations are related to the 3D surface of the body,

enabling inference of shape from joints. Of course this will not be perfect as a person can

have the exact same limb lengths with varying weight or muscles causing varying shape.

SMPL, however, does not represent anatomical joints, rather it represents them as a function
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of the surface vertices. This couples joints and shape during model training.

Other categories There are several works on recovering 3D models of human hands

[64, 114]. Most follow a model-based fitting approach with a 3D generative model of hands

with kinematic skeletons. Khamis et al . [120] learn a 3D shape model of hands can be from

Kinect data. However, possibly due to the large space of deformation and self-occlusion,

hands only seem to work well with range data [114] or at the least require a monocular video

[64].

For animals, Cashman and Fitzgibbon [50] in their seminal paper learn a 3D model of

animal shape from 2D images. Specifically, they learn a low-dimensional 3D model of animals

such as dolphins from a set of user segmented and annotated images. The formulation is

elegant but the approach suffers from an overly smooth shape representation; this is not so

problematic for dolphins but for other animals it is. The key limitation, however, is that

they do not model articulation. The method proposed in Chapter 5 is complementary to

their approach in that the 3D deformation over pose is learned from a set of hand clicked 2D

images.

Other methods use a reference 3D mesh and make use of strong image cues such as

silhouettes and/or user interaction. Kraevoy et al . take a template 3D mesh of an object

category and align and deform it to fit a contour drawing with user provided viewpoint

initialization. They use a hidden Markov model to solve the correspondences between the

3D vertices and the contour points. They show results on human, dogs, bears, and cups.

The results look good but are only tested on simple poses, and require sophisticated contour

drawings from users. Their approach is closer to the related problem of sketch-based 3D

modeling techniques [59].
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Recently, Kholgade et al. introduced an exciting new photo editing tool that allows users

to perform 3D manipulation by aligning a stock 3D models to 2D images [121]. The user

selects the stock model closest to the target object, provides a mask for the ground and

shadow and interactively aligns the object. The shape is deformed according to user provided

3D-to-2D correspondences and they also solve for the texture and lighting. Our approach

complements this application, which is only demonstrated for rigid objects.

2.3.2 Single-view Shape from X

Shape from Shading [99] is one of the earliest single-view 3D reconstruction methods. As such,

there is a long history and we refer to this survey [233] for details. Other derivatives of this form

are Shape from Defocus [73, 74], Shape from Texture [222, 76] and Shape from Specularities

[31]. These problems are closely related to that of intrinsic image decomposition, whose goal

is to factorize an image into distinct scene properties such as reflectance, illumination and

specularities [129, 201]. The most recent work of Barron and Malik unify these problems

and provide an elegant solution to solve for the shape, reflectance and illumination from a

single image of a masked object [27]. The key is to solve for the mostly likely explanations

for all components jointly by using powerful priors. Since their approach is object agnostic,

they do not recover the “other side” of the image that is not observed. Thus model-based

methods complement these approach well, in fact Kar et al . use their approach for fitting a

morphable model to images [117].

For general curved surfaces, there is a subset of Shape from Silhouette methods that can

recover 3D models just from a single silhouette or contour drawings. This was pioneered

by Terzopoulos in the late 80’s [207, 206] but only worked for tube-like objects with genus

0. Prasad et al . [172, 171] extend these approaches to output a full 3D model for arbitrary
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curved surfaces of higher genus using interactive contour labeling. Oswald et al . [159] reduce

the amount of user interaction to few scribbles and a single volume hyperparameter using

convex relaxation techniques. Vicente and Agapito [215] use these approaches to extract a

3D mesh template of animals from a reference image silhouette. The recovered mesh is used

to recover the 3D model of novel images of different objects by deforming the mesh to fit a

small set of user-annotated keypoints and silhouette. The results are of low resolution when

applied to complex shapes.

There is also a line of work called Shape from Template that solves single-view reconstruc-

tion of a deformable open surface from a single image and a 3D template [85, 162]. Most

of these methods focus on reconstructing inextensible surfaces such as a piece of paper or

garments, where the length and the area are constant throughout deformation. They also

require a template image of the exact same object as the target image. We deal with closed

surfaces of articulated objects in this thesis.

2.3.3 3D from Image Collections

A new challenge in computer vision is to reconstruct a target object from a single image,

using an image collection of similar objects [214, 117, 48]. Given a large enough image

collection of an object category, the idea is to assume that for every target image there are

at least a few images of different object instances that have a similar 3D shape, which can

be used as surrogate viewpoints to apply traditional structure from motion (SfM) techniques.

The seminal work of [214] demonstrates the possibility of a solution, but relies on ground

truth part annotations to establish correspondences between the target and surrogate images

as well as ground truth silhouettes.

The subsequent works of [117, 48] take a step further in using part annotations only
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during training. Kar et al . [117] estimates the camera parameters using SfM on the ground

truth part annotations, then learns a category-specific 3D shape basis using silhouettes.

At test time, these morphable models are fit to predicted silhouettes by initializing the

viewpoint using a CNN, and refining the final 3D model using a state-of-the-art intrinsic

image decomposition method [27]. Carreira et al . [48] solves for dense correspondences

between pairs of training images that are close in global pose. The annotated parts are used

to regularize outliers during the matching process. These pairwise matches are propagated

across the dataset by solving a shortest path problem so correspondences between images

with wide-baselines can be obtained. At test time, the target image is matched to images

of similar viewpoint, which establishes the correspondence to the rest of the training data.

These correspondences are passed to SfM to obtain the final 3D points. In Chapter 4 we

propose a method that do not require part annotations at training and test time.
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Chapter 3

Automatic Estimation of 3D Human

Pose and Shape from a Single Image

3.1 Introduction

Although the estimation of a 3D human body from a single image has been a long-standing

problem with many applications, most previous approaches focus only on reconstructing

the 3D joints and ignore the 3D human shape. In this chapter we present a fully automatic

solution for 3D mesh reconstruction of the human body from a single image.

We solve the problem in two steps. First we estimate 2D joints using a recently proposed

convolutional neural network (CNN) called DeepCut [166]. So far CNNs have been quite

successful at estimating 2D human pose [107, 163, 164, 166, 211], but not 3D pose and shape

from one image. Consequently we add a second step, which estimates 3D pose and shape

from the 2D joints using a 3D generative model called SMPL [143]. The overall framework,

The contents of this work is in collaboration with Federica Bogo, Christoph Lassner, Peter Gehler, Javier
Romero, and Michael J. Black, presented at ECCV 2016 [34]. This was part of my internship at Max Planck
Institute for Intelligent Systems, Perceiving Systems.
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Figure 3-1: Example results. 3D pose and shape estimated by our method for two images
from the Leeds Sports Pose Dataset [112]. We show the original image (left), our fitted
model (middle), and the 3D model rendered from a different viewpoint (right).

which we call “SMPLify”, fits within a classical paradigm of bottom up estimation (CNN)

followed by top down verification (generative model). A few examples are shown in Fig. 6-1.

There is a long literature on estimating 3D pose from 2D joints. Unlike previous methods,

our approach exploits a high-quality 3D human body model that is trained from thousands

of 3D scans and hence captures the statistics of shape variation in the population as well as

how people deform with pose. Here we use the SMPL body model [143]. The key insight is

that such a model can be fit to very little data because it captures so much information of

human body shape.

We define an objective function and optimize pose and shape directly, so that the projected

joints of the 3D model are close to the 2D joints estimated by the CNN. Remarkably, fitting

only 2D joints produces plausible estimates of 3D body shape. We perform a quantitative

evaluation using synthetic data and find that 2D joint locations contain a surprising amount

of 3D shape information.

In addition to capturing shape statistics, there is a second advantage to using a generative

3D model: it enables us to reason about interpenetration. Most previous work in the area

has estimated 3D stick figures from 2D joints. With such models, it is easy to find poses

that are impossible because the body parts would intersect in 3D. Such solutions are very
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common when inferring 3D from 2D because the loss of depth information makes the solution

ambiguous.

Computing interpenetration of a complex, non-convex, articulated object like the body,

however, is expensive. Unlike previous work [84, 83], we provide an interpenetration term

that is differentiable with respect to body shape and pose. Given a 3D body shape we

define a set of “capsules” that approximates the body shape. Crucially, capsule dimensions

are linearly regressed from model shape parameters. This representation lets us compute

interpenetration efficiently. We show that this term helps to prevent incorrect poses.

SMPL is gender-specific; i.e. it distinguishes the shape space of females and males. To

make our method fully automatic, we introduce a gender-neutral model. If we do not know

the gender, we fit this model to images. If we know the gender, then we use a gender-specific

model for better results.

To deal with pose ambiguity, it is important to have a good pose prior. Many recent

methods learn sparse, over-complete dictionaries from the CMU dataset [5] or learn dataset-

specific priors. We train a prior over pose from SMPL models that have been fit to the CMU

mocap marker data [5] using MoSh [142]. This factors shape from pose with pose represented

as relative rotations of the body parts. We then learn a generic multi-modal pose prior from

this.

We compare the method to recently published methods [9, 173, 240] using the exact same

2D joints as input. We show the robustness of the approach qualitatively on images from the

challenging Leeds Sports Pose Dataset (LSP) [112] (Fig. 6-1). We quantitatively compare

the method on HumanEva-I [187] and Human3.6M [102], finding that our method is more

accurate than previous methods.

In summary our contributions are: 1) the first fully automatic method of estimating 3D
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Figure 3-2: System overview. Left to right: Given a single image, we use a CNN-based
method to predict 2D joint locations (hot colors denote high confidence). We then fit
a 3D body model to this, to estimate 3D body shape and pose. Here we show a fit on
HumanEva [187], projected into the image and shown from different viewpoints.

body shape and pose from 2D joints; 2) an interpenetration term that is differentiable with

respect to shape and pose; 3) a novel objective function that matches a 3D body model to

2D joints; 4) for research purposes, we provide the code, 2D joints, and 3D models for all

examples presented [1].

3.2 Method

Figure 4-3 shows an overview of our system. We take a single input image, and use the

DeepCut CNN [166] to predict 2D body joints, Jest. For each 2D joint i the CNN provides

a confidence value, wi. We then fit a 3D body model such that the projected joints of the

model minimize a robust weighted error term. In this work we use a skinned vertex-based

model, SMPL [143], and call the system that takes a 2D image and produces a posed 3D

mesh, SMPLify.

The body model is defined as a function M(β,θ,γ), parameterized by shape β, pose

θ, and translation γ. The output of the function is a triangulated surface, M, with 6890

vertices. Shape parameters β are coefficients of a low-dimensional shape space, learned from

a training set of thousands of registered scans. Here we use one of three shape models:

male, female, and gender-neutral. SMPL defines only male and female models. For a fully
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automatic method, we trained a new gender-neutral model using the approximately 2000

male and 2000 female body shapes used to train the gendered SMPL models. If the gender

is known, we use the appropriate model. The model used is indicated by its color: pink for

gender-specific and light blue for gender-neutral.

The pose of the body is defined by a skeleton rig with 23 joints; pose parameters θ

represent the axis-angle representation of the relative rotation between parts. Let J(β) be

the function that predicts 3D skeleton joint locations from body shape. In SMPL, joints

are a sparse linear combination of surface vertices or, equivalently, a function of the shape

coefficients. Joints can be put in arbitrary poses by applying a global rigid transformation.

In the following, we denote posed 3D joints as Rθ(J(β)i), for joint i, where Rθ is the global

rigid transformation induced by pose θ. SMPL defines pose-dependent deformations; for the

gender-neutral shape model, we use the female deformations, which are general enough in

practice. Note that the SMPL model and DeepCut skeleton have slightly different joints.

We associate DeepCut joints with the most similar SMPL joints. To project SMPL joints

into the image we use a perspective camera model, defined by parameters K.

3.2.1 Approximating Bodies with Capsules

We find that previous methods produce 3D poses that are impossible due to interpenetration

between body parts. An advantage of our 3D shape model is that it allows us to detect and

prevent this. Computing interpenetration however is expensive for complex, non-convex,

surfaces like the body. In graphics it is common to use proxy geometries to compute collisions

efficiently [69, 208]. We follow this approach and approximate the body surface as a set of

“capsules” (Fig. 3-3). Each capsule has a radius and an axis length.

We train a regressor from model shape parameters to capsule parameters (axis length and
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Figure 3-3: Body shape approximation with capsules. Shown for two subjects. Left
to right: original shape, shape approximated with capsules, capsules reposed. Yellow point
clouds represent actual vertices of the model that is approximated.

radius), and pose the capsules according to Rθ, the rotation induced by the kinematic chain.

Specifically, we first fit 20 capsules, one per body part, excluding fingers and toes, to the body

surface of the unposed training body shapes used to learn SMPL [143]. Starting from capsules

manually attached to body joints in the template, we perform gradient-based optimization of

their radii and axis lengths to minimize the bidirectional distance between capsules and body

surface. We then learn a linear regressor from body shape coefficients, β, to the capsules’

radii and axis lengths using cross-validated ridge regression. Once the regressor is trained,

the procedure is iterated once more, initializing the capsules with the regressor output. While

previous work uses approximations to detect interpenetrations [169, 192], we believe this

regression from shape parameters is novel.

3.2.2 Objective Function

To fit the 3D pose and shape to the CNN-detected 2D joints, we minimize an objective

function that is the sum of five error terms: a joint-based data term, three pose priors, and a

shape prior; that is E(β,θ) =

EJ(β,θ;K,Jest) + λθEθ(θ) + λaEa(θ) + λspEsp(θ;β) + λβEβ(β) (3.1)
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where K are camera parameters and λθ, λa, λsp λβ are scalar weights.

Our joint-based data term penalizes the weighted 2D distance between estimated joints,

Jest, and corresponding projected SMPL joints:

EJ(β,θ;K,Jest) =
∑
joint i

wiρ(ΠK(Rθ(J(β)i))− Jest,i) (3.2)

where ΠK is the projection from 3D to 2D induced by a camera with parameters K. We

weight the contribution of each joint by the confidence of its estimate, wi, provided by the

CNN. For occluded joints, this value is usually low; pose in this case is driven by our pose

priors. To deal with noisy estimates, we use a robust differentiable Geman-McClure penalty

function, ρ [79].

We introduce a pose prior penalizing elbows and knees that bend unnaturally:

Ea(θ) =
∑
i

exp(θi), (3.3)

where i sums over pose parameters (rotations) corresponding to the bending of knees and

elbows. The exponential strongly penalizes rotations violating natural constraints (e.g. elbow

and knee hyperextending). Note that when the joint is not bent, θi is zero. Negative bending

is natural and is not penalized heavily while positive bending is unnatural and is penalized

more.

Most methods for 3D pose estimation use some sort of pose prior to favor probable poses

over improbable ones. Like many previous methods we train our pose prior using the CMU

dataset [5]. Given that poses vary significantly, it is important to represent the multi-modal

nature of the data, yet also keep the prior computationally tractable. To build a prior, we

use poses obtained by fitting SMPL to the CMU marker data using MoSh [142]. We then
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fit a mixture of Gaussians to approximately 1 million poses, spanning 100 subjects. Using

the mixture model directly in our optimization framework is problematic computationally

because we need to optimize the negative logarithm of a sum. As described in [158], we

approximate the sum in the mixture of Gaussians by a max operator:

Eθ(θ) ≡ − log
∑
j

(gjN (θ;µθ,j ,Σθ,j)) ≈ − log(max
j

(cgjN (θ;µθ,j ,Σθ,j))) (3.4)

= min
j

(− log(cgjN (θ;µθ,j ,Σθ,j))) (3.5)

where gj are the mixture model weights of N = 8 Gaussians, and c a positive constant

required by our solver implementation. Although Eθ is not differentiable at points where the

mode with minimum energy changes, we approximate its Jacobian by the Jacobian of the

mode with minimum energy in the current optimization step.

We define an interpenetration error term that exploits the capsule approximation intro-

duced in Sec. 3.2.1. We relate the error term to the intersection volume between “incompatible”

capsules (i.e. capsules that do not intersect in natural poses). Since the volume of capsule

intersections is not simple to compute, we further simplify our capsules into spheres with

centers C(θ,β) along the capsule axis and radius r(β) corresponding to the capsule radius.

Our penalty term is inspired by the mixture of 3D Gaussians model in [196]. We consider a

3D isotropic Gaussian with σ(β) = r(β)
3 for each sphere, and define the penalty as a scaled

version of the integral of the product of Gaussians corresponding to “incompatible” parts

Esp(θ;β) =
∑
i

∑
j∈I(i)

exp

(
||Ci(θ,β)− Cj(θ,β)||2

σ2i (β) + σ2j (β)

)
(3.6)

where the summation is over all spheres i and I(i) are the spheres incompatible with i. Note
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that the term penalizes, but does not strictly avoid, interpenetrations. As desired, however,

this term is differentiable with respect to pose and shape. Note also that we do not use

this term in optimizing shape since this would bias the body shape to be thin to avoid

interpenetration.

We use a shape prior Eβ(β), defined as

Eβ(β) = β
TΣ−1β β (3.7)

where Σ−1β is a diagonal matrix with the squared singular values estimated via Principal

Component Analysis from the shapes in the SMPL training set. Note that the shape

coefficients β are zero-mean by construction.

3.2.3 Optimization

We assume that camera translation and body orientation are unknown; we require, however,

that the camera focal length or its rough estimate is known. We initialize the camera

translation (equivalently γ) by assuming that the person is standing parallel to the image

plane. Specifically, we estimate the depth via the ratio of similar triangles, defined by the

torso length of the mean SMPL shape and the predicted 2D joints. Since this assumption

is not always true, we further refine this estimate by minimizing EJ over the torso joints

alone with respect to camera translation and body orientation; we keep β fixed to the mean

shape during this optimization. We do not optimize focal length, since the problem is too

unconstrained to optimize it together with translation.

After estimating camera translation, we fit our model by minimizing Eq. (3.1) in a staged

approach. We observed that starting with a high value for λθ and λβ and gradually decreasing

them in the subsequent optimization stages is effective for avoiding local minima.
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When the subject is captured in a side view, assessing in which direction the body

is facing might be ambiguous. To address this, we try two initializations when the 2D

distance between the CNN-estimated 2D shoulder joints is below a threshold: first with

body orientation estimated as above and then with that orientation rotated by 180 degrees.

Finally we pick the fit with lowest EJ .

We minimize Eq. (3.1) using Powell’s dogleg method [155], using OpenDR and Chumpy [3,

141]. Optimization for a single image takes less than 1 minute on a common desktop machine.

3.3 Evaluation

We evaluate the accuracy of both 3D pose and 3D shape estimation. For quantitative

evaluation of 3D pose, we use two publicly available datasets: HumanEva-I [187] and

Human3.6M [102]. We compare our approach to three state-of-the-art methods [9, 173, 240]

and also use these data for an ablation analysis. Both of the ground truth datasets have

restricted laboratory environments and limited poses. Consequently, we perform a qualitative

analysis on more challenging data from the Leeds Sports Dataset (LSP) [112]. Evaluating

shape quantitatively is harder since there are few images with ground truth 3D shape.

Therefore, we perform a quantitative evaluation using synthetic data to evaluate how well

shape can be recovered from 2D joints corrupted by noise. For all experiments, we use 10

body shape coefficients. We tune the λi weights in Eq. (3.1) on the HumanEva training data

and use these values for all experiments.

3.3.1 Quantitative Evaluation: Synthetic Data

We sample synthetic bodies from the SMPL shape and pose space and project their joints

into the image with a known camera. We generate 1000 images for male shapes and 1000 for
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female shapes, at 640× 480 resolution.

In the first experiment, we add varying amounts of i.i.d. Gaussian noise (standard

deviation (std) from 1 to 5 pixels) to each 2D joint. We solve for pose and shape by

minimizing Eq. (3.1), setting the confidence weights for the joints in Eq. (3.2) to 1. Figure 3-4

(left) shows the mean vertex-to-vertex Euclidean error between the estimated and true shape

in a canonical pose. Here we fit gender-specific models. The results of shape estimation are

more accurate than simply guessing the average shape (red lines in the figure). This shows

that joints carry information about body shape that is relatively robust to noise.

In the second experiment, we assume that the pose is known, and try to understand how

many joints one needs to accurately estimate body shape. We fit SMPL to ground-truth 2D

joints by minimizing Eq. (3.2) with respect to: the full set of 23 SMPL joints; the subset

of 12 joints corresponding to torso and limbs (excluding head, spine, hands and feet); and

the 4 joints of the torso. As above, we measure the mean Euclidean error between the

estimated and true shape in a canonical pose. Results are shown in Figure 3-4 (right). The

more joints we have, the better body shape is estimated. To our knowledge, this is the first

demonstration of estimating 3D body shape from only 2D joints. Of course some joints may

be difficult to estimate reliably; we evaluate on real data below.

3.3.2 Quantitative Evaluation: Real Data

HumanEva-I. We evaluate pose estimation accuracy on single frames from the HumanEva

dataset [187]. Following the standard procedure, we evaluate on the Walking and Box

sequences of subjects 1, 2, and 3 from the “validation” set [33, 204]. We assume the gender is

known and apply the gender-specific SMPL models.

Many methods train sequence-specific pose priors for HumanEva; we do not do this. We
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Figure 3-4: Evaluation on synthetic data. Left: Mean vertex-to-vertex Euclidean error
between the estimated and true shape in a canonical pose, when Gaussian noise is added to
2D joints. Dashed and dotted lines represent the error obtained by guessing the mean shape
for males and females, respectively. Right: Error between estimated and true shape when
considering only a subset of joints during fitting.

do, however, tune our weights on HumanEva training set and learn a mapping from the

SMPL joints to the 3D skeletal representation of HumanEva. To that end we fit the SMPL

model to the raw mocap marker data in the training set using MoSh to estimate body shape

and pose. We then train a linear regressor from body vertices (equivalently shape parameters

β) to the HumanEva 3D joints. This is done once on training data for all subjects together

and kept fixed. We use the regressed 3D joints as our output for evaluation.

We compare our method against three state-of-the-art methods [9, 173, 240], which, like

us, predict 3D pose from 2D joints. We report the average Euclidean distance between

the ground-truth and predicted 3D joint positions. Before computing the error we apply

a similarity transform to align the reconstructed 3D joints to a common frame via the

Procrustes analysis on every frame. Input to all methods is the same: 2D joints detected

by DeepCut [166]. Recall that DeepCut has not been trained on either dataset used for

quantitative evaluation. Note that these approaches have different skeletal structures of

3D joints. We evaluate on the subset of 14 joints that semantically correspond across all

representations. For this dataset we use the ground truth focal length.
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Figure 3-5: Interpenetration error term. Examples where the interpenetration term
avoids unnatural poses. For each example we show, from left to right, CNN estimated joints,
and the result of the optimization without and with interpenetration error term.

Table 3.1 shows quantitative results where SMPLify achieves the lowest errors on all

sequences. While the recent method of Zhou et al. [240] is very good, we argue that our

approach is conceptually simpler and more accurate. We simply fit the body model to the

2D data and let the model constrain the solution. Not only does this “lift” the 2D joints to

3D, but SMPLify also produces a skinned vertex-based model that can be immediately used

in a variety of applications.

To gain insight about the method, we perform an ablation study (Table 3.2) where we

evaluate different pose priors and the interpenetration penalty term. First we replace the

mixture-model-based pose prior with Eθ′ , which uses a single Gaussian trained from the

same data. This significantly degrades performance. Next we add the interpenetration term,

but this does not have a significant impact on the 3D joint error. However, qualitatively,

we find that it makes a difference in more complex datasets with varied poses and viewing

angles as illustrated in Fig. 3-5.

Walking Boxing Mean Median
Method: S1 S2 S3 S1 S2 S3
Akhter & Black [9] 186.1 197.8 209.4 165.5 196.5 208.4 194.4 171.2
Ramakrishna et al. [173] 161.8 182.0 188.6 151.0 170.4 158.3 168.4 145.9
Zhou et al. [240] 100.0 98.89 123.1 112.5 118.6 110.0 110.0 98.9
SMPLify 73.3 59.0 99.4 82.1 79.2 87.2 79.9 61.9

Table 3.1: HumanEva-I results. 3D joint errors in mm.
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Figure 3-6: Leeds Sports Dataset. Each sub-image shows the original image with the 2D
joints fit by the CNN. To the right of that is our estimated 3D pose and shape and the model
seen from another view. The top row shows examples using the gender-neutral body model;
the bottom row show fits using the gender-specific models.

Human3.6M. We perform the same analysis on the Human 3.6M dataset [102], which

has a wider range of poses. Following [134, 204, 241], we report results on sequences of

subjects S9 and S11. We evaluate on all 15 action sequences captured from the frontal camera

(“cam3”) from trial 1. These sequences consist of 2000 frames on average and we evaluate

on all frames individually. As above, we use training mocap and MoSh to train a regressor

from the SMPL body shape to the 3D joint representation used in the dataset. Other than

this we do not use the training set in any manner. We assume that the focal length as well

as the distortion coefficients are known since the subjects are closer to the borders of the

image. Evaluation on Human3.6M is shown in Table 3.3 where our method again achieves

the lowest average 3D error. While not directly comparable, Ionescu et al. [101] report an

error of 92mm on this dataset.

Walking Boxing Mean Median
Method: S1 S2 S3 S1 S2 S3
Eβ + EJ + Eθ′ 98.4 79.6 117.8 105.9 98.5 122.5 104.1 82.3
Eβ + EJ + Eθ′ + Esp 97.9 79.4 116.0 105.8 98.5 122.3 103.7 82.3
SMPLify 73.3 59.0 99.4 82.1 79.2 87.2 79.9 61.9

Table 3.2: HumanEva-I ablation study. 3D joint errors in mm. The first row drops the
interpenetration term and replaces the pose prior with a uni-modal prior. The second row
keeps the uni-modal pose prior but adds the interpenetration penalty. The third row shows
the proposed SMPLify model.
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Directions Discussion Eating Greeting Phoning Photo Posing Purchases Sit
Akhter & Black [9] 199.2 177.6 161.8 197.8 176.2 186.5 195.4 167.3 160.7
Ramakrishna et al. [173] 137.4 149.3 141.6 154.3 157.7 158.9 141.8 158.1 168.6
Zhou et al. [240] 99.7 95.8 87.9 116.8 108.3 107.3 93.5 95.3 109.1
SMPLify 62.0 60.2 67.8 76.5 92.1 77.0 73.0 75.3 100.3

SitDown Smoking Waiting WalkDog Walk WalkTogether Mean Median
Akhter & Black [9] 173.7 177.8 181.9 176.2 198.6 192.7 181.1 158.1
Ramakrishna et al. [173] 175.6 160.4 161.7 150.0 174.8 150.2 157.3 136.8
Zhou et al. [240] 137.5 106.0 102.2 106.5 110.4 115.2 106.7 90.0
SMPLify 137.3 83.4 77.3 79.7 86.8 81.7 82.3 69.3

Table 3.3: Human 3.6M. 3D joint errors in mm.

3.3.3 Qualitative Evaluation

Here we apply SMPLify to images from the Leeds Sports Pose (LSP) dataset [112]. These

are much more complex in terms of pose, image resolution, clothing, illumination, and

background than HumanEva or Human3.6M. The CNN, however, still does a good job of

estimating the 2D poses. We only show results on the LSP test set. Figure 3-6 shows several

representative examples where the system works well. The figure shows results with both

gender-neutral and gender-specific SMPL models; the choice has little visual effect on pose.

For the gender-specific models, we manually label the images according to gender.

Figure 3-8 visually compares the results of the different methods on a few images from

each of the datasets. The other methods suffer from not having a strong model of how limb

lengths are correlated. LSP contains complex poses and these often show the value of the

interpenetration term. Figure 3-5 shows two illustrative examples. Figure 3-7 shows a few

failure cases on LSP. Some of these result from CNN failures where limbs are mis-detected

or are matched with those of other people. Other failures are due to challenging depth

ambiguities. See our website [1] for more results.

Figure 3-7: LSP Failure cases. Some representative failure cases: misplaced limbs, limbs
matched with the limbs of other people, depth ambiguities.
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Figure 3-8: Qualitative comparison. From top to bottom: Input image. Akhter & Black
[9]. Ramakrishna et al. [173]. Zhou et al. [240]. SMPLify.

3.4 Conclusions

In this chapter we have presented SMPLify, a fully automated method for estimating 3D body

shape and pose from 2D joints in single images. SMPLify uses a CNN to estimate 2D joint

locations, and then fits a 3D human body model to these joints. We use the recently proposed

SMPL body model [143], which captures correlations in body shape, highly constraining

the fitting process. We exploit this to define an objective function and optimize pose and

shape directly by minimizing the error between the projected joints of the model and the

estimated 2D joints. This gives a simple, yet very effective, solution to estimate 3D pose

and approximate shape. The resulting model can be immediately posed and animated. We

extensively evaluate our method on various datasets and find that SMPLify outperforms

state-of-the-art methods.

Our formulation opens many directions for future work. In particular, body shape and
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pose can benefit from other cues such as silhouettes, and in fact in the next chapter we use

silhouettes to improve pose and shape estimation of quadruple animals. Our formulation

can easily benefit from multiple camera views and multiple frames. Additionally a facial

pose detector would improve head pose estimation and automatic gender detection would

allow the use of the appropriate gender-specific model. It would be useful to train CNNs

to predict more than 2D joints, such as features related directly to 3D shape. Our method

provides approximate 3D meshes in correspondence with images, which could be useful for

such training. The method can be also be extended to deal with multiple people in an image;

having 3D meshes should help with reasoning about occlusion.

Our results demostrate that a model-based fitting approach for single-view 3D recon-

struction is an effective solution even for highly articulated objects. In the following chapters

we discuss how a similar approach can be extended to animals.
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Chapter 4

Learning 2D Deformation Field of

Birds

4.1 Introduction

In this chapter we focus on the bottom-up estimation problem for animals. In particular, we

focus on how the semantic correspondence problem may be solved without using any human

provided keypoint annotations. Instead of a model-based approach, here we follow the recent

“3D by image collection” approach discussed in 2.3.3, where 3D is obtained by matching

images of objects in a large image collection. However, different object instances exhibit

large appearance and shape variations, which cannot be handled by traditional appearance

features such as SIFT [147] alone. Thus, prior works rely on supervision in the form of

keypoint annotations [48, 117, 214] or 3D CAD models in the case of rigid objects [23, 50] to

augment appearance information with shape priors. Such annotations are labor-intensive,

The contents of this work is in collaboration with Manmohan Chandraker and David Jacobs, presented at
CVPR 2016 [115]. This was part of my internship at NEC Labs America, also supported by the National
Science Foundation under Grant No. 1526234.
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Figure 4-1: Idea. We propose a novel deep learning architecture, WarpNet, for learning an
image-specific spatial prior for matching two images of different object instances in a fine-
grained dataset. WarpNet is trained without using any human-provided part annotations,
but significantly improves matching accuracy across variations in appearance, pose and
articulation (bottom), which is not possible with appearance features alone (top). Our
match quality is high enough to be propagated across images to be used for single-view
reconstruction without using any manually annotated keypoints (right).

thus, too sparse for reconstruction and not scalable. Further, it can be quite difficult and

impractical to obtain human-labeled annotations for parts that are not nameable. In contrast,

this chapter presents a framework to match images of fine-grained datasets such as birds,

with some degree of non-rigidity and articulation, across sub-category and pose variations,

without requiring supervised keypoint annotations. We then present an approach to the

challenging novel problem of weakly-supervised single-view object reconstruction.

We postulate that the structure of fine-grained datasets, combined with the power of

convolutional neural networks (CNNs), allows matching instances of different sub-categories

without human keypoint annotation. Fine-grained datasets for objects such as birds can be

analyzed along two dimensions – appearance and global-shape. Instances within the same

sub-category that are imaged in different poses can be matched by appearance similarity,
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Figure 4-2: Intuition: Matching within a category exploits appearance similarity, while
matching instances across related categories is possible through global shape similarity. By
propagation, one may match across variations in both appearance and shape.

while instances with similar pose or viewpoint from different categories can be matched

through similarity in global shape. Instances with both appearance and shape variations

may then be matched by propagation (Fig. 4-2). In other words, because sub-categories

share a common shape, matches that are difficult via appearance alone can be overcome by

using their similarity in global shape. In Section 4.2, we demonstrate a practical realization

of this intuition by introducing a deep learning architecture, WarpNet that learns a space of

2D deformation fields of fine-grained categories by taking advantage of their similarity in

shape. Specifically, WarpNet learns to warp points on one object into corresponding points

on another (from a possibly different category or pose) without requiring human keypoint

annotations. The predicted deformation between two objects acts as an image-specific shape

prior, which encourages matches that are consistent with the shape of the two objects.

WarpNet is a Siamese network that accepts two images as input (Section 4.2.2). To

overcome the absence of human annotated keypoints, our training presents an image and a
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Figure 4-3: Overview of our framework. (a) Lacking part annotations, we exploit the
fine-grained dataset to create artificial correspondences. (b) These are used to train our
novel deep learning architecture that learns to warp one object into another. (c) The output
of the network is used as a spatial prior to match across appearance and shape variations.
(d) Our high-quality matches can be propagated across the dataset. We use the WarpNet
output and the structure of fine-grained categories to perform single-view reconstruction
without part annotations.

warped version related by a known thin-plate spline (TPS) transformation, which yields arti-

ficial correspondences. We assume the object bounding box and foreground segmentation are

known, which can be obtained through state-of-the-art segmentation [53] or co-segmentation

methods [126]. We experiment using both ground truth and co-segmentation outputs. In

Section 4.2.1, we exploit neighborhood relationships within the dataset through the pose

graph of Krause et al . [126] to compute exemplar TPS transformations between silhouettes,

from which our artificial transformations are sampled. A point transformer layer inspired by

[105] is used to compute the warp that aligns keypoints without supervision, which provides

a spatial prior for matching (Section 4.3). We show that WarpNet generalizes well to match

real images with distinct shapes and appearances at test time. In particular, it achieves

matching accuracy over 13.6% higher than a baseline ILSVRC CNN [52].

Establishing matches between a given instance and other objects in the dataset opens

the door to a novel problem – weakly supervised reconstruction in fine-grained datasets.

Several sub-problems must be solved to achieve this goal, such as match propagation and

image subset selection. Prior works such as [48, 214] approach these sub-problems, but the

absence of supervised annotations poses new challenges. In Section 4.3.2, we suggest ways to
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overcome them through the use of matches from our WarpNet, the pose graph and heuristics

that exploit the structure of fine-grained datasets. We demonstrate reconstructions that are

nearly as good as those obtained using supervised annotations and better than those from

appearance-only CNNs or unsupervised baselines such as deformable spatial pyramids [123].

To summarize, our key contributions are:

• A novel deep learning architecture, WarpNet, that predicts a warp for establishing

correspondences between two input images across category and pose variations.

• A novel exemplar-driven mechanism to train WarpNet without requiring supervised

keypoint annotations.

• An approach to weakly-supervised single-view object reconstruction that exploits the

structure of the fine-grained dataset to yield reconstructions of birds nearly on par

with the method that uses supervised part annotations.

4.2 Learning without Part Annotations

We present a deep learning framework, WarpNet , that learns the correspondence from one

image to another without requiring part annotations. Given two images I1 and I2, our

network outputs a function that takes points in I1 to points in I2. We parameterize this

function as a thin-plate spline (TPS) transformation since it can capture shape deformations

well [29]. Inspired by Dosovitskiy et al . [6], we generate artificial correspondences by applying

known transformations to an image. However, our approach is distinct in using the structure

afforded by fine-grained datasets and dealing with non-rigidity and articulations. Our network

generalizes well to instances of different categories at test time and we use its output as a

spatial prior in computing a match between two objects. Figure 4-3 gives an overview of our
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approach. We discuss each step in detail below.

4.2.1 Generating Unsupervised Correspondences

Since we do not have annotated point correspondences, we create artificial ones by applying

random spatial and chromatic transformations to images. The key requirement is that the

spatial transformations applied are complex enough to learn meaningful correspondences,

while producing transformed images that are reflective of actual image pairs to match at test

time. For instance, affine transformations are not expressive enough to capture non-rigid

deformations and articulations in birds. Instead, we use TPS transformations and exploit the

fine-grained dataset to generate exemplar warps that span a realistic range of transformations.

We use the pose graph of Krause et al . [126], whose edge weights are determined by the

cosine distance of the fourth-layer of a pre-trained ILSVRC CNN, which captures abstract

concepts such as class-independent shape. We compute shape context TPS warps [29] between

the silhouettes of images that are within 3 nearest-neighbors apart on the pose graph. We

sort the TPS warps using the mean of their bending and affine energy, retaining only those

between the 50th and 90th percentiles to avoid warps that are too trivial or too drastic. We

create m transformed versions of every image by sampling from this set of TPS warps. We

sample n points uniformly on the foreground, which we use as correspondences. Figure 4-4

shows the effect of transformations sampled from the exemplar-TPS warps. The images on

the left are the originals and the ones on the right are transformed versions. Notice how

the transformation induces changes in shape and articulations around the head and the tail,

which validates the utility of our exemplar TPS warps.
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Figure 4-4: Sample exemplar-TPS warped images used for training our WarpNet. Left: original
images, right: artificial versions made by applying exemplar TPS warp + chromatic transformation.
Notice changes in shape and articulations at the head and the tail.

4.2.2 WarpNet Architecture

Our proposed WarpNet is a Siamese network [57] that takes two images related by an

exemplar TPS transformation, I1 and I2, along with the corresponding n keypoint locations,

as inputs during training (at test time, the input consists only of two images from possibly

different categories and poses that must be matched). The main objective of WarpNet is

to compute a function that warps points p2 in I2 to image coordinates in I1, such that

after warping the L2 distance to the corresponding points p1 in I1 is minimized. Figure 4-5

illustrates the architecture of WarpNet.

First, the input images are passed through convolution layers with tied weights. The

extracted features are then combined by element-wise subtraction of the feature maps. We

subtract rather than concatenate the feature maps along the channels, since concatenation

significantly increases the number of parameters in the network making it unstable to train.

The combined feature maps are passed through a point transformer, similar to [105], which
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Figure 4-5: WarpNet architecture. Visual features are extracted from two input images using a
Siamese CNN. They are combined to predict a deformed grid that parameterizes a TPS transformation.
The network objective is to minimize the distance between corresponding points p1 and p2 of the
image pair after applying the predicted transformation to p2.

regresses on the (x, y) coordinates of a deformed K ×K grid. The output grid, normalized

to a range of [−1, 1] × [−1, 1], acts as the control points for computing a grid-based TPS

transformation from I2 to I1. This involves solving a system of linear equations, handled by

the TPS layer. See Appendix A for details. The predicted TPS transformation is applied to

the keypoints of I2 generating the transformed version Tθ(p2), which finally gets sent to the

L2 loss layer along with p1. Since every step consist of linear operations, the whole network

can be trained with backpropagation.

We implicitly train the warp parameters in terms of distance between corresponding

points rather than direct supervision against the TPS warp coefficients. This provides a

natural distance between warps, where we can train the network without knowing the exact

transformation parameters used.

Figure 4-6 illustrates the output of the trained network given two real images as input,

denoted source and target. Despite the fact that the network has never seen objects of

different instances, it is able to compute warps between the two objects. Note that WarpNet

accounts for variations in shape (fat to skinny, small to large birds), articulation (such as the
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Figure 4-6: Visualizations of the network output. WarpNet takes two images, source and target, as
inputs and produces a 10x10 deformed lattice (last column) that defines a TPS warp from target to
source. The third column shows the warped source image according to the network output. Notice
how the network accounts for articulations at the tail and the head as well as differences in shape of
the birds. WarpNet is trained in an unsupervised manner and none of these images were seen by the
network during training.

orientation of the head or the tail) and appearance.

4.3 Matching and Reconstruction

4.3.1 Matching with WarpNet

Given two images Ii and Ij , a match for a point ui in Ii is the most similar point vj in Ij

using the similarity score consisting of an appearance term and a spatial term:

s(ui, vj) = exp

(
−df (ui, vj)

σf

)
+ λ exp

(
−dw(ui, vj)

σw

)
, (4.1)
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Figure 4-7: Sample matches obtained by ILSVRC trained CNN vs. WarpNet. Note WarpNet’s
relative robustness to variations in appearance, pose and articulation.

where df (u, v) is the L2 distance of appearance features extracted at ui and vj , while dw is a

symmetric spatial prior:

dw(u, v) =
1

2
(||xui − Tθij (x

v
j )||+ ||xvj − Tθji(x

u
i )||). (4.2)

We use WarpNet to compute Tθ·,· in both directions.

The matches are then ranked by the ratio-test strategy [147]. This simple but powerful

heuristic allows discarding points in Ii that are similar to many other points in Ij . Since

the keypoints are extracted densely on the foreground, we compute the similarity score ratio

between the first and second nearest neighbors that are at least 10 pixels away. Figure 4-7

shows a few qualitative matching results comparing the baseline CNN and WarpNet.

4.3.2 Single-View Object Reconstruction

Obtaining good matches is a critical first step towards 3D reconstruction. While single-view

3D reconstruction methods in the past have relied on expensive supervised inputs such as

part annotations or CAD models, our matching enables a first approach towards a challenging
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new problem, namely, part annotation free single-view reconstruction. We discuss initial

approaches to variants of existing supervised methods or structure from motion (SFM)

pipelines that may be used to solve this problem without requiring annotations.

Propagating correspondences In the CUB-200-2011 dataset, there are only 60 images

for each category. Moreover, birds are often imaged from preferred viewpoints, but it is

critical for reconstruction to obtain matches across a well-distributed set of viewpoints. On

the other hand, deformations may be very high even within a category (open wings as opposed

to closed), which makes straightforward matching within a category challenging. Inspired by

the work of Carreira et al . [48], we use a shortest path method to propagate matches across

objects of similar shapes in the dataset, in order to obtain a denser set of tracks. However,

note that we lack the initial set of point annotations as well as the camera poses obtained

through part annotations in [48, 214], who also manually select a subset of keypoints to

eliminate articulations. Instead, we determine unsupervised matches purely through our

WarpNet and rely on the pose graph to determine nearest neighbors for propagation.

Choosing a subset for reconstruction A key problem we encounter is the choice of

images for reconstruction. In previous works on reconstruction within PASCAL VOC [48, 214],

it has been possible to use the entire dataset since it contains less than 1000 images for

birds. In contrast, CUB-200-2011 contains nearly 12000 images, which poses computational

challenges and requires greater vigilance against outliers. Moreover, annotations in [48, 214]

preclude the need for algorithmic considerations on baseline or shape variations in choosing

the image set. For instance, to reconstruct a sitting bird imaged from a frontal view, we

must propagate matches to side views of sitting birds in other categories to ensure a good

baseline, while avoiding images of flying birds.
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Given a collection of images, several heuristics have been proposed for selecting the right

subset or order for multiview rigid-body reconstruction [193, 194]. However, those are not

directly applicable for single-view reconstruction of deformable objects. Instead, we propose

three heuristics that utilize the structure of fine-grained bird datasets:

• Use images from categories that share a keyword (for example, all “warblers”, or all

“sparrows”).

• Use images from categories that are related by an ornithological taxonomy, as defined

by [157].

• Use images from the five nearest neighbor subcategories on a similarity tree of bird

species [30].

The above heuristics perform comparably and address the same goal – introduction of

matched keypoints from more than one subcategory to ensure good viewpoint coverage.

Reconstruction Given an image of a target object from one particular class, we consider

images from several other categories using one of the above heuristics. We compute pairwise

matches at 85% precision threshold between all pairs of images whose distance on the pose

graph is less than 4. We ignore pairs that have less than 50 surviving matches. We then set

up a virtual view network (VVN) [48] to propagate matches across all the selected images

by solving a shortest path problem. We use scores from (4.1), bounded between [0, 1], as

weights on the graphs connecting the keypoints. After propagation, we discard as spurious

any propagated matches with shortest path distance more than 0.4 and remove all images

that have less than 30 matches with the target object. We then create the measurement

matrix of tracked keypoints of the target object. We only consider keypoints visible in at

least 10% of the images as stable enough for reconstruction. We finally send the observation
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matrix to the rigid factorization method of [150], which robustly handles missing data, to

obtain 3D shape. A rigid factorization suffices to produce reasonable reconstructions since

the dataset is large enough, but non-rigid methods alternately could be used.

4.4 Experiments

We perform experiments on the CUB-200-2011 dataset which contains 11788 images of 200

bird categories, with 15 parts annotated [217]. We reconstruct without part annotation,

assuming objects are localized within a bounding box. We quantitatively evaluate our

matches using and extending the part annotations. Next, we evaluate the effectiveness of

WarpNet as a spatial prior and analyze the choice of transformations for creating the artificial

training dataset. Finally, we demonstrate the efficacy of our framework with several examples

of unsupervised single-view reconstruction.

4.4.1 Experimental Details

We create the pose graph of [126] using the conv4 feature of AlexNet trained on ILSVRC2012

[127]. For creating the artificial dataset, we only use the training data (∼6000 images) and

create m = 9 copies of each image using our exemplar-TPS. This results in approximately

120k image pairs, each with n = 100 point correspondences.

Network training details We use the VGG-M architecture of [52] until the pool5 layer

as the feature extraction component of WarpNet. The point transformer consists of C512-

C256-F1024-D-Op using the notation of [8]. Both convolutional layers use 3x3 kernel, stride

1 with no padding, with ReLU non-linearity. The output layer is a regressor on the grid

coordinates, with grid size K = 10. The feature extraction weights are initialized with
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weights pre-trained on the ILSVRC classification task, following prior state-of-the-art for

correspondence [140].

All training images are cropped around the bounding box padded with 32 pixels and

resized to 224× 224 with pixel-wise mean subtraction computed using the CUB-200-2011

dataset. These images were further augmentated on the fly with these spatial and chromatic

parameters:

• mirroring (consistent mirror for image pairs)

• scaling between [0.8, 1.2]

• vertical or horizontal translation by a factor within 3% of image size

• rotation within [−20, 20] degrees;

• contrast 1 of [6] with factors within [0.5, 2]

• contrast 2 of [6] with saturation multiplication factors within [0.7, 1.4], saturation or

hue addition within [−0.1, 0.1] but with no power saturation.

The feature extraction layer weights (up to pool5) are initialized with the VGG_M_1024

model of [52]. The learning rates on the pre-trained weights are set to one-tenth of the global

learning rate. All other weights are initialized from a Gaussian distribution with a zero mean

and variance equal to 0.1.

We train the network with momentum 0.9 and weight decay of 10−5. We tune the weight

decay and the learning rate following the feature extraction using a held out set of artificial

datasets. The learning rates of the pre-trained feature extraction layers is set to 0.01 of the

global learning rate, which is set to a constant value of 0.0001. We train the network with

mini-batch size 64, for 45k iterations, when the test error begins to converge.

For the point-transformer architecture (after combining pool5 features), we experiment
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using several fully-connected layers instead of starting with convolution layers. However,

starting with convolution layers is clearly the better choice since it yields the lowest test

errors while keeping the number of parameters reasonable. We did not further fine-tune the

architecture of the point-transformer such as tuning the number of feature maps, the kernel

size, stride, or the number of convolution layers.

Matching and Reconstruction For matching and reconstruction, images are resized

with aspect ratio intact and the smallest side 224 pixels. We uniformly sample points on

the foreground with a stride of 8 as keypoints for matching. For all experiments we use

L2-normalized conv4 features extracted at the keypoints using the hole algorithm [53] for

computing the appearance term in (4.1). Hyperparameters used for matching are σf = 1.75,

σw = 18, λ = 0.3, tuned using the artificial dataset.

4.4.2 Match Evaluation

We compare our approach with ILSVRC pre-trained VGG-M conv4 [52], SIFT at radius 8

[147] and matches from the deformable spatial pyramid (DSP) [123]. Only the appearance

term in (4.1) is used for computing matches with VGG-M conv4 and SIFT. For computing the

matches with DSP, we mask out the background prior to extracting SIFT features following

[48] and only keep matches of the keypoints. For this experiment, the set of keypoints to

match includes the locations of annotated parts.

In order to evaluate WarpNet as a stand-alone learned spatial prior, we compare WarpNet

with DSP by replacing the SIFT features in DSP with VGG features. We call this method

VGG+DSP. We further evaluate WarpNet against the original DSP by using WarpNet as a

spatial prior for SIFT matches, where the unary term df in (4.1) is computed with SIFT

features. We call this method SIFT+WarpNet.
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As discussed in Section 4.2.1, the only supervision required in training WarpNet is the

segmentation mask to mine exemplar-TPS transformations. We also evaluate the robustness

of WarpNet using co-segmentation outputs of [126], called VGG+coseg.

Test set We evaluate on 5000 image pairs that are within 3 nearest neighbors apart on

the pose graph, comprising more than 50k ground truth matches. 1 Due to the unsupervised

nature of the pose graph, these pairs exhibit significant articulation, viewpoint and appearance

variations (see Figures 4-1, 4-6). We remove severely occluded pairs with less than 7 parts

visible in both images and pairs whose TPS warp computed from part annotations have very

high bending energy. None of the test images were used to train WarpNet.

Evaluation metrics We evaluate the accuracy of matches with the percentage of correct

keypoints (PCK) metric [226], where a match is considered correct if the predicted point is

within α ∗ L of the ground-truth correspondence. Following [8], we chose L to be the mean

diagonal length of the two images. We also compute the precision-recall (PR) curve adopting

the procedure of [152]. A match is considered a true positive within a radius α = 0.05,

otherwise it is a false positive. In this setup, a recall of 1 is obtained only if all the matches

retrieved are correct, that is, 100% α-PCK. We compute PR curves using the ratio-test

values described in Section 4.3.1 for ranking the matches and report AP. For DSP, we use its

matching cost for ranking instead of the ratios, since second closest matches are not available.

Results Figure 4-8(a) shows the obtained PR curves. WarpNet achieves an AP of 53.4%, an

13.6% increase over matches using just the appearance feature of VGG-M conv4. WarpNet

achieves a much higher recall due to its spatial prior, learned without using any part

annotations. As a side note, conv4 features of WarpNet alone achieve very similar performance
1Please see supplementary materials for results on a test set with 1-nearest neighbors, where we observe

similar trends but with higher PCKs.
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Figure 4-8: Precision-Recall curves for matching points between neighboring images on the pose
graph. We evaluate points with (a) human-annotated correspondences and (b) expanded pseudo-
ground-truth correspondences.

to the VGG-M conv4. In all cases, WarpNet outperforms DSP as a spatial prior and changing

SIFT to VGG features yields around 5% improvement in the final recall. WarpNet-coseg

still outperforms the baseline VGG-M by 10.8%, showing our approach is applicable even

without ground truth segmentations.

Figure 4-9(a) shows the PCK as a function of α, where WarpNet consistently outperforms

other methods. We observe that VGG-M conv4 and DSP perform similarly, showing that

while DSP obtains low recall at high precision, its overall match quality is similar to CNN

features, an observation in line with [48]. Since only high precision matches are useful for

reconstruction where outliers need to be avoided, we show the same curves thresholded at

85% precision in Figure 4-9(b) for VGG-M and our method. Note that some methods in

black have zero recall at this precision. The growing gap between WarpNet and VGG-M

conv4 as α increases suggests that, unlike WarpNet, appearance features alone make grossly

wrong matches (see Figures 4-1 and 4-7).
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Figure 4-9: PCK (higher the better) over varying definition of correctness α. (a) Mean PCK of
all retrieved matches regardless of ratio score. (b) Mean PCK with matches thresholded at 85%
precision, which are the matches used for reconstruction.

Figure 4-10: ]
Illustration of the pseudo-gt correspondences. We triangulate each image using the annotated
keypoints (colored points). The match for the big red dot in the left image is found by looking at
points within the same triangle (small pink dots) in the right image and picking the closest point in
terms of barycentric coordinates.

Expanding the set of part annotations A caveat of the CUB-200-2011 for our task is

that part annotations are sparse and concentrated on semantically distinct parts such as eyes

and beaks around the head region, with only four points on the bird body that are often

not all visible. To investigate matching performance more densely, we carefully expand the

ground-truth matches using the annotated parts. This process is illustrated in Figure 4-10.
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Figure 4-11: Comparing results for WarpNet trained on artificial data created using affine-spatial
transformations with (a) PR curves and (b) PCK over α. WarpNet trained with exemplar-TPS is
more effective in terms of recall and precision.

Given a pair of images I1 and I2, we Delaunay triangulate each image independently using

the parts visible in both as vertices. For a point u within a triangle in I1, we consider points

in I2 that are within the same triangle as possible candidates (shown as pink dots in Figure

4-10), find the point that is closest to u in terms of barycentric coordinates and accept this

as a new pseudo ground-truth match if the distance is less than 0.1. Figure 4-8(b) shows the

PR curve obtained using the pseudo-ground truth matches (in addition to the annotated

parts). We see the same trends as Figure 4-8(a), but with a wider gap between the baselines

and our method. This is reasonable given that bird bodies usually consist of flat or repeated

textures that are challenging to match with local appearances alone, highlighting the efficacy

of WarpNet’s spatial prior.

4.4.3 Choice of Transformations

We now analyze the choice of exemplar TPS transformations for creating the artificial dataset.

We train another WarpNet under the same settings, but on an artificial dataset created using

only affine spatial transformations, which we refer to as AffineNet. Note that AffineNet’s
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output is still a TPS transformation, thus, it has the same capacity as the original WarpNet.

Figure 4-11(a) shows the PR curve of AffineNet in comparison to WarpNet and VGG-M

conv4. WarpNet outperforms AffineNet in all aspects. While AffineNet has a higher final

recall (that is PCK of all matches) than VGG-M conv4, its recall at high precision is slightly

lower than that of VGG-M conv4. This is highlighted in Figure 4-11(b), which shows PCK

of matches at 85% precision over α, where AffineNet performs on par with VGG-M conv4.

This indicates that the warps predicted by AffineNet are helpful in a general sense, but not

precise enough to improve the recall at high precision. This experiment shows that using

exemplar-TPS transformations for creating the artificial dataset is critical for training a

useful WarpNet.

4.4.4 Single-view Object Reconstruction

We compare our method with three other matching methods. One is a supervised matching

approach similar to [48], where the network predicted TPS warp Tθ in (4.2) is replaced by

the supervised TPS warp computed using the annotated keypoints. We call this approach

supervised and it is an upper-bound to our method since ground-truth part annotations

are used for reconstruction. We also perform reconstructions with VGG-M conv4 features

alone and DSP. We do not include the mirrored image as another viewpoint of the target

object, since bilateral symmetry does not hold for articulated objects. For post-processing

we use the xy-snapping method proposed in [48], which only uses the z-component from

the reconstructed shape, while fixing the x, y coordinates. We do not resample the target

objects multiple times prior to factorization since it did not seem to make a difference.

Figure 4-12 shows reconstructions for various types of birds using the four methods from

three viewpoints: camera view, 45◦ azimuth and 45◦ elevation. The colors indicate depth
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Input& Supervised& Ours& VGG1M&& DSP&

Figure 4-12: Sample reconstructions showing 3 views for each method: The camera viewpoint
followed by the 45◦ azimuth in counter-clockwise direction (top right) and 45◦ elevation (bottom
right). Colors show the depth where yellow is closer and blue is farther. The supervised method uses
the spatial prior computed from annotated part correspondences, which can be seen as an upper
bound. No part correspondences were used for the last three methods. WarpNet consistently obtains
reconstructions most similar to the supervised method.
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values (yellow is close, blue is far), with range fixed across all methods. WarpNet produces

reconstructions that are most consistent with the supervised approach. Reconstructions

from VGG-M and DSP are noisy due to errors in matching and often produce extreme

outlier points that had to be clipped for ease of visualization. Articulated parts such as

tails and wings are particularly challenging to match, where VGG-M and DSP often fail to

recover consistent depths. Please see these results in 360◦ from the supplementary video

https://goo.gl/w8DF1m.

4.5 Conclusion

In this chapter, we introduced a framework for improving the quality of matches between

objects in fine-grained datasets without using human keypoint annotations. Our target

application is single-view object reconstruction where prior works rely on some form of

keypoint annotation during the reconstruction process, which is expensive and not scalable.

The core of our approach is a novel deep learning architecture that predicts a 2D deformation

field between two objects of fine-grained categories, parameteriaed by TPS transformations.

We show that our network can be trained without supervised human keypoint annotations

by exploiting the shape commonality in fine-grained datasets and use its output as a spatial

prior for accurate matching.

Our approach achieves significant improvements over prior state-of-the-art without using

part annotations and we show reconstructions of similar quality as supervised methods. Key

challenges for future work are to determine optimal subsets of images for reconstruction

and a good order for adding images that allows incremental reconstruction with bundle

adjustment.

One caveat of modeling the deformation in the 2D space is that it cannot model out-
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of-plane rotation. Due to this, WarpNet is capable of hallucinating birds to be of similar

pose even when the baseline is wide. This may be avoided by a better choice of image pairs

for matching, so that only birds with similar viewpoints are matched or by predicting a

“matchable” region mask as in [238]. Another fundamental way of dealing with this is to

model the deformation space in 3D. This is the topic of the following chapters, where we

explore how to learn a 3D deformable model of animals.
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Chapter 5

Learning 3D Deformation of Animals

from 2D images

5.1 Introduction

Recent advances in computer vision and graphics have enabled the collection of high-quality

3D models with tools such as multi-view stereo [77] and commercial depth-sensors [103].

However, it is still difficult to obtain models of highly articulated and deformable objects like

animals. In November 2015, searching Turbosquid for “chair” returns 24,929 results, while

“cat” returns only 164 results. On the other hand, the Internet is brimming with cat pictures.

In this chapter, we aim to create new 3D models of an animal by deforming a template

3D model to fit a 2D image. We assume that a sparse (less than 30) set of 2D-to-3D point

correspondences are available through user clicks, which serve as positional constraints that

guide the template deformation.

The contents of this work is in collaboration with Shahar Z. Kovalsky, Ronen Basri, and David Jacobs,
presented at Eurographics 2016 [116]. This material is based upon work supported by the National Science
Foundation under grant no. IIS-1526234, the Israel Binational Science Foundation, Grant No. 2010331 and
the Israel Science Foundation Grants No. 1265/14
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Figure 5-1: Overview. Our inputs are a reference 3D model and a set of images with user
clicked 3D-to-2D point correspondences. The algorithm then alternates between solving for
the camera viewpoint and the 3D deformations for all images. Our novel formulation allows
us to solve for the deformation for each image and the stiffness model of the animal jointly
in a single semidefinite program (SDP). The outputs of our algorithm are a set of deformed
3D models and the stiffness model, which specifies the rigidity of every local region of the
animal (red indicates high deformability and blue indicates rigidity).

However, even with user-provided point correspondences, it is challenging to deform the

template in a realistic and plausible manner. On top of the ill-posed nature of recovering 3D

from 2D, animals are highly deformable, but not in a uniform way. In order to deform the

template realistically, we argue that it is critical to understand how an animal can deform

and articulate. For example, looking at many images of cats shows that a cat’s body may curl

up like a ball or twist and that its limbs articulate, but its skull stays mostly rigid. Hence,

when modifying a 3D template model of a cat, we should restrict the amount of deformation

allowed around the skull, but allow larger freedom around limb joints and the torso.

Here, we propose a novel deformation framework that aims to learn an animal-specific

3D deformation model from a set of annotated 2D images and a template 3D model. Our

framework is inspired by the idea of local stiffness field, which specifies the amount of

distortion allowed for a local region. The concept of stiffness is used in 3D deformation

methods to model natural bending at joints and elastic deformations [170, 36]. In previous

methods, the stiffness field is provided by users or learned from a set of vertex-aligned 3D

meshes in various poses [170]. Instead, we learn the stiffness field from user-clicked 2D images
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using the insight that highly deformable regions are sparse and consistent across multiple

images. The idea is that large distortion is only allowed for those regions that require high

deformation across many images. To our knowledge, our work is the first to learn stiffness of

a 3D model from annotated 2D images.

We depart from the traditional skeleton models in this chapter, which are a set of rigid

sticks connected by deformable joints [17, 224, 143]. Skeleton models are an excellent low-

dimentional model for articulation as used in chapters 3 and 6. However, they are created by

artists or learned from a large set of 3D scans of objects in various poses, and it’s not clear

how to learn them from 2D images. Creating the skeleton model requires a prior knowledge

of how the object articulates (e.g . how many bones to use?), and this is the kind of knowledge

that we wish to learn from images. Another benefit of our model is that it can represent

continuous pose changes, which is essential for representing local deformations.

Figure 5-1 shows an overview of our proposed framework. Given a stock 3D cat mesh

and target images of cats, a user provides 3D-to-2D point correspondences by clicking key

features in images. These are passed on to the proposed algorithm, which simultaneously

deforms the mesh to fit each cat’s pose and learns a cat-specific model of 3D deformation. In

the end, we obtain new 3D models for each target image and a stiffness model that describes

how cats may deform and articulate.

Our primary contribution is a deformation framework that learns an animal-specific

model of local stiffness as it deforms the template model to match the user-clicked 2D-to-3D

correspondences. Specifically,

• We propose a locally bounded volumetric deformation energy that controls the maximal

amount of distortion applied to local regions of the model using the recent optimization

techniques of [124]. The bounds act as a local stiffness model of the animal, which we
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learn by imposing a L1 sparsity penalty. The final deformation is orientation preserving

and has worst-case distortion guarantees.

• We show that both the deformation and the stiffness bounds can be solved jointly as a

sequence of convex optimization problems.

• We demonstrate the effectiveness of our framework on cats and horses, which are

challenging animals as they exhibit large degrees of deformation and articulation.

5.2 Problem statement and background

We consider the problem of modifying a template 3D mesh of an animal according to a set

of user-clicked photographs of the target animal. Our goal is to produce plausible 3D models

guided by the annotated images, not necessarily obtaining precise 3D reconstructions of

the images. In particular, given a sparse set of 2D-to-3D correspondences obtained from

user-clicks, we wish to solve for a set of class-specific 3D deformations that faithfully fit the

image annotations.

More formally, we are given a 3D template model, represented by a surface mesh S ⊂ R3

as well as N images of class instances I1, . . . , IN . Each image is associated with a sparse set

of user prescribed point correspondences to the 3D model; namely, the i’th image Ii comes

with pairs {(xik,pik)} relating the surface point xik ∈ S to a 2D image location pik ∈ R2. Our

goal is to leverage the N annotated images to learn a deformation model D capturing the

possible deformations and articulations of the object class. In particular, for each image

Ii we wish to find a deformation Φi ∈ D that maps its 3D landmark points {xik} to their
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corresponding image points {pik} once projected to the image plane; namely, satisfying

pik
1

 = Πi

Φi(xik)
1

 , (5.1)

where Πi ∈ R3×4 is the camera projection matrix for the i’th image. In what follows we

assume weak perspective projection, which is an orthographic projection followed by scaling

of the x and y coordinates:

Π =


αx

αy

1




r1 t1

r2 t2

0 1

 . (5.2)

r1 and r2 are the first two rows of the object rotation matrix, t1, t2 are the first two coordinates

of the object translation, and αx
αy

specifies the camera aspect ratio. Its parameters can be

solved in a least squares approach given six or more 3D-to-2D point correspondences. Please

see [91] for more information. Note that perspective projection may be similarly handled.

5.2.1 Parameterized deformation model

We parameterize the deformations of the surface model S by introducing an auxiliary

tetrahedral mesh enclosed within the surface, M = (V,T), where V ∈ R3×n is a matrix of

n coarse vertex coordinates and T = {tj}mj=1 is a set of m tetrahedra (tets). Every surface

point x ∈ S can then be written as a linear combination of the vertices V. In particular, for

the landmark points we set xik = Vαik, where αik ∈ Rn is a coefficient vector computed by

linear moving least squares [133]. Figure 5-2 shows the surface and the tetrahedral mesh of

a template cat model. The use of a tetrahedral mesh introduces a notion of volume to the
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The template cat surface Auxiliary tetrahedral mesh

Figure 5-2: A template 3D surface and its auxiliary tetrahedral mesh with surface vertices
shown in blue dots.
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Figure 5-3: Illustration of the deformation model.

model making it more robust at preserving volumetric detail [62, 236].

Deformations of M thereby induce deformations of the surface S. Specifically, we shall

consider continuous piece-wise linear (CPL) maps Φ : M→ R3, whereby the deformation,

restricted to the j’th tet, is defined by the affine map v 7→ Ajv + tj . Φ maps the vertices V

to new locations U ∈ R3×n. In fact, Φ is uniquely determined by the new vertex locations

U; for the j’th tet, the following full rank linear system holds

( uj1 uj2 uj3 uj4 ) =

[
Aj tj

] ( vj1 vj2 vj3 vj4
1 1 1 1

)
, (5.3)

where vj· and uj· are its four vertices in the original and the deformed mesh respectively.
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We denote by Aj = Aj(U) the linear part of each affine transformation, linearly expressed

in terms of the new vertex locations U. Lastly, note that subject to a deformation Φ = ΦU

the location of the landmark points can be simply expressed as x̂ik = ΦU(xik) =Uαik. This

relationship along with the positional constraints are depicted in Figure 5-3.

5.2.2 Landmark-guided 3D deformation

Our goal is to deform the template S such that (5.1) is satisfied without introducing local

distortions to its shape. A popular approach to prevent distortion is minimizing the as-rigid-

as-possible (ARAP) functional [10, 195]:

fARAP(U) =
m∑
j=1

||Aj −Rj ||2F |tj |, (5.4)

where Rj ∈ SO(3) is the closest rotation to Aj and |tj | is the normalized volume of the j’th

tet. Intuitively, ARAP tries to keep the local transformations applied to each tet of the mesh

as similar as possible to a rigid transformation. Note that while the ARAP functional is

non-convex, it is convex-quadratic for fixed rotations Rj .

The ARAP functional minimizes the `2-norm of a “non-rigidity” measure, which strives

to evenly distribute local deviations from rigid transformation. As such, it fails to faithfully

represent articulation and local deformations. Moreover, it is not straightforward to adapt

this functional alone to benefit from having many annotated image exemplars. In this

work, we also use the ARAP functional, but allow non-uniform distribution of distortion by

assigning local stiffness as described in the next section.
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5.3 Learning stiffness for articulation and deformation

Natural objects do not usually deform in a uniform manner; some parts such as joints

deform a lot more while parts such as the limbs and skull stay rigid. In order to model such

deformation and articulation, we introduce the notion of local stiffness, which specifies how

much distortion is allowed at each tet. We learn local stiffness from data using a sparsity

promoting energy, so large deformations are concentrated in regions that require them across

many images. In this section we discuss how we simultaneously deform the template S to

match each of the images I1, . . . , IN while learning the stiffness.

5.3.1 Modeling local stiffness

Denote by Ui the deformation mapping S to the i’th image Ii, and by {Aij} the linear

transformations associated with its tets. Inspired by [135, 124], we control deformations by

explicitly imposing constraints on their linear parts.

First we require that each Aij satisfies

det(Aij) ≥ 0, (5.5)

which entails that the mapping is locally injective and orientation preserving; in particular,

tets may not flip. Second, we bound the local isometric distortion with the constraint

max
{
‖Aij‖2, ‖Aij

−1‖2
}
≤ 1 + ε+ sj (5.6)

where ‖ · ‖2 is the operator (spectral) norm. The small constant ε ≥ 0 is common for all

tets and governs the degree of global non-rigidity. sj ≥ 0 is the local stiffness for the j’th

tet controlling how much this particular tet may deform. Note that ε and sj are not image
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specific (i.e. they are independent of i) and encode the class-prior of how an object class can

deform and articulate.

Intuitively, ‖Aij‖2 and ‖Aij
−1‖2 quantify the largest change of Euclidean length induced

by applying Aij to any vector. Therefore, Equation (5.6) bounds local length changes by a

factor of 1 + ε+ sj . If, for example, ε = sj = 0 then Aij must be a rotation; looser bounds

allow “less locally isometric” deformations. In practice, ε is set to a small value and is fixed

throughout the experiments.

5.3.2 Optimizing articulation and deformation

Subject to these constraints, we propose minimizing an energy comprising three terms:

f = fDEFORM + λfPOS + ηfSTIFFNESS. (5.7)

fDEFORM is defined via the ARAP deformation energy (5.4) as

fDEFORM =
1

N

N∑
i=1

fARAP(U
i). (5.8)

fPOS is defined by

fPOS =
1

N

N∑
i=1

∑
k

∥∥∥∥
pik
1

−Πi

Uiαik

1

∥∥∥∥2
2

, (5.9)

which accounts for the user prescribed correspondences and the camera parameters, aiming

to satisfy (5.1). Lastly, we set

fSTIFFNESS = ‖s‖1, (5.10)

where s is the vector whose elements are the local stiffness bounds {sj}. This L1 regularization

encourages most si to be 0, so that only those tets that must distort are allowed to do so.
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λ is a parameter that controls the trade-off between satisfying the constraints and

preserving the original shape of M. η is a parameter that controls the strength of the

stiffness regularization. As η increases, it forces most Aj to stay rigid and as η approaches 0

the solution approaches that of the ARAP functional and the positional constraints. See

Section 5.4 for parameter settings.

In conclusion, jointly deforming the template S to match each of the images I1, . . . , IN ,

while estimating the local stiffness boils down to the following optimization problem:

min
{Ui},{Πi},s

fDEFORM + λfPOS + ηfSTIFFNESS (5.11)

s.t. Aij = Aij(U
i), ∀ j = 1, . . . ,m, i = 1, . . . , N

det(Aij) ≥ 0,

max
{
‖Aij‖2, ‖Aij

−1‖2
}
≤ 1 + ε+ sj ,

sj ≥ 0.

Note that usually in prior work, deformations are solved independently for each set of

positional constraints, since there is nothing that ties multiple problems together. Introducing

a shared stiffness field allows us to leverage information from multiple images and improve

the quality of results for all images.

5.3.3 Realizing the optimization

Optimizing (5.11) is not straightforward, as it involves the non-convex constraint (5.6). We

realize these constraints in a convex optimization framework based on the construction

presented in [124] for optimization subject to bounds on the extremal singular values of

matrices.
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This previous work makes the observation that the set of matrices whose maximal singular

value, σmax, is bounded from above by some constant Γ ≥ 0 is convex and can be written as

a linear matrix inequality (LMI):

CΓ =

A ∈ Rn×n :

ΓI A

AT ΓI

 � 0

 . (5.12)

It is further shown that for any rotation matrix R ∈ SO(n), the set

RCγ =

{
RA ∈ Rn×n|A+AT

2
� γI

}
, (5.13)

is a maximal convex subset of the non-convex set of matrices with non-negative determinant

whose minimal singular value, σmin, is bounded from below by some constant γ ≥ 0. This

calls for an iterative algorithm in which R is updated in each iteration so as to explore the

entire set of matrices with bounded minimum singular value. As suggested by [124], a natural

choice for R is the closest rotation to A. This choice, in turn, also minimizes the ARAP

functional in Equation (5.4) for a fixed A.

In order to employ the convex optimization framework of [124], we rewrite the constraints

(5.5) and (5.6) as

1/cj ≤ σmin(A
i
j) ≤ σmax(A

i
j) ≤ cj and det(Aij) ≥ 0,

with cj = 1 + ε + sj . This follows by observing that ‖Aij‖2 = σmax(A
i
j) and ‖Aij

−1‖2 =

1/σmin(A
i
j). Plugging (5.11) into the framework of [124] then yields the following optimization
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problem:

min fDEFORM + λfPOS + ηfSTIFFNESS (5.14)

s.t. Aij = Aij(U
i), ∀ j = 1, . . . ,m, i = 1, . . . , N

Aij ∈ C
Γi
j ,

Aij ∈ RijCγij ,

sj ≥ 0,

Γij ≤ (1 + ε+ sj),

1

(1 + ε+ sj)
≤ γij ,

whose optimization variables are {Ui},{Γij},{γij} and s.

Lastly, we note that the last constraint of (5.14) is convex; in fact, following a standard

derivation (e.g., see Appendix [11]), it can be equivalently rewritten as a convex second-order

cone constraint, ∥∥∥∥∥∥∥∥
 2

(1 + ε+ sj)− γij


∥∥∥∥∥∥∥∥ ≤ (1 + ε+ sj) + γij . (5.15)

See B for details. Therefore, with fixed {Rij} and {Πi}, Equation (5.14) is a semidefinite

program (SDP) and can be readily solved using any SDP solver. However, note that the

entire problem is not convex due to the interaction between Rij ,U
i, and Πi. Thus, we take

a block-coordinate descent approach where we alternate between two steps: (a) update Rij

and Πi fixing Ui, (b) update Ui fixing Rij and Πi via solving Equation (5.14). As in [124],

we find that allowing the surface to deform gradually makes the algorithm less susceptible

to local minima. To this end, we initialize the procedure with a large η, which controls the

degree of non-rigidity, and slowly reduce its value as the algorithm converges. This algorithm
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is outlined in Algorithm 1.

Algorithm 1: Jointly solving for the deformations and the stiffness
Input: Template 3D mesh S, its auxiliary tetrahedral mesh M = (V,T), and N

3D-to-2D annotated images {Ii}
Output: N deformed auxiliary tetrahedral meshes vertices {Ui}, the projection

matrices {Πi}, and the stiffness model s
maxIter = 10;
Ũi = V, i = 1 . . . N ; // initialize
for η ← ηmax to ηmin do // warm start

Ui(0) = Ũi;
t = 0;
repeat

Compute Πi
(t) by solving Equation (5.1) with Ui(t);

Compute the polar decompositions Aij
(t)

= Rij
(t)
Sij

(t);

Update {Ui(t+1)}, s(t+1) by solving Equation (5.14) with Πi
(t) and Rij

(t);
t = t+ 1;

until convergence or t > maxIter

Ũi = Ui(t);

return {Ui(t)}, {Πi(t)}, s(t)

5.4 Experimental Detail

We use our approach as described to modify a template 3D mesh according to the user-clicked

object pose in 2D images. We first compare our approach with the recent method of Cashman

et al. [50], which is the closest work to ours with publicly available source code [49]. We

then present an ablation study where key components of our model are removed in order to

evaluate their importance and provide qualitative and quantitative evaluations.

We experiment with two object categories, cats and horses. We collected 10 cat and 11

horse images in a wide variety of poses from the Internet. Both of the template 3D meshes

were obtained from the Non-rigid World dataset [43]. These templates consist of ∼3000

vertices and ∼6000 faces, which are simplified and converted into tetrahedral meshes of 510,

590 vertices and 1500, 1700 tets for the cat and the horse respectively via a tet generation

76



software [186]. We manually simplify the mesh in MeshLab until there are around 300

vertices. We found automatic simplification methods over-simplify skinny regions and fine

details, leading to a poor volumetric tet-representation. The cat template and its auxiliary

tetrahedral mesh are shown in Figure 5-2. The template mesh used for horses can be seen

in Figure 5-8. For all experiments we set ε = 0.01, and λ = 10. In order to allow gradually

increasing levels of deformation, we use ηmax = 0.5 and ηmin = 0.05 with 10 log-steps in

between for all experiments. The values for η and λ were set by hand, but deciding on the

values did not require much tuning.

In each iteration, the camera parameters are computed using the 2D-to-3D correspon-

dences. We initialize the parameters using the direct linear transform algorithm and refine it

with the sparse bundle adjustment package [91, 144]. In order to obtain annotations, we set

up a simple system where the user can click on 2D images and click on the corresponding 3D

points in the template mesh. Our system does not require the same vertices to be annotated

in every image. The average number of points annotated for each image for both cats and

horses was 29 points.

5.5 Results

5.5.1 Comparison with Cashman et al . [50]

Cashman et al . employ a low resolution control mesh on the order of less than 100 vertices

which is then interpolated with Loop subdivision. In order to apply their method to ours, we

simplified our template mesh with quadratic decimation until we reach around 150 vertices

while retaining the key features of the template mesh as much as possible (shown in inset).

Since their method relies on silhouettes, we provide hand-segmented silhouettes to their
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algorithm along with the user-clicked points. We transferred the user-clicks from the full

mesh to the simplified mesh by finding the closest 3D vertex in the simplified mesh for each

labeled vertex in the full resolution mesh. We did not include points that did not have a

close enough 3D vertex due to simplification. On average 24 points were labeled for their

experiment and we use their default parameters.

Figure 5-4: Low-resolution control
mesh for subdivision surfaces

Figure 5-5 compares the results obtained with

the method of [50] and our model. Two views are

shown for each result, one from the estimated camera

pose and another from an orthogonal viewpoint. As

the authors in [50] point out, their method focuses

on modeling shape and is not designed for highly

articulated objects such as cats. Consequently, we

can see that it has difficulties dealing with the wide range of poses present in our cat dataset.

Regions such as limbs and tails especially lose their original shape. Their method is based on

surface deformation, which does not have a notion of volume. This causes flattening of the

3D models as can been seen in the orthogonal views. Since we guarantee worst-case distortion

and orientation preserving deformation of the auxiliary mesh, our surface reconstructions are

well behaved compared to [50]. Recall that silhouettes, along with the user-clicked points,

are used to obtain the results for [50].

5.5.2 Qualitative Evaluation

The 3D models in Figure 5-1 were obtained using our proposed framework. We now evaluate

the effectiveness of the proposed framework by comparing the results without any distortion

bounds (i.e. removing Equation (5.6)) and with constant distortion bounds (i.e. fixing sj
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Figure 5-5: Comparison with Cashman et al . [50] : the first column shows the user-
clicked input images, the second column shows the result of [50] and the third column shows
the result of our proposed method. Two views are shown for each image, one from the
estimated camera and another from an orthogonal view point. Our method is more robust
to large deformations and retains the volume of the model. Note that silhouettes along with
the user-clicked points are used for [50].

to a constant). Qualitative results of this ablation study are shown in Figure 5-6. The

first column shows input images along with their user-clicked points. The second column

shows results obtained with no bounds, leaving just the ARAP energy, which we refer to

as Unbounded. This is similar to the approach used in [121], but with volumetric instead

of surface deformation. The third column, Uniform, shows results obtained with a uniform

bound, where the stiffness 1+ε+sj is replaced with a single constant cj = 2 for all faces. This

is the deformation energy used in [124] applied to 2D positional constraints. The constant

was slowly increased from 1 to 2 in a manner similar to η in order to allow for increasing

levels of deformation. Finally, in the last column we show results obtained with the proposed
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framework where the distortions are bounded with local stiffness.

Input Proposed stiffness boundUniform boundUnbounded

Figure 5-6: Ablation study.User-clicked input images (first column). Unbounded (second
column) is the model without any bounds on the distortion leaving just the volumetric ARAP
energy. Uniform (third column) is when the stiffness bounds (sj in Equation (5.6)) are replaced
by a single constant, which is the approach of [124] applied to 2D positional constraints. The
last column shows the results with our complete framework where the stiffness bounds and
the deformations are jointly optimized. Without the animal-specific stiffness, distortions
either spread out too much or concentrate around the positional constraints.

First, notice the wide range of poses present in the images used; some are particularly

challenging requiring large deformation from the template 3D mesh. In general, Unbounded

concentrates high distortions near positional constraints causing unnatural stretching and

deformation around limbs and faces. This is evident with horse legs in row 4 as Unbounded
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deforms them in an elastic manner. Uniform distributes the distortions, however, when

the pose change from the template is significant, distortions spread out too much causing

unrealistic results as seen in rows 2 and 3. The unnatural distortion of the faces is still a

problem with Uniform. The proposed framework alleviates problems around the face and the

horse limbs as it learns that those regions are more rigid.Please refer to the supplementary

materials for comprehensive results of all cat and horse experiments.

We provide visualizations of the learned stiffness model in Figure 5-7 and 5-8. Figure

5-7 visualizes the learned stiffness values for cats and horses in various poses. We show the

centroid of tetrahedra faces colored by their stiffness values in log scale. Blue indicates rigid

regions while red indicates highly deformable regions. Recall that there is one stiffness model

for each animal category. The level of deformations present in the input images are well

reflected in the learned stiffness model. For cats, the torso is learned to be highly deformable

allowing the animal to twist and curl, while keeping the skull and limbs more rigid. Similarly

for horses, the neck, the regions connecting the limbs as well as the joints are learned to be

deformable while keeping skull, limbs, and buttocks region rigid. The fact that the buttocks

is considered rigid is anatomically consistent, since horses have a rigid spine making them

suitable for riding [109].

We also present segmentation results using the learned stiffness values as another form

of visualization in Figure 5-8. In order to obtain the segmentations, we first transferred

the stiffness values from tetrahedra faces to vertices by taking the mean stiffness of faces

a vertex is connected to. Then, we constructed a weighted graph on the vertices based on

their connectivity, where the weights are set to be the sum of the Euclidean proximity and

the similarity of the stiffness values. We apply normalized cuts to partition this graph and

interpolate the result to the surface mesh vertices using the parameterization described in
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Figure 5-7: Learned stiffness visualization. Blue indicates rigid regions while red indicates
highly deformable regions.

Figure 5-8: Mesh segmentation. A visualization of the learned stiffness by means of
segmentation. Segmenting the template mesh using stiffness illustrates regions that deform
together as learned by our framework. We see that they correspond to semantically reasonable
segmentations. We show segmentation results based on vertex distance alone as a comparison.

Section 5.2.1. We also show the segmentation results using just the Euclidean proximity as a

comparison. Stiffness-based segmentation illustrates that regions which deform together as

learned by our framework correspond to semantically reasonable parts.

The learned stiffness model can be used as a prior to solve for stiffness-aware deformations

of new annotated images. Figure 5-9 shows the results of deforming the template to new

input images via using the stiffness values learned from the previous experiment, i.e. the

new images were not used to learn the stiffness. Similar to other experiments, we do warm
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Figure 5-9: Novel images. Deformation results using the learned stiffness from 10 cats as
a fixed prior for new images.

start where the stiffness bounds are linearly increased from 1.01 to their actual value in

10 steps. The results are visually very similar to the results obtained when the stiffness

was learned with those images along with the other 10 cat images. From this perspective,

the joint optimization for the stiffness and the deformations using multiple images is the

“training” (Figure 5-6), while the single-image optimization with a fixed stiffness prior is the

“testing” (Figure 5-9).
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5.5.3 Quantitative evaluation

Lastly, we conduct an evaluation against the ground truth by using pictures of a rendered

3D model as the input to our framework. Specifically, we use the TOSCA dataset [44],

which has 11 vertex-aligned models of cats in various poses. We take the neutral pose (cat0)

as the template and randomly project the other 10 models to produce images where the

ground truth shape is known. We randomly sample 35 points and use them as the 3D-to-2D

correspondences. In order to guarantee that these points are well distributed, we segment

the model into 15 components and make sure that there is at least one point from each

component. These components correspond to key parts such as the paws, limbs, left and

right ears, tail base and tip, etc. We compare the results of the No Bound, Uniform, and

the proposed approach. Using this method, we produce two images from each ground truth

model and conduct the experiment with 20 images.

We evaluate our method using several error metrics. First, we measure the distortions

between the ground truth and the deformed models, which capture how natural the de-

formations are. We argue this is the most important measure since obtaining plausible

deformations is the main goal of our algorithm. For this we use the stretch, edge-length,

area, and angle distortion errors as defined in [229] by comparing the corresponding triangles.

Additionally, we report the mean Euclidean distance between the 3D vertices, which measures

how close the surface of the deformed models are to the ground truth. While a low Euclidean

Table 5.1: Quantitative evaluation against ground-truth. The numbers are lower the
better for all metrics.

Distortion error metric [229]
Methods Mean dist Stretch Edge Area Angle
Unbounded 0.291 1.01 0.156 0.216 0.159
Uniform 0.281 1.01 0.13 0.198 0.13
Proposed 0.287 0.996 0.105 0.181 0.085
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distance is desirable for 3D reconstruction, we do not expect a close match everywhere due to

ambiguities arising from a single view and sparse point constraints. In particular, Euclidean

distance is not necessarily indicative of visual quality. We report the average error over all

20 input images. Before computing the error metrics, the deformed and ground truth models

are aligned by a similarity transform. The results are shown in Table 5.1. As expected, all

methods attain comparable mean Euclidean distance to ground truth, while our approach

obtains substantially lower errors in distortion metrics. This demonstrates the advantage of

learning stiffness from multiple images, yielding a more plausible deformation model.

Implementation details With an unoptimized MATLAB implementation, training with

10 images took 4 hours and testing a single image with a learned stiffness prior took ∼30

minutes. We use YALMIP [139] for the SDP modeling and MOSEK as the solver [16]. Our

biggest bottleneck is the SDP optimization due to many LMI constraints. Reducing the

number of tets can significantly reduce the run-time.

5.6 Discussion

Limitations of our current approach suggest directions for future work. One failure mode

is due to a large pose difference between the template and the target object, which may

lead to an erroneous camera parameters estimate (e.g., local minima), as seen in row 5 of

Figure 5-6. Here, the head of the horse in the image is lowered for grazing while the head of

the horse template is upright causing a poor initialization of the camera estimate. Using

a user-supplied estimate of the viewpoint or automatic viewpoint estimation methods like

[212] are possible solutions.

Another failure mode is due to the inherent depth ambiguity problem when only a single-

view of the object is available, where many 3D shapes project to the same 2D observations.
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As such, some of our deformed models do not have the “right” 3D pose when seen from a

different view. A case can be seen in the video (https://goo.gl/Xp0QJQ) that shows 360

degree views of the final models. How the left ankle of the horse in row 4 of Figure 5-6 is bent

in an physically impossible direction is also attributed to this. One reason is because the

current stiffness model is isotropic. An interesting future direction is to make the distortion

bounds dependent on the orientation of the transformation. This would allow the framework

to learn that certain parts only deform in certain directions.

Our method could also be enhanced to prevent surface intersections or reason about

occlusion (e.g. if the point is labeled, it should be visible from the camera). Run-time is also

an issue for adapting the stiffness model into a real-time posing application. This may be

addressed by recent advancements in efficiently computing mappings with geometric bounds

[125].

Another failure mode is due to the oversimplification of skinny regions when computing

the auxiliary template mesh. Horse legs particularly suffer from this problem. The flattening

of the ankle of one of the horses in the video is due to the fact that only 1 or 2 tets are

used to represent that region. This suggests another interesting direction, which is to use

the learned stiffness field for class-specific or deformation-aware mesh processing tasks. For

example for mesh simplification, it makes sense to use stiffness values to simplify regions

that are rigid more aggressively than regions that are highly deformable.

Since our framework is based on a volumetric deformation approach, no explicit factoriza-

tion between shape and pose exists as used in Chapters 3 and 6. However, enforcing sparse

stiffness motivates the framework to model changes in pose. In order to explicitly model

shape, one idea is to add another stiffness field specifically to account for shape variation

with different constraints. However, prior works [32, 143] suggest that shape variations are
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captured by low-dimensional models – this is the focus of the next chapter. The learned

stiffness field could also be used for learning a 3D skeleton model (rigging) of the template

mesh, from which the method discussed in the next chapter may be applied. Though note

that the generality of our formulation is an advantage when the explicit shape and pose

factorization is not clear e.g . octopus. Cats are also an instance of this because they are very

flexible.

5.7 Conclusion

In this chapter we introduced an optimization framework to learn the 3D deformation model

of an animal from a template 3D mesh and a set of use-clicked 2D images. We do so by

introducing a notion of local stiffness that controls how much each face of the mesh may

distort. Our formulation jointly solves for the deformed meshes that fits each image and the

stiffness field. The key intuition is that highly deformable regions are sparse and consistent

across multiple images. We conceptualize this by adding a sparsity term on the stiffness

field and by forcing all images to share a single stiffness field. Our experiments show that

learning a class-specific model of 3D deformation is essential for obtaining more plausible 3D

deformations.
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Chapter 6

3D Menagerie: Modeling the Shape

of Quadrupeds

6.1 Introduction

In this chapter, we study how we can extend a similar approach to modeling 3D animals,

building on the best practices learned from the modeling of 3D human bodies. We find that

modeling animals presents novel challenges and describe how to overcome them. Specifically

our goal is to learn a SMPL like generative model of the 3D pose and shape of animals and

then fit this model to image observations as illustrated in Fig. 6-1. We focus on a subset of

four-legged mammals that all have the same number of “parts” and model members of the

families Felidae, Canidae, Equidae, Bovidae, and Hippopotamidae.

Animals, however, differ from humans in several important ways. First, the shape

variation across species far exceeds the kinds of variations seen between humans. Even within

The contents of this work is in collaboration with Silvia Zuffi, David Jacobs, and Michael J. Black,
presented at CVPR 2017 [244]. This material is based upon work supported by the National Science
Foundation under grant no. IIS-1526234. We thank Seyhan Sitti for scanning the toys and Federica Bogo
and Javier Romero for their help with the silhouette term.
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Figure 6-1: Animals from images. We learn an articulated, 3D, statistical shape model of
animals using very little training data. We fit the shape and pose of the model to 2D image
cues showing how it generalizes to previously unseen shapes.

the canine family, there is a huge variability in dog shapes as a result of selective breeding.

Second, all these animals have tails, which are highly deformable and obviously not present

in human shape models. Third, obtaining 3D data to train a model is much more challenging.

SMPL and previous models like it (e.g. SCAPE [17]) rely on a large database of thousands

of 3D scans of many people (capturing shape variation in the population) and a wide range

of poses (capturing pose variation). Humans are particularly easy and cooperative subjects.

It is impractical to bring a large number of wild animals into a lab environment for scanning

and it would be difficult to take scanning equipment into the wild to capture animals shapes

in nature. Since scanning live animals is impractical we instead scan realistic toy animals to

create a dataset of 41 scans of a range of quadrupeds as illustrated in Fig. 6-2. We show

that a model learned from toys generalizes to real animals.

The key to building a statistical 3D shape model is that all the 3D data must be in

correspondence. This involves registering a common template mesh to every scan. This is a

hard problem, which we approach by introducing a novel part-based model and inference

scheme that extends the “stitched puppet” (SP) model [243]. Our new Global-Local Stitched
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Figure 6-2: Toys. Example 3D scans of animal figurines used for training our model.

Shape model (GLoSS) aligns a template to different shapes, providing a coarse registration

between very different animals (Fig. 6-5 left). The GLoSS registrations are somewhat crude

but provide a reasonable initialization for a model-free refinement, where the template

mesh vertices deform towards the scan surface under an As-Rigid-As-Possible (ARAP)

constraint [195] (Fig. 6-5 right).

Our template mesh is segmented into parts with blend weights so that it can be reposed

using linear blend skinning (LBS). Using this we “pose normalize” the refined registrations to

a neutral pose and learn a low-dimensional shape space using principal component analysis

(PCA). This is analogous to the SMPL shape space but for multiple species of animals

[143] and produces a model where new shapes can be generated and reposed. With the

learned shape model, we further refine the registration of the template to the scans using

co-registration [97], which regularizes the registration by penalizing deviations from the

model fit to the scan. We update the shape space and iterate to convergence.

The final Skinned Multi-Animal Linear model (SMAL) provides a shape space of animals

trained from 41 scans. Because quadrupeds have shape variations in common, the model

generalizes to new animals not seen in training. This allows us to fit SMAL to 2D data

using manually detected keypoints and segmentations. As shown in Fig. 6-1 and Fig. 6-9,

our model can generate realistic animal shapes in a variety of poses.

In summary we describe a method to create a realistic 3D model of animals and fit this

model to 2D data. The problem is much harder than modeling humans and we develop new
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tools to extend previous methods to learn an animal model. This opens up new directions

for research on animal shape and motion capture.

6.2 Dataset

We created a dataset of 3D animals by scanning toy figurines (Fig. 6-2) using an Artec

hand-held 3D scanner. We also tried scanning taxidermy animals in a museum but found,

surprisingly, that the shapes of the toys looked more realistic. We collected a total of 41

scans from several species: 1 cat, 5 cheetahs, 8 lions, 7 tigers, 2 dogs, 1 fox, 1 wolf, 1 hyena,

1 deer, 1 horse, 6 zebras, 4 cows, 3 hippos. We estimated a scaling factor so animals from

different manufacturers were comparable in size. Like previous 3D human datasets [178],

and methods that create animals from images [50, 116], we collected a set of 36 hand-clicked

keypoints that we use to aid mesh registration.

6.3 Global/Local Stitched Shape Model

Figure 6-3: Template mesh is seg-
mented into 33 parts. Shown here in
the neutral pose.

The Global/Local Stitched Shape model (GLoSS) is a

3D articulated model where body shape deformations

are locally defined for each part and the parts are

assembled together by minimizing a stitching cost at

the part interfaces. The model is inspired by the SP

model [243], but has significant differences from it. In

contrast to SP, the shape deformations of each part

are analytic, rather than learned. This makes it more approximate but, importantly, allows us

to apply it to novel animal shapes, without requiring a priori training data. Second, GLoSS
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is a globally differentiable model that can be fit to data with gradient-based techniques.

To define a GLoSS model we need the following: a 3D template mesh of an animal with

the desired polygon count, its segmentation into parts, skinning weights, and an animation

sequence. To define the mesh topology, we use a 3D mesh of a lioness downloaded from the

Turbosquid website. The mesh is rigged and skinning weights are defined. We manually

segment the mesh into N = 33 parts (Fig. 6-3) and make it symmetric along its sagittal

plane.

We now summarize the GLoSS parametrization. Let i be a part index, i ∈ (1 · · · N). The

model variables are: part location li ∈ R3×1, part absolute 3D rotation ri ∈ R3×1, expressed

as a Rodrigues vector, intrinsic shape variables si ∈ Rns×1 and pose deformation variables

di ∈ Rnd×1. Let πi = {li, ri, si,di} be the set of variables for part i and Π = {l, r, s,d} the

set of variables for all parts. The vector of vertex coordinates, p̂i ∈ R3×ni , for part i in a

global reference frame is computed as:

p̂i(πi) = R(ri)pi + li, (6.1)

where ni is the number of vertices in the part, and R ∈ SO(3) is the rotation matrix obtained

from ri. The pi ∈ R3×ni are points in a local coordinate frame, computed as:

vec(pi) = ti + mp,i +Bs,isi +Bp,idi. (6.2)

Here ti ∈ R3ni×1 is the part template, mp,i ∈ R3ni×1 is the vector of average pose dis-

placements; Bs,i ∈ R3ni×ns is a matrix with columns representing a basis of intrinsic shape

displacements, and Bp,i ∈ R3ni×nd is the matrix of pose dependent deformations. These

deformation matrices are defined below.
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Pose deformation space. We compute the part-based pose deformation space from

examples. For this we use an animation of the lioness template using linear blend skinning

(LBS). Each frame of the animation is a pose deformation sample. We perform PCA on

the vertices of each part in a local coordinate frame, obtaining a vector of average pose

deformations mp,i and the basis matrix Bp,i.

Shape deformation space. We define a synthetic shape space for each body part. This

space includes 7 deformations of the part template, namely scale, scale along x, scale along y,

scale along z, and three stretch deformations that are defined as follows. Stretch for x does

not modify the x coordinate of the template points, while it scales the y and z coordinates

in proportion to the value of x. Similarly we define the stretch for y and z. This defines a

simple analytic deformation space for each part. We model the distribution of the shape

coefficients as a Gaussian distribution with zero mean and diagonal covariance, where we set

the variance of each dimension arbitrarily.

6.4 Initial Registration

The initial registration of the template to the scans is performed in two steps. First, we

optimize the GLoSS model with a gradient-based method. This brings the model close to

the scan. Then, we perform a model-free registration of the mesh vertices to the scan using

As-Rigid-As-Possible (ARAP) regularization [195] to capture the fine details.
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6.4.1 GLoSS-based registration

To fit GLoSS to a scan, we minimize the following objective:

E(Π) = Em(d, s) + Estitch(Π)+

Ecurv(Π) + Edata(Π) + Epose(r), (6.3)

where

Em(d, s) = ksmEsm(s) + ks

N∑
i=1

Es(si) + kd

N∑
i=1

Ed(di)

is a model term, where Es is the squared Mahalanobis distance from the synthetic shape

distribution and Ed is a squared L2 norm. The term Esm represents the constraint that

symmetric parts should have similar shape deformations. We impose similarity between left

and right limbs, front and back paws, and sections of the torso. This last constraint favors

sections of the torso to have similar length.

The stitching term Estitch is the sum of squared distances of the corresponding points at

the interfaces between parts (cf. [243]). Let Cij be the set of vertex-vertex correspondences

between part i and part j. Then Estitch(Π) =

kst
∑

(i,j)∈C

∑
(k,l)∈Cij

‖p̂i,k(πi)− p̂j,l(πj)‖2, (6.4)

where C is the set of part connections. Minimizing this term favors connected parts.

The data term is defined as: Edata(Π) =

kkpEkp(Π) + km2sEm2s(Π) + ks2mEs2m(Π), (6.5)
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where Em2s and Es2m are distances from the model to the scan and from the scan to the

model, respectively:

Em2s(Π) =

N∑
i=1

ni∑
k=1

ρ(min
s∈S
‖p̂i,k(πi)− s‖2), (6.6)

Es2m(Π) =
S∑
l=1

ρ(min
p̂
‖p̂(Π)− sl‖2), (6.7)

where S is the set of S scan vertices and ρ is the Geman-McClure robust error function [79].

The term Ekp(Π) is a term for matching model keypoints with scan keypoints, and is defined

as the sum of squared distances between corresponding keypoints. This term is important to

enable matching between extremely different animal shapes.

The curvature term favors parts that have a similar pairwise relationship as those in the

template; Ecurv(Π) =

kc
∑

(i,j)∈C

∑
(k,l)∈Cij

∣∣‖n̂i,k(πi)− n̂j,l(πj)‖2 − ‖n̂
(t)
i,k − n̂(t)

j,l ‖
2
∣∣,

where n̂i and n̂j are vectors of vertex normals on part i and part j, respectively. Analogous

quantities on the template are denoted with a superscript (t). Lastly, Epose is a pose prior

on the tail parts learned from animations of the tail. The values of the energy weights are

manually defined and kept constant for all the toys.

We initialize the registration of each scan by aligning the model in neutral pose to the

scan based on the median value of their vertices. Given this, we minimize Eq. 6.3 using the

Chumpy auto-differentiation package [3]. Doing so aligns the lioness GLoSS model to all the

toy scans. Figure 6-4a-c shows an example of fitting of GLoSS (colored) to a scan (white),

and Fig. 6-5 (first and second column) shows some of the obtained registrations. To compare

the GLoSS-based registration with SP we computed SP registrations for the big cats family.
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Figure 6-4: GLoSS fitting. (a) Initial template and scan. (b) GLoSS fit to scan. (c) GLoSS
model showing the parts. (d) Merged mesh with global topology obtained by removing the
duplicated vertices at the part interfaces.

We obtain an average scan-to-mesh distance of 4.39(σ = 1.66) for SP, and 3.22(σ = 1.34) for

GLoSS.

6.4.2 ARAP-based refinement

The GLoSS model gives a good initial registration. Given this, we turn each GLoSS mesh

from its part-based topology into a global topology where interface points are not duplicated

(Fig. 6-4d). We then further align the vertices v to the scans by minimizing an energy

function defined by a data term equal to Eq. 6.5 and an As-Rigid-As-Possible (ARAP)

regularization term [195]:

E(v) = Edata(v) + Earap(v). (6.8)

This model-free optimization brings the mesh vertices closer to the scan and therefore more

accurately captures the shape of the animal (see Fig. 6-5).
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Figure 6-5: Registration results. Comparing GLoSS (left) with the ARAP refinement
(right). The fit to the scan is much tighter after refinement.

6.5 Skinned Multi-Animal Linear Model

The above registrations are now sufficiently accurate to create a first shape model, which we

refine further below to produce the full SMAL model.

Pose normalization Given the pose estimated with GLoSS, we bring all the registered

templates into the same neutral pose using LBS. The resulting meshes are not symmetric.

This is due to various reasons: inaccurate pose estimation, limitations of linear-blend-skinning,

the toys may not be symmetric, and pose differences across sides of the body create different

deformations. We do not want to learn this asymmetry. To address this we perform an

averaging of the vertices after we have mirrored the mesh to obtain the registrations in the

neutral pose (Fig. 6-6). Also, the fact that mouths are sometimes open and other times

closed presents a challenge for registration, as inside mouth points are not observed in the

scan when the animal has a closed mouth. To address this, palate and tongue points in the
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Figure 6-6: Pose normalization. We show the 3D scan in gray, ARAP registration in
green, and pose-normalized scan in blue.

registration are regressed from the mouth points using a simple linear model learned from

the template. Finally we smooth the meshes with Laplacian smoothing.

Shape model Pose normalization removes the non-linear effects of part rotations on the

vertices. In the neutral pose we can thus model the statistics of the shape variation in a

Euclidean space. We compute the mean shape and the principal components, which capture

shape differences between the animals.

SMAL. The SMAL model is a function M(β,θ,γ) of shape β, pose θ and translation γ.

β is a vector of the coefficients of the learned PCA shape space, θ ∈ R3N = {ri}Ni=1 is the

relative rotation of the N = 33 joints in the kinematic tree, and γ is the global translation

applied to the root joint. Analogous to SMPL, the SMAL function returns a 3D mesh, where

the template model is shaped by β, articulated by θ through LBS, and shifted by γ.
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Fitting To fit SMAL to scans we minimize the objective:

E(β,θ,γ) = Epose(θ) + Es(β) + Edata(β,θ,γ), (6.9)

where Epose(θ) and Es(β) are squared Mahalanobis distances from prior distributions for

pose and shape, respectively. Edata(β,θ,γ) is defined as in Eq. 6.5 but over the SMAL

model. For optimization we use Chumpy [3].

Co-registration To refine the registrations and the SMAL model further, we then perform

co-registration [97]. The key idea is to first perform a SMAL model optimization to align the

current model to the scans, and then run a model-free step where we couple, or regularize,

the model-free registration to the current SMAL model by adding a coupling term to Eq. 6.8:

Ecoup(v) = ko

V∑
i=1

|v0
i − vi|, (6.10)

where V is the number of vertices in the template, v0
i is vertex i of the model fit to the scan,

and the vi are the coupled mesh vertices being optimized. During co-registration we use a

shape space with 30 dimensions. We perform 4 iterations of registration and model building

and observe the registration errors decrease and converge.

With the registrations to the toys in the last iteration we learn the shape space of our

final SMAL model.

6.5.1 Animal shape space

After refining with co-registration, the final principal components are visualized in Fig. 6-8.

The global SMAL shape space captures the shape variability of animals across different
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Figure 6-7: Visualization (using t-SNE [149]) of different animal families using 8 PCs. Large
dots indicate the mean of the PCA coefficients for each family.

families. The first component captures scale differences; our training set includes adult and

young animals. The learned space nicely separates shape characteristics of animal families.

This is illustrated in Fig. 6-7 with a t-SNE visualization [149] of the first 8 dimensions of

the PCA coefficients in the training set. The meshes correspond to the mean shape for each

family. We also define family-specific shape models by computing a Gaussian over the PCA

coefficients of the class. We compare generic and family specific models below.

6.6 Fitting Animals to Images

We now fit the SMAL model, M(β,θ,γ), to image cues by optimizing the shape and pose

parameters. We fit the model to a combination of 2D keypoints and 2D silhouettes, both

manually extracted, as in previous work [50, 116].

We denote Π(·; f) as the perspective camera projection with focal length f , where Π(vi; f)
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is the projection of the i’th vertex onto the image plane and Π(M ; f) = Ŝ is the projected

model silhouette. We assume an identity camera placed at the origin and that the global

rotation of the 3D mesh is defined by the rotation of the root joint.

Figure 6-8: PCA space. First 4 principal
components. Mean shape is in the center. The
width of the arrow represents the order of the
components. We visualise deviations of ± 2
std.

To fit SMAL to an image, we formulate

an objective function and minimize it with

respect to Θ = {β,θ,γ, f}. The function is

a sum of the keypoint and silhouette repro-

jection errors, a shape prior, and two pose

priors, E(Θ) =

Ekp(Θ;x)+Esilh(Θ;S)+Eβ(β)+Eθ(θ)+Elim(θ).

(6.11)

Each energy term is weighted by a hyper-

parameter defining their importance.

Keypoint reprojection. See [2] for a definition of keypoints which include surface points

and joints. Since keypoints may be ambiguous, we assign a set of up to four vertices to

represent each model keypoint and take the average of their projection to match the target

2D keypoint. Specifically for the k’th keypoint, let x be the labeled 2D keypoint and {vkj}
km
j=1

be the assigned set of vertices, then

Ekp(Θ) =
∑
k

ρ(||x− 1

|km|

|km|∑
j=1

Π(vkj ; Θ)||2), (6.12)

where ρ is the Geman-McClure robust error function [79].
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Silhouette reprojection. We encourage silhouette coverage and consistency similar to

[117, 130, 221] using a bi-directional distance:

Esilh(Θ) =
∑
x∈Ŝ

DS(x) +
∑
x∈S

ρ(min
x̂∈Ŝ
||x− x̂||2), (6.13)

where S is the ground truth silhouette and DS is its L2 distance transform field such that if

point x is inside the silhouette, DS(x) = 0. Since the silhouette terms have small basins of

attraction we optimize the term over multiple scales in a coarse-to-fine manner.

Shape prior. We encourage β to be close to the prior distribution of shape coefficients by

defining Eβ to be the squared Mahalanobis distance with zero mean and variance given by

the PCA eigenvalues. When the animal family is known, we can make our fits more specific

by using the mean and covariance of training samples of the particular family.

Pose priors. Eθ is also defined as the squared Mahalanobis distance using the mean and

covariance of the poses across all the training samples and a walking sequence. To make

the pose prior symmetric, we double the training data by reflecting the poses along the

template’s sagittal plane. Since we do not have many examples, we further constrain the

pose with limit bounds:

Elim(θ) = max(θ − θmax, 0) + max(θmin − θ,0). (6.14)

θmax and θmin are the maximum and minimum range of values for each dimension of θ

respectively, which we define by hand. We do not limit the global rotation.
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Figure 6-9: Fits to real images using manually obtained 2D points and segmentation. Colors
indicate animal family. We show the input image, fit overlaid, views from −45◦ and 45◦. All
results except for those in mint colors use the animal specific shape prior. The SMAL model,
learned form toy figurines, generalizes to real animal shapes.

Optimization. Following [34], we first initialize the depth of γ using the torso points.

Then we solve for the global rotation {θi}3i=0 and γ using Ekp over points on the torso.

Using these as the initialization, we solve Eq. 6.11 for the entire Θ without Esilh. Similar

to previous methods [34, 116] we employ a staged approach where the weights on pose and

shape priors are gradually lowered over three stages. This helps avoid getting trapped in

local optima. We then finally include the Esilh term and solve Eq. 6.11 starting from this

initialization. Solving for the focal length is important and we regularize f by adding another

term that forces γ to be close to its initial estimate. The entire optimization is done using

OpenDR and Chumpy [3, 141]. Optimization for a single image typically takes less than a

minute on a common Linux machine.
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6.7 Experiments

We have shown how to learn a SMAL animal model from a small set of toy figurines. Now

the question is: does this model capture the shape variation of real animals? Here we test

this by fitting the model to annotated images of real animals. We fit using class specific and

generic shape models, and show that the shape space generalizes to new animal families not

present in training (within reason).

Data. For fitting, we use 19 semantic keypoints of [65] plus an extra point for the tail

tip. Note that these keypoints differ from those used in the 3D alignment. We fit frames

in the TigDog dataset, reusing their annotation, frames from the Muybridge footage, and

images downloaded from the Internet. For images without annotation, we click the same

20 keypoints for all animals, which takes about one minute for each image. We also hand

segmented all the images. No images were re-visited to improve their annotations and we

found the model to be robust to noise in the exact location of the keypoints. The annotations

and the results are accessible at [2].

Results. The model fits to real images of animals are shown in Fig. 6-1 and 6-9. The

weights for each term in Eq. 6.11 are tuned by hand and held fixed for fitting all images.

All results use the animal specific shape space except for those in mint green, which use the

generic shape model. Despite being trained on scans of toys, our model generalizes to images

of real animals, capturing their shape well. Variability in animal families with extreme shape

characteristics (e.g . lion manes, skinny horse legs, hippo faces) are modeled well. Both the

generic and class-specific models capture the shape of real animals well.

Similar to the case of humans [34], our main failures are due to inherent depth ambiguity,

both in global rotation and pose (Fig 6-10). In Fig. 6-11 we show the results of fitting the
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Figure 6-10: Failure examples due to depth ambiguity in pose and global rotation.

generic shape model to classes of animals not seen in the training set: boar, donkey, sheep

and pigs. While characteristic shape properties such as the pig snout cannot be exactly

captured, these fits suggest that the learned PCA space can generalize to new animals within

a range of quadrupeds.

6.8 Conclusions

Human shape modeling has a long history, while animal modeling is in its infancy. We have

made small steps towards making the building of animal models practical. We showed that

starting with toys, we can learn a model that generalizes to images of real animals as well

as to types of animals not seen during training. This gives a procedure for building richer

models from more animals and more scans. While we have shown that toys are a good

starting point, we would clearly like a much richer model. In particular, the limited set of

toys and poses means that it is difficult to learn a rich model of pose-dependent deformation.

Each toy is seen in only one pose. This is in contrast to human training data where the

same person is observed in many poses, allowing variation with pose to be isolated from

identity. The small number of training poses also imply that we cannot learn a multi-modal

pose prior used in Chapter 3. For that, a key future direction is to actually exploit 2D image
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Figure 6-11: Generalization of SMAL to animal species not present in the training set.

information to improve our model. Our fits can provide a starting point from which to learn

richer deformations to explain 2D image evidence.

In this work we have focused on a limited set of quadrupeds. A key issue is dealing

with varying numbers of parts (e.g. horns, tusks, trunks) and parts of widely different

shape (e.g. elephant ears). Moving beyond the class of animals here will involve creating a

vocabulary of reusable shape parts and new ways of composing them.
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Chapter 7

Concluding Remarks

This thesis develops methods for single-view 3D reconstruction of people and animals. We

propose a working solution for recovering a 3D mesh of a human body from just a single image,

and explore how to apply similar practices to animals. Doing so reveals novel challenges

whose common thread is the lack of specialized data. We propose three different methods to

deal with these challenges. We summarize the major contribution of this thesis below:

• We have proposed the first fully automatic method for estimating 3D body pose and

shape from 2D joints. The code and results are available for research purposes [1].

• We reduce the ambiguity of the problem by introducing a differentiable interpenetration

term and pose priors. We test our methods quantitatively over standard datasets and

qualitatively on unconstrained images of people on the Internet with complex poses.

Our output is realistic and can be immediately animated in standard graphics pipelines.

• We propose a deep learning architecture, WarpNet, that learns a class-specific model

of 2D deformation for establishing correspondences between two input images across

sub-category and pose variations. A novel exemplar-driven mechanism is introduced to
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train the network without requiring any human provided keypoint annotations.

• We propose a method that learns how an animal category deforms using a set of

user-annotated 2D images and a reference 3D mesh. To our knowledge, this is the first

approach that learns a model of 3D pose deformation from 2D images. Our formulation

is based on a novel bounded deformation energy where both the bounds and the

deformation can be solved jointly in a sequence of convex optimization problems.

• We describe a method to create Skinned Multi-Animal Linear model (SMAL), a realistic

3D model of several quadruped animals that can be fit to 2D image observations. To

our knowledge no other methods learn a 3D shape space that spans multiple animals.

Despite being trained on toy scans, our model generalizes to images of real animals.

The solutions explored in this thesis are pieces of the big puzzle for getting a system that

can do fully automatic single-view 3D reconstruction of animals. Aside from the detailed

future directions discussed in each chapter, below are several overarching directions for future

work.

Looking at the actual image a.k.a making it end-to-end: One caveat of the presented

model-fitting approach is that the algorithm only looks at the supplied 2D keypoints or

silhouettes and ignores the rest of the image. A natural next step is to combine the bottom

up estimation and the top down inference step inside a single deep learning framework and

train it end-to-end. The main challenge is that 3D annotation of an unconstrained image is

very difficult to get, even with a lot of resources. Existing methods to obtain ground truth

3D information requires motion capture or scanning in a lab environment, which creates a

domain shift problem between lab images and Internet quality images. Possible solutions are

image synthesis by rendering realistic images [213, 87] and domain adaptation techniques
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[78].

Time and motion: the missing fourth dimension: Since much of the focus was on

the ability to see the 3D from a single view, none of the presented work deal with time and

motion. When a video of a moving object is available, a nice property is that we can assume

that there is only one 3D shape. A temporal smoothness assumption is another constraint

that could be added. Also from the 3D modeling perspective, these properties make time an

important signal that could be used for learning a more powerful animal 3D models. Future

directions also include modeling the dynamics of human action and animal movement.

The emperor’s new clothes: Another aspect that we did not mention in the thesis was

texturing the 3D models. All of our models are “naked”! A possible direction with textures

is to treat the texture map as a latent variable for model fitting. Blanz and Vetter [32] show

this for faces, but it’s not clear if appearances of humans and animals can be modeled well

with a low-dimensional model. Filling in the texture of the “unobserved” region of the 3D

model is another interesting problem. This is related to the texture synthesis problem [67].

Recent advances that use generative adversarial networks [81] for synthesizing images suggest

an effective solution. This is also related to the problem of clothing and fur. Most human

shape models have ignored clothing. Analogously, here we do not model fur. Future work

should consider explicit models of fur and how it deforms with pose.

In all, there are a lot of interesting directions and applications in this domain. We hope

this thesis motivates more research in 3D reconstruction of people and animals.
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Appendices

A Computing Thin-Plate Spline Coefficients

Given a regular grid points {xi} and deformed grid points {x′i}, i = 1, . . . ,K2, the thin-plate

spline (TPS) transformation from the regular grid coordinate frame to the deformed grid

coordinate frame for the x-coordinates is given by:

Tθx(x) =

3∑
j=0

axjφj(x) +

K2∑
i=1

wxi U(||x,xi||), (1)

s.t.
K2∑
i=1

wxi = 0,
2∑
j=1

K2∑
i=1

wxi xj = 0,

where φ0 = 1, φj(xi) = xj , U(r) = r2 log r2. A similar transformation may be expressed for

the y-coordinate, denoted Tθy(x), with coefficients wy and ay. The final transformation is

Tθ(x) = [Tθx(x), Tθy(x)]. With the interpolation conditions Tθ(xi) = x′i, we can write the

TPS coefficients θ =

wx wy

ax ay

 as the solution to a system of linear equations:

Lθ =

x′
0

 , (2)
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where L =

K P

P T 0

, Kij = U(||xi − xj ||) and row i of P is (1, xi, yi). As discussed in

[35], L is non-singular, invertible and only needs to be computed once since the regular grid

x is fixed for our application. Thus, computing the TPS coefficients from a deformed grid

is a linear operation θ = L−1x′i with weights, L−1, computed once in the beginning of the

training.
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B Writing 1
(1+ε+s) ≤ γ as a Second-Order Cone

The constraint 1
(1+ε+s) ≤ γ can be realized as a second-order cone (SOCP) by using the

method of rotated second-order cone [39]. Specifically, as discussed in Alizadeh and Goldfarb

[11], a constraint of the form w>w ≤ xy, where x ≥ 0, y ≥ 0, w ∈ Rn, is equivalent to SOCP

∥∥∥∥∥∥∥∥
 2w

x− y


∥∥∥∥∥∥∥∥ ≤ x+ y. (3)

In our formulation, x = (1 + ε+ s), y = γ, and w = 1. This can also be derived using

the identity

xy =
1

4
((x+ y)2 − (x− y)2), (4)

where

1 ≤ xy

1 ≤ 1

4
((x+ y)2 − (x− y)2)

4 + (x− y)2 ≤ (x+ y)2√
4 + (x− y)2 ≤ (x+ y)∥∥∥∥∥∥∥∥
 2

x− y


∥∥∥∥∥∥∥∥ ≤ (x+ y).
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