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Abstract—As robots begin to collaborate with humans in
everyday workspaces, they will need to understand the functions
of tools and their parts. To cut an apple or hammer a nail, robots
need to not just know the tool’s name, but they must localize the
tool’s parts and identify their functions. In this extended abstract,
we give an overview of our work on localizing and identifying
object part affordance. We present a framework which provides
3D predictions of functional parts that can be used by a robot,
and we introduce a new RGB-D Part Affordance Dataset with 105
kitchen, workshop, and garden tools. We analyze the usefulness
of different features, and show that geometry is key for this task.
Finally, we demonstrate that the approach can generalize to novel
object categories, so robots like PR2, Asimo, and Baxter could
use tools never seen before.

I. INTRODUCTION

Imagine Baxter in a kitchen, trying to serve soup from a
pot into a bowl. Baxter needs to find a ladle, grab the handle,
dip the bowl of the ladle into the pot, and transfer the soup to
the serving bowl. But what if the ladle in this kitchen has a
different shape and color from the ladles that Baxter has seen
before? What if Baxter has never seen any ladles at all? Today,
computer vision allows robots to recognize objects from a
known category, providing a bounding box around the ladle.
However, in these situations Baxter needs to not just detect
the ladle, but more importantly he needs to know which part
of the ladle he can grasp and which part can contain the soup.
As Gibson remarked, “If you know what can be done with
a[n] object, what it can be used for, you can call it whatever
you please” [5].

Gibson defined affordances as the latent “action possibil-
ities” available to an agent, given their capabilities and the
environment [5]. In this sense, for a human adult, stairs afford
climbing, an apple affords eating, and a knife affords the
cutting of another object. The last example is the most relevant
to a robot using tools in a kitchen or workshop, and we use the
term effective affordance to differentiate such affordances from
those in other settings. Affordances in general have long been
studied in computer vision and robotics, and most recent works
have investigated grasping [9, 11, 3, 4, 6]. These approaches
use real or synthetic data with grasping points provided by
humans so that a robot can learn to grasp objects in the envi-
ronment. Similarly, we learn affordances from RGB-D images
where affordances are labeled at the pixel level by humans,
but we investigate a wide range of objects and affordances.
In our experiments we consider two types of grasps and five
effective affordances; cut, contain, support, scoop, and pound.
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Fig. 1. Example results from our framework for objects of known categories
(top row) and novel categories (bottom row).

If robots could identify the effective affordances of parts, then
they could use a variety of tools, even tools they have never
seen before. In this extended abstract,
• We introduce a framework for localizing and identifying

part affordance, and show that it can be used for objects
of known and novel categories.

• We compare different feature types for affordance identi-
fication, and show that geometric features are key for the
task.

• We present a new RGB-D Part Affordance Dataset with
ground truth labels for 105 kitchen, workshop, and garden
tools from 17 object categories. The dataset and code
from this work will be available online 1.

II. APPROACH

Given an object in an RGB-D image we divide it into a
collection of surfaces using a superpixel segmentation algo-
rithm. We assume that foreground objects can be obtained
using background subtraction based on the table plane, motion,
or more complex attention based reasoning [12]. For each
superpixel of an object, we compute hierarchical sparse code
features for its pixels and aggregate them using max-pooling.
This gives a feature vector for each surface that can be
classified with a linear SVM, and provides a prediction of each
affordance for each segment. Finally, we refine the predictions
and introduce pairwise information between segments by
modeling the superpixel neighborhood graph as a conditional
random field.

1www.umiacs.umd.edu/∼amyers/part-affordance-dataset

www.umiacs.umd.edu/~amyers/part-affordance-dataset


Fig. 2. Our framework for part affordance localization and identification. An RGB-D image is segmented into superpixels, where each segment serves as a
candidate part surface (left). For each superpixel, hierarchical sparse code features are extracted from color, depth, normal, and curvature information (middle).
Superpixels are classified using a linear SVM, and the final labeling is refined using a CRF (right).

A. Superpixel Segmentation

Man-made tools are typically composed of parts, where
each part is a collection of surfaces that can provide an
effective affordance. We define a surface’s effective affordance
by the way it comes in contact with the objects that they
affect. For example, the inner surface of a cup is “contain”
since it contacts the liquid that it holds. The outer surface
of the cup on the other hand does not “contain” liquids, but
it can be held by a hand using a “wrap-grasp”. Since we
consider the surfaces that make up object parts, we take a
segmentation based approach to affordance identification. We
use a modified SLIC [1], incorporating depth and surface
normal information, to divide objects in the RGB-D image
into small surface fragments. Using color, depth, and surface
normals is important to achieve a good segmentation, since
affordance parts are usually connected to other surfaces with
different affordances but with some properties in common.

B. Geometric Features for Affordance Identification

Our goal is to predict the affordances of these surfaces
from their features, such as those from a Kinect sensor. We
hypothesize that there is a deep relationship between effective
affordance and geometry of a part, since the geometric and
physical properties of objects are closely tied to the ways
they can interact with the environment. To test this, we use
feature learning to extract useful representations from each of
several feature types; color, grayscale, depth, surface normal,
and curvature. In addition to providing an equal footing to
compare feature types, recent feature learing methods like
[2, 10] have achieved state-of-the-art performance on computer
vision tasks. We use a hierarchical sparse coding technique,
M-HMP [2], to extract representations for each of the pixel-
level features.

For each superpixel, we compute the M-HMP features of
its pixels and aggregate them using max-pooling. This gives
a feature vector for each surface that can be classified with a
linear SVM. To refine the predictions we introduce pairwise
information between segments ~S by modeling assignments ~c
over the superpixel neighborhood graph G(S,E) as a condi-

tional random field [7]. We model the posterior distribution

− logP (c|G) =
∑
si∈S

Φ(ci|si) + w
∑

(si,sj)∈E

Ψ(ci, cj |si, sj),

(1)
where the unary potential Φ is determined by the SVM, and
w is a weight on the pairwise potential. The pairwise term is

Ψ(ci, cj |si, sj) =

(
B(si, sj)

1 + ||si − sj ||

)
δ(ci 6= cj). (2)

where δ is an indicator function, and B(si, sj) is the length
of the shared boundary between si and sj .

III. RGB-D PART AFFORDANCE DATASET

We developed a new dataset tailored to everyday tools and
the affordances of their parts. The dataset contains 105 kitchen,
workshop, and garden tools, and provides pixel-level affor-
dance labels for more than 10,000 RGB-D frames covering a
full 360◦ range of views. These objects were collected from
17 different object categories with 7 affordances: grasp, wrap-
grasp, cut, contain, support, scoop, and pound. Examples of
the five effective affordances are shown in figure 3. The dataset
is also designed so that each affordance is represented by
objects from several categories, which permits zero-shot or
novel category test settings.
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Fig. 3. Objects from the RGB-D Part Affordance Dataset. Each column
shows example objects with parts that share the same affordance. The top
and bottom rows show example training and testing objects for the novel
category setting, respectively.
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Fig. 4. Comparison of different raw features for each affordance type in the
known category setting.

IV. EXPERIMENTS AND RESULTS

We first analyze the effectiveness of different raw feature
types in order to test our hypothesis that geometry is re-
lated to part affordance. As shown in figure 4, we found
that geometric features significantly outperform appearance
features for predicting most affordances. This differs from
recent results for RGB-D object recognition, which found that
visual features outperform geometric features in instance and
category recognition [8].

Following these results, we evaluate our framework by
testing on objects from known and novel categories. We can
see from table I that Geometry (depth, normal, and curvature)
is superior to Appearance (RGB and gray) for both known
and novel settings. Even more telling, combining all features
does not provide significant improvement, indicating that
geometry is key for this task. While the CRF does not give
a quantitative improvement, we found that it is an important
step for producing an output useful to a robot. As shown in
figure 1, the output of this framework provides a robot with
precise 3D regions corresponding to affordances, which can
be used for further reasoning and manipulation.

TABLE I
OVERALL RESULTS FOR KNOWN AND NOVEL SETTINGS.

Appearance Geometry All All + CRF
Known 73.2± 3.5 86.5± 6.6 86.2± 5.6 86.5± 5.0
Novel 46.0 63.6 64.8 64.8

V. CONCLUSIONS

We introduced a novel problem of localizing and identifying
part affordances, and a new dataset designed to address it. We
then proposed a framework to predict the affordance of parts
for objects of known and completely novel categories. Finally,
we showed that geometry is critical for predicting affordance.
This new dataset and the results from our experiments open
many avenues for future research.
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