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no entanglement



A puzzle

Def: S = the set of blue vertices ⊆ {1, … , 8}

T = the set of purple vertices ⊆ {1, … , 8}

|𝝍⟩

Note: |𝝍⟩ is unentangled across the S, T cut

i.e. it is a product state 𝝍 = 𝒂 𝑺 ⊗ 𝒃 𝑻 



A puzzle

Def: S = the set of blue vertices ⊆ {1, … , 8}

T = the set of purple vertices ⊆ {1, … , 8}

|𝝍⟩

Note: |𝝍⟩ is unentangled across the S, T cut

i.e. it is a product state 𝝍 = 𝒂 𝑺 ⊗ 𝒃 𝑻 

The hidden cut problem

Given copies of 𝒏-qubit |𝝍⟩, find S (or T).



A puzzle

|𝝍⟩

Can solve via full state tomography. Requires 𝛀(𝟐𝒏) copies.

Today’s Q: Is this possible with 𝐩𝐨𝐥𝐲(𝒏) copies?

The hidden cut problem

Given copies of 𝒏-qubit |𝝍⟩, find S (or T).

Easier Q: Suppose you have a guess for S and T.

How to tell if |𝝍⟩ is a product state across S and T?

This is called product testing.



Product testing
Input: A bipartite quantum state |𝝍𝑨𝑩⟩ on two registers 𝑨 and 𝑩 

Output: • “Product” if 𝝍𝑨𝑩  is a product state: 𝝍𝑨𝑩 = 𝒂𝑨 ⊗ |𝒃𝑩⟩

• “Entangled” if 𝝍𝑨𝑩  is 𝝐-far from product: 

𝐃tr(|𝝍⟩⟨𝝍|, 𝒗 ⟨𝒗|) ≥ 𝝐 for every product state |𝒗⟩ 

product
states

𝝐-far from 
product

Not product!

Not 𝝐-far from
product either.

Too close to tell!

Don’t care what
alg does here.

all states



Product testing
Input: A bipartite quantum state |𝝍𝑨𝑩⟩ on two registers 𝑨 and 𝑩 

Output: • “Product” if 𝝍𝑨𝑩  is a product state: 𝝍𝑨𝑩 = 𝒂𝑨 ⊗ |𝒃𝑩⟩

• “Entangled” if 𝝍𝑨𝑩  is 𝝐-far from product: 

𝐃tr(|𝝍⟩⟨𝝍|, 𝒗 ⟨𝒗|) ≥ 𝝐 for every product state |𝒗⟩ 

Fact:

There is an algorithm called the SWAP test with the following guarantees: 

• 𝝍𝑨𝑩  is a product state: ⇒ SWAP test always outputs “product” 

• 𝝍𝑨𝑩  is 𝝐-far from product : ⇒ SWAP test outputs “entangled” w/prob ≥ 𝝐𝟐/𝟐  

Furthermore, the SWAP test uses only 2 copies of 𝝍𝑨𝑩  .

∴ 𝒏 = 𝐎( Τ𝟏 𝝐𝟐) copies of suffice for product testing (w/ success prob 99%)



The SWAP Test

Def: Given integer 𝒅, 𝐒𝐖𝐀𝐏 is the unitary acting on ℂ𝒅 ⊗ ℂ𝒅 as follows:

𝐒𝐖𝐀𝐏 ⋅ 𝒊 ⊗ 𝒋 = 𝒋 ⊗ |𝒊⟩, for all 𝒊, 𝒋 ∈ [𝒅].

By linearity, 𝐒𝐖𝐀𝐏 ⋅ 𝒖 ⊗ 𝒗 = 𝒗 ⊗ |𝒖⟩ for all 𝒖 , 𝒗 ∈ ℂ𝒅.

Suppose |𝝍𝑨𝑩⟩ is a product state. So 𝝍𝑨𝑩 = 𝒂𝑨 ⊗ |𝒃𝑩⟩.

Then 𝐒𝐖𝐀𝐏𝐴𝐴′ ⋅ 𝝍𝑨𝑩 ⊗ |𝝍𝑨′𝑩′⟩

= 𝐒𝐖𝐀𝐏𝐴𝐴′ ⋅ 𝒂𝑨 ⊗ |𝒃𝑩⟩ ⊗ 𝒂𝑨′ ⊗ |𝒃𝑩′⟩

swaps!

= 𝒂𝑨 ⊗ |𝒃𝑩⟩ ⊗ 𝒂𝑨′ ⊗ |𝒃𝑩′⟩

= 𝝍𝑨𝑩 ⊗ |𝝍𝑨′𝑩′⟩



The SWAP Test

Def: Given integer 𝒅, 𝐒𝐖𝐀𝐏 is the unitary acting on ℂ𝒅 ⊗ ℂ𝒅 as follows:

𝐒𝐖𝐀𝐏 ⋅ 𝒊 ⊗ 𝒋 = 𝒋 ⊗ |𝒊⟩, for all 𝒊, 𝒋 ∈ [𝒅].

By linearity, 𝐒𝐖𝐀𝐏 ⋅ 𝒖 ⊗ 𝒗 = 𝒗 ⊗ |𝒖⟩ for all 𝒖 , 𝒗 ∈ ℂ𝒅.

Suppose |𝝍𝑨𝑩⟩ is a product state. So 𝝍𝑨𝑩 = 𝒂𝑨 ⊗ |𝒃𝑩⟩.

Then 𝐒𝐖𝐀𝐏𝐴𝐴′ ⋅ 𝝍𝑨𝑩 ⊗ |𝝍𝑨′𝑩′⟩

= 𝐒𝐖𝐀𝐏𝐴𝐴′ ⋅ 𝒂𝑨 ⊗ |𝒃𝑩⟩ ⊗ 𝒂𝑨′ ⊗ |𝒃𝑩′⟩ = 𝒂𝑨 ⊗ |𝒃𝑩⟩ ⊗ 𝒂𝑨′ ⊗ |𝒃𝑩′⟩

= 𝝍𝑨𝑩 ⊗ |𝝍𝑨′𝑩′⟩

∴ 𝐒𝐖𝐀𝐏𝐴𝐴′ ⋅ 𝝍𝑨𝑩
⊗2 = 𝝍𝑨𝑩

⊗2

Fact: Suppose |𝝍𝑨𝑩⟩ is 𝝐-far from product. Then

|⟨𝝍𝑨𝑩|⊗𝟐 ⋅ 𝐒𝐖𝐀𝐏𝐴𝐴′ ⋅ 𝝍𝑨𝑩
⊗2| ≤ 𝟏 − 𝝐𝟐.



The SWAP Test

• If |𝝍𝑨𝑩⟩ is a product state, then 𝐒𝐖𝐀𝐏𝐴𝐴′ ⋅ 𝝍𝑨𝑩
⊗2 = 𝝍𝑨𝑩

⊗2.

|⟨𝝍𝑨𝑩|⊗𝟐 ⋅ 𝐒𝐖𝐀𝐏𝐴𝐴′ ⋅ 𝝍𝑨𝑩
⊗2| ≤ 𝟏 − 𝝐𝟐.

Summary:

• If |𝝍𝑨𝑩⟩ is 𝝐-far from product, 

The SWAP test uses two copies of |𝝍𝑨𝑩⟩ 

to check if 𝐒𝐖𝐀𝐏𝐴𝐴′ ⋅ 𝝍𝑨𝑩
⊗2 = 𝝍𝑨𝑩

⊗2. 

If |𝝍𝑨𝑩⟩ is a product state, the check always passes,
and it always outputs “product”

If |𝝍𝑨𝑩⟩ is 𝝐-far from product, the check fails with probability 𝝐𝟐/𝟐,
in which case it outputs “entangled”



The hidden cut problem

Input: An 𝒏-qubit quantum state |𝝍⟩ with a unique hidden cut (S, T).

Output:

𝝍 = 𝒂 𝑺 ⊗ 𝒃 𝑻 

“Unique” means: • 𝒂 𝑺 and 𝒃 𝑻 are both 𝝐-far from product

• |𝝍⟩ is 𝝐-far from product across any other (S’, T’) cut

S or T

[Harrow, Lin, Montanaro 2016] studied the decision version of this problem.

They gave a 𝐎( Τ𝒏 𝝐𝟐) copy algorithm which distinguishes:

• (Hidden cut) |𝝍⟩ has a hidden cut (S, T).

• (Genuine multipartite entanglement)

|𝝍⟩ is 𝝐-far from product across any (S, T) cut

[Montanaro, Jones 2024] 𝛀( Τ𝒏 𝐥𝐨𝐠(𝒏)) copies are required for decision version

computationally
inefficient



An inefficient alg for the hidden cut problem

We already saw how to test if |𝝍⟩ is product across (S, T) using the 𝐒𝐖𝐀𝐏 test.

So why not do it for (S1, T1), then (S2, T2), then (S3, T3), …?

Testing for the (S, T) cut:

𝟐𝒕 copies of |𝝍⟩ : …

SWAP test SWAP test SWAP test SWAP test SWAP test

• (S, T) is the hidden cut ⇒ all 𝐒𝐖𝐀𝐏 tests output “product”

• (S, T) is not the hidden cut ⇒ each 𝐒𝐖𝐀𝐏 tests output “product” w/prob ≤ 𝟏 − 𝝐𝟐

∴ all 𝐒𝐖𝐀𝐏 tests output “product” w/prob ≤ 𝟏 − 𝝐𝟐 𝒕

≤ 𝐎( Τ𝟏 𝟐𝒏) if 𝒕 = 𝐎( Τ𝒏 𝝐𝟐)

Def: 𝚷𝑺,𝑻 = projector onto all-products outcome, ഥ𝚷𝑺,𝑻 = 𝑰 − 𝚷𝑺,𝑻

𝐭𝐫(𝚷𝑺,𝑻 ⋅ |𝝍⟩⟨𝝍|⊗𝟐𝒕) = 1 if (S, T) is hidden cut, ≤ 𝐎( Τ𝟏 𝟐𝒏) if not



An inefficient alg for the hidden cut problem

1. For all nontrivial cuts (S, T):

2. A Measure 𝝍 ⊗2𝑡 with {𝚷𝑺,𝑻, ഥ𝚷𝑺,𝑻}.

Input: 𝟐𝒕 = 𝐎( Τ𝒏 𝝐𝟐) copies of 𝒏-qubit |𝝍⟩.

3. A If observe 𝚷𝑺,𝑻 outcome, output “S”.

Pf of correctness:

Each measurement errs with probability ≤ 𝐎 Τ𝟏 𝟐𝒏 .

Only 𝟐𝒏 total measurements.

So can set error probability to 0.01.

(But wait? Doesn’t each measurement disturb the state?)

(Yes! But analysis still works using Gao’s quantum union bound.)

exponential
runtime

similar to [Harrow, Lin, Montanaro 2016]‘s algorithm for decision version



This problem seems to require exponentially time
(how else to search over all subsets?)

Suggests the possibility of an information-computation gap.

Potentially useful for … crypto … ?

Pseudorandom state length expansion:

𝒂 , |𝒃⟩ pseudorandom 𝝍 = 𝒂 𝑺 ⊗ 𝒃 𝑻 also pseudorandom? 
scramble

Not if you can find S!

(applications?)

I like this because it’s a natural info theory problem.



Main result
There is an efficient algorithm for the hidden cut problem which uses 𝐎( Τ𝒏 𝝐𝟐) 
copies and runs in time 𝐩𝐨𝐥𝐲(𝒏, 𝟏/𝝐𝟐).

Algorithm inspired by Hidden Subgroup Problem (HSP)

We define a state analogue of HSP called StateHSP



Key idea

|𝝍⟩

|𝝍⟩

𝒙 𝟎 𝟏 𝟎 𝟎 𝟏 𝟎 ∈ 𝟎, 𝟏 𝒏

𝐒𝐖𝐀𝐏𝐱 𝐒𝐖𝐀𝐏𝐼 𝐒𝐖𝐀𝐏𝐼 𝐼 𝐼⊗ ⊗ ⊗ ⊗ ⊗ ∈ 𝐼, 𝐒𝐖𝐀𝐏 𝒏

Properties:

• Let (S, T) be the hidden cut. Then

𝐒𝐖𝐀𝐏𝒙 ⋅ 𝝍 ⊗2 = 𝝍 ⊗2 for 𝒙 = 0𝑛, 𝟏𝑺, 𝟏𝑻, 𝟏𝑺 + 𝟏𝑻 = 𝟏𝒏

• For any 𝒙 ∉ 𝑯,

𝒙 ∈ 𝐻 = {0𝑛, 1𝑆, 1𝑇 , 1𝑛} = subgroup of 𝒁𝟐
𝒏

|⟨𝝍|⊗𝟐 ⋅ 𝐒𝐖𝐀𝐏𝒙 ⋅ 𝝍 ⊗2| ≤ 𝟏 − 𝝐𝟐.

• 𝐒𝐖𝐀𝐏𝒙 ⋅ 𝐒𝐖𝐀𝐏𝒚 = 𝐒𝐖𝐀𝐏𝒙+𝑦 (𝐒𝐖𝐀𝐏𝒙 is a representation of 𝒁𝟐
𝒏)



Simon’s problem

Given: Oracle access to a function 𝑓: 0, 1 𝑛 → {𝐑𝐞𝐝, 𝐆𝐫𝐞𝐞𝐧, 𝐁𝐥𝐮𝐞, … }

which “hides” a secret string 𝒔 ∈ 𝟎, 𝟏 𝒏:

• 𝑓 𝒙 = 𝑓(𝒙 + 𝒔) for all 𝒙 ∈ 𝟎, 𝟏 𝒏

• 𝑓 𝒙 ≠ 𝑓(𝒙 + 𝑧) whenever 𝒛 ≠ 𝒔

Goal: find 𝒔.

We have an object (𝒇)

It is invariant when shifted by an element of 𝑯 = {𝟎𝒏, 𝒔}

It gets completely changed when shifted by any other z

Our goal is to identify 𝑯

Similar to the hidden cut problem!



Simon’s problem

Given: Oracle access to a function 𝑓: 0, 1 𝑛 → {𝐑𝐞𝐝, 𝐆𝐫𝐞𝐞𝐧, 𝐁𝐥𝐮𝐞, … }

which “hides” a secret string 𝒔 ∈ 𝟎, 𝟏 𝒏:

• 𝑓 𝒙 = 𝑓(𝒙 + 𝒔) for all 𝒙 ∈ 𝟎, 𝟏 𝒏

• 𝑓 𝒙 ≠ 𝑓(𝒙 + 𝑧) whenever 𝒛 ≠ 𝒔

Goal: find 𝒔.

Alg: 1. Prepare the unif. superpos. ෍

𝒙∈ 𝟎,𝟏 𝒏

|𝒙⟩

2. Query 𝒇, giving the state ෍

𝒙∈ 𝟎,𝟏 𝒏

𝒙 ⊗ |𝒇 𝒙 ⟩

3. FT the first register and measure, yielding a uniform 𝒚 ∈ 𝑯⊥

4. Repeat until 𝑯 has been identified.



Algorithm for hidden cut

1. Prepare the state ෍

𝒙∈ 𝟎,𝟏 𝒏

|𝒙⟩ ⊗ 𝝍 ⊗𝟐

2. Apply 𝐒𝐖𝐀𝐏, yielding

3. FT the first register and measure, yielding 𝒚 ∈ 𝑯⊥

4. Repeat until 𝑯 has been identified.

Given: copies of 𝝍 , find 𝑯 = {𝟎𝒏, 𝟏𝑺, 𝟏𝑻, 𝟏𝒏}

෍

𝒙∈ 𝟎,𝟏 𝒏

|𝒙⟩ ⊗ 𝐒𝐖𝐀𝐏𝑥 ⋅ 𝝍 ⊗𝟐

One problem: 𝒚 is probably not a uniform element of 𝑯⊥.

|⟨𝝍|⊗𝟐 ⋅ 𝐒𝐖𝐀𝐏𝒙 ⋅ 𝝍 ⊗2| ≤ 𝟏 − 𝝐𝟐.• For any 𝒙 ∉ 𝑯, nonzero

Can amplify this closer to 0 by using more copies. Everything works out ☺.



Simon’s problem is a special case of the HSP over 𝒁𝟐
𝒏.

Other HSPs can be defined over more general groups 𝑮,
with applications to factoring, lattice-based crypto, etc.

Our hidden cut problem can be viewed as a
state version of the HSP over 𝒁𝟐

𝒏. 

We define a more general state HSP over arbitrary groups 𝑮.

We show that certain algorithms for HSP over 𝑮
will behave similarly for StateHSP over 𝑮.



Final questions

1. Are there applications of the hidden cut problem?

2. More generally, are there more applications of HSP to state problems?

3. Testing if a pure state is entangled is easy: use the 𝐒𝐖𝐀𝐏 test.

How many copies are needed to test if a mixed state is entangled?

Thanks!
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