The state hidden subgroup problem and an efficient algorithm for locating unentanglement

Adam Bouland Stanford Tudor Giurgică-Tiron Stanford \rightarrow U Maryland John Wright UC Berkeley

A puzzle

Def: S = the set of blue vertices $\subseteq \{1, ..., 8\}$ T = the set of purple vertices $\subseteq \{1, ..., 8\}$

Note: $|\psi\rangle$ is unentangled across the **S**, **T** cut i.e. it is a product state $|\psi\rangle = |\alpha\rangle_S \otimes |b\rangle_T$

Def: S = the set of blue vertices $\subseteq \{1, ..., 8\}$ T = the set of purple vertices $\subseteq \{1, ..., 8\}$

Note: $|\psi\rangle$ is unentangled across the **S**, **T** cut i.e. it is a product state $|\psi\rangle = |\alpha\rangle_S \otimes |b\rangle_T$

The hidden cut problem

Given copies of *n*-qubit $|\psi\rangle$, find S (or T).

The hidden cut problem

Given copies of *n*-qubit $|\psi\rangle$, find S (or T).

Can solve via full state tomography. Requires $\Omega(2^n)$ copies. Today's Q: Is this possible with poly(n) copies?

Easier Q: Suppose you have a guess for **S** and **T**. How to tell if $|\psi\rangle$ is a product state across **S** and **T**? This is called **product testing**.

Product testing

Input: A bipartite quantum state $|\psi_{AB}\rangle$ on two registers **A** and **B**

- **Output:** "**Product**" if $|\psi_{AB}\rangle$ is a **product state**: $|\psi_{AB}\rangle = |a_A\rangle \otimes |b_B\rangle$
 - "Entangled" if $|\psi_{AB}\rangle$ is ϵ -far from product:

 $\mathbf{D}_{\mathrm{tr}}(|\psi\rangle\langle\psi|,|v\rangle\langle v|) \geq \epsilon$ for every product state $|v\rangle$

Product testing

Input: A bipartite quantum state $|\psi_{AB}\rangle$ on two registers A and B

- **Output:** "**Product**" if $|\psi_{AB}\rangle$ is a **product state**: $|\psi_{AB}\rangle = |a_A\rangle \otimes |b_B\rangle$
 - "Entangled" if $|\psi_{AB}\rangle$ is ϵ -far from product:

 $\mathbf{D}_{\mathrm{tr}}(|\psi\rangle\langle\psi|,|v\rangle\langle v|) \geq \epsilon$ for every product state $|v\rangle$

Fact:

There is an algorithm called the **SWAP test** with the following guarantees:

- $|\psi_{AB}\rangle$ is a **product state**: \Rightarrow **SWAP test** always outputs "**product**"
- $|\psi_{AB}\rangle$ is ϵ -far from product : \Rightarrow SWAP test outputs "entangled" w/prob $\geq \epsilon^2/2$

Furthermore, the SWAP test uses only 2 copies of $|\psi_{AB}\rangle$.

 $\therefore n = O(1/\epsilon^2)$ copies of suffice for product testing (w/ success prob 99%)

The SWAP Test

Def: Given integer *d*, **SWAP** is the unitary acting on $\mathbb{C}^d \otimes \mathbb{C}^d$ as follows: **SWAP** $\cdot |i\rangle \otimes |j\rangle = |j\rangle \otimes |i\rangle$, for all $i, j \in [d]$.

By linearity, **SWAP** $\cdot |u\rangle \otimes |v\rangle = |v\rangle \otimes |u\rangle$ for all $|u\rangle, |v\rangle \in \mathbb{C}^d$.

Suppose $|\psi_{AB}\rangle$ is a **product state**. So $|\psi_{AB}\rangle = |a_A\rangle \otimes |b_B\rangle$.

```
Then SWAP<sub>AA</sub>, |\psi_{AB}\rangle \otimes |\psi_{A'B'}\rangle

= SWAP_{AA'} \cdot |a_A\rangle \otimes |b_B\rangle \otimes |a_{A'}\rangle \otimes |b_{B'}\rangle = |a_A\rangle \otimes |b_B\rangle \otimes |a_{A'}\rangle \otimes |b_{B'}\rangle
= |\psi_{AB}\rangle \otimes |\psi_{A'B'}\rangle
swaps!
```

The SWAP Test

Def: Given integer *d*, **SWAP** is the unitary acting on $\mathbb{C}^d \otimes \mathbb{C}^d$ as follows: **SWAP** $\cdot |i\rangle \otimes |j\rangle = |j\rangle \otimes |i\rangle$, for all $i, j \in [d]$.

By linearity, **SWAP** $\cdot |u\rangle \otimes |v\rangle = |v\rangle \otimes |u\rangle$ for all $|u\rangle$, $|v\rangle \in \mathbb{C}^d$.

Suppose $|\psi_{AB}\rangle$ is a product state. So $|\psi_{AB}\rangle = |a_A\rangle \otimes |b_B\rangle$. Then $SWAP_{AA'} \cdot |\psi_{AB}\rangle \otimes |\psi_{A'B'}\rangle$ $= SWAP_{AA'} \cdot |a_A\rangle \otimes |b_B\rangle \otimes |a_{A'}\rangle \otimes |b_{B'}\rangle = |a_A\rangle \otimes |b_B\rangle \otimes |a_{A'}\rangle \otimes |b_{B'}\rangle$ $= |\psi_{AB}\rangle \otimes |\psi_{A'B'}\rangle$

 $\therefore \mathbf{SWAP}_{AA'} \cdot |\psi_{AB}\rangle^{\otimes 2} = |\psi_{AB}\rangle^{\otimes 2}$

Fact: Suppose $|\psi_{AB}\rangle$ is ϵ -far from product. Then $|\langle \psi_{AB}|^{\otimes 2} \cdot \text{SWAP}_{AA'} \cdot |\psi_{AB}\rangle^{\otimes 2}| \leq 1 - \epsilon^2.$

The SWAP Test

Summary:

- If $|\psi_{AB}\rangle$ is a product state, then SWAP_{AA}, $|\psi_{AB}\rangle^{\otimes 2} = |\psi_{AB}\rangle^{\otimes 2}$.
- If $|\psi_{AB}\rangle$ is ϵ -far from product,

$$\langle \psi_{AB} |^{\otimes 2} \cdot \mathrm{SWAP}_{AA'} \cdot |\psi_{AB} \rangle^{\otimes 2} | \leq 1 - \epsilon^2.$$

The SWAP test uses two copies of $|\psi_{AB}\rangle$ to check if **SWAP**_{AA}, $\cdot |\psi_{AB}\rangle^{\otimes 2} = |\psi_{AB}\rangle^{\otimes 2}$.

If $|\psi_{AB}\rangle$ is a **product state**, the check always passes, and it always outputs "**product**"

If $|\psi_{AB}\rangle$ is ϵ -far from product, the check fails with probability $\epsilon^2/2$, in which case it outputs "entangled"

The hidden cut problem

Input: An *n*-qubit quantum state $|\psi\rangle$ with a **unique** hidden cut (**S**, **T**). $\bigcirc \bigcirc |\psi\rangle = |a\rangle_S \otimes |b\rangle_T$ "Unique" means: $|a\rangle_S$ and $|b\rangle_T$ are both ϵ -far from product $|\psi\rangle$ is ϵ -far from product across any other (**S'**, **T'**) cut

Output: S or T

[Harrow, Lin, Montanaro 2016] studied the decision version of this problem.

They gave a $O(n/\epsilon^2)$ copy algorithm which distinguishes:

- (Hidden cut) $|\psi\rangle$ has a hidden cut (S, T).
- (Genuine multipartite entanglement)

 $|\psi\rangle$ is ϵ -far from product across any (S, T) cut

computationally

inefficient

[Montanaro, Jones 2024] $\Omega(n/\log(n))$ copies are required for decision version

An inefficient alg for the hidden cut problem

We already saw how to test if $|\psi\rangle$ is product across (S, T) using the SWAP test. So why not do it for (S_1, T_1) , then (S_2, T_2) , then (S_3, T_3) , ...? Testing for the (S, T) cut:

$$2t$$
 copies of $|\psi\rangle$:SWAP testSWAP testSWAP testSWAP testSWAP testSWAP testSWAP testSWAP test

- (S, T) is the hidden cut ⇒ all SWAP tests output "product"
- (S, T) is **not** the hidden cut \Rightarrow each SWAP tests output "product" w/prob $\leq 1 \epsilon^2$

∴ all **SWAP** tests output "**product**" w/prob

$$\leq (1 - \epsilon^2)^t$$

$$\leq 0(1/2^n) \quad \text{if } t = 0(n/\epsilon^2)$$

. . .

Def: $\Pi_{S,T}$ = projector onto all-**products** outcome, $tr(\Pi_{S,T} \cdot |\psi\rangle\langle\psi|^{\otimes 2t}) = 1$ if (S, T) is hidden cut, $\overline{\Pi}_{S,T} = I - \Pi_{S,T}$ $\leq O(1/2^n) \text{ if not}$

An inefficient alg for the hidden cut problem

Input: $2t = O(n/\epsilon^2)$ copies of *n*-qubit $|\psi\rangle$.

- 1. For all nontrivial cuts (S, T):
- 2. Measure $|\psi\rangle^{\otimes 2t}$ with $\{\Pi_{S,T}, \overline{\Pi}_{S,T}\}$.
- 3. If observe $\Pi_{S,T}$ outcome, output "S".

Pf of correctness:

Each measurement errs with probability $\leq O(1/2^n)$.

exponential

runtime

Only 2^n total measurements.

So can set error probability to **0.01**.

(But wait? Doesn't each measurement disturb the state?)

(Yes! But analysis still works using Gao's quantum union bound.)

similar to [Harrow, Lin, Montanaro 2016]'s algorithm for decision version

This problem seems to **require** exponentially time (how else to search over all subsets?)

Suggests the possibility of an information-computation gap.

Potentially useful for ... crypto ... ?

Pseudorandom state length expansion:(applications?) $|a\rangle$, $|b\rangle$ pseudorandomscramble $|\psi\rangle = |a\rangle_S \otimes |b\rangle_T$ also pseudorandom?Not if you can find S!

I like this because it's a natural info theory problem.

Main result

There is an **efficient** algorithm for the hidden cut problem which uses $O(n/\epsilon^2)$ copies and runs in time $poly(n, 1/\epsilon^2)$.

Algorithm inspired by **Hidden Subgroup Problem** (HSP)

We define a state analogue of HSP called **StateHSP**

Key idea

x010010 $\in \{0, 1\}^n$ $|\psi\rangle$ Image: Image of the system of the syste

Properties:

- Let (S, T) be the hidden cut. Then $x \in H = \{0^n, 1_S, 1_T, 1^n\}$ = subgroup of \mathbb{Z}_2^n $\mathbf{SWAP}_x \cdot |\psi\rangle^{\otimes 2} = |\psi\rangle^{\otimes 2}$ for $x = 0^n$, $\mathbf{1}_S$, $\mathbf{1}_T$, $\mathbf{1}_S + \mathbf{1}_T = \mathbf{1}^n$
- For any $x \notin H$, $|\langle \psi |^{\otimes 2} \cdot \text{SWAP}_x \cdot |\psi \rangle^{\otimes 2}| \leq 1 \epsilon^2$.
- $SWAP_x \cdot SWAP_y = SWAP_{x+y}$ (SWAP_x is a representation of \mathbb{Z}_2^n)

Simon's problem

Given: Oracle access to a function $f: \{0, 1\}^n \rightarrow \{\text{Red}, \text{Green}, \text{Blue}, ...\}$ which "hides" a secret string $s \in \{0, 1\}^n$:

• f(x) = f(x + s) for all $x \in \{0, 1\}^n$

•
$$f(\mathbf{x}) \neq f(\mathbf{x} + \mathbf{z})$$
 whenever $\mathbf{z} \neq \mathbf{s}$

Goal: find *s*.

We have an object (**f**)

It is invariant when shifted by an element of $H = \{0^n, s\}$

It gets completely changed when shifted by any other z

Our goal is to identify **H**

Similar to the hidden cut problem!

Simon's problem

Given: Oracle access to a function $f: \{0, 1\}^n \rightarrow \{\text{Red}, \text{Green}, \text{Blue}, ...\}$ which "hides" a secret string $s \in \{0, 1\}^n$:

- f(x) = f(x + s) for all $x \in \{0, 1\}^n$
- $f(\mathbf{x}) \neq f(\mathbf{x} + \mathbf{z})$ whenever $\mathbf{z} \neq \mathbf{s}$

Goal: find **s**.

Alg: 1. Prepare the unif. superpos.

$$\sum_{\boldsymbol{x}\in\{0,1\}^n}|\boldsymbol{x}\rangle$$

2. Query *f*, giving the state

$$\sum_{x\in\{0,1\}^n} |x\rangle \otimes |f(x)\rangle$$

- 3. FT the first register and measure, yielding a uniform $y \in H^{\perp}$
- 4. Repeat until *H* has been identified.

Algorithm for hidden cut

Given: copies of $|\psi\rangle$, find $H = \{0^n, 1_S, 1_T, 1^n\}$

1. Prepare the state

$$\sum_{x \in \{0,1\}^n} |x\rangle \otimes |\psi\rangle^{\otimes 2}$$
$$\sum_{x \in \{0,1\}^n} |x\rangle \otimes \mathrm{SWAP} \to |y\rangle$$

2. Apply SWAP, yielding

$$\sum_{\boldsymbol{x}\in\{0,1\}^n} |\boldsymbol{x}\rangle \otimes \mathrm{SWAP}_{\boldsymbol{x}} \cdot |\boldsymbol{\psi}\rangle^{\otimes 2}$$

- 3. FT the first register and measure, yielding $y \in H^{\perp}$
- 4. Repeat until *H* has been identified.

One problem: y is probably not a uniform element of H^{\perp} .

• For any $x \notin H$, $|\langle \psi |^{\otimes 2} \cdot \text{SWAP}_x \cdot |\psi \rangle^{\otimes 2}| \leq 1 - \epsilon^2$. • nonzero

Can **amplify** this closer to 0 by using more copies. Everything works out O.

Simon's problem is a special case of the HSP over \mathbb{Z}_2^n .

Other HSPs can be defined over more general groups G, with applications to factoring, lattice-based crypto, etc.

Our hidden cut problem can be viewed as a state version of the HSP over \mathbb{Z}_2^n .

We define a more general state HSP over arbitrary groups **G**.

We show that certain algorithms for HSP over **G** will behave similarly for StateHSP over **G**.

Final questions

- 1. Are there applications of the hidden cut problem?
- 2. More generally, are there more applications of HSP to state problems?
- Testing if a pure state is entangled is easy: use the SWAP test.
 How many copies are needed to test if a mixed state is entangled?

Thanks!