CS 294: Quantum Coding Theory
- Lecture 1 (Jan 24): Course overview; Shor 9-qubit code (scribe notes)
- Lecture 2 (Jan 26): Shor 9-qubit code continued; quantum noise (scribe notes)
- Lecture 5 (Feb 2): More Knill-Laflamme; linear codes (scribe notes)
- Lecture 6 (Feb 9): Linear codes and stabilizer codes (scribe notes)
- Lecture 7 (Feb 14): Properties and examples of stabilizer codes (scribe notes)
- Lecture 9 (Feb 21): More on CSS codes and qudit codes (scribe notes)
- Lecture 10 (Feb 23): Polynomial codes, bounds on codes (scribe notes)
- Lecture 11 (Feb 28): The quantum Singleton bound
- Lecture 16 (Mar 15): Hypergraph product codes (scribe notes)
- Lecture 21 (Apr 10): Quantum Tanner code distance (scribe notes)
- Lecture 24 (Apr 19): The Clifford group II
- Lecture 26 (Apr 26): Fault tolerance II
- Lecture 27 (May 1): Fault tolerance III
- Lecture 28 (May 3): Fault tolerance IV
- Basics of quantum error correction
Stabilizer and CSS codes
Knill-Laflamme conditions
Bounds on error correcting codes
- Quantum fault tolerance
Model of fault tolerance
The Clifford group and the Gottesman-Knill theorem
Proof of the fault tolerance theorem
- Good quantum codes
The toric code and surface codes
LDPC codes
Quantum Tanner codes
- Applications
Quantum PCP and NLTS conjectures
CS 191 or equivalent is required.
Grading: 40% homeworks, 10% scribe, 50% final project