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Chapter 2

Two-dimensional
Delaunay triangulations

The Delaunay triangulation is a geometric structure that engineers have used for meshes
since mesh generation was in its infancy. In two dimensions, it has a striking advantage:
among all possible triangulations of a xed set of points, the Delaunay triangulation max-
imizes the minimum angle. It also optimizes several other geometric criteria related to
interpolation accuracy. If it is our goal to create a triangulation without small angles, it
seems almost silly to consider a triangulation that is not Delaunay. Delaunay triangulations
have been studied thoroughly, and excellent algorithms are available for constructing and
updating them.

A constrained triangulation is a triangulation that enforces the presence of specied
edges�—for example, the boundary of a nonconvex object. A constrained Delaunay trian-
gulation relaxes the Delaunay property just enough to recover those edges, while enjoying
optimality properties similar to those of a Delaunay triangulation. Constrained Delaunay
triangulations are nearly as popular as their unconstrained ancestors.

This chapter surveys two-dimensional Delaunay triangulations, constrained Delaunay
triangulations, weighted Delaunay triangulations, and their geometric properties.

2.1 Triangulations of a planar point set
The word triangulation usually refers to a simplicial complex, but it has multiple meanings
when we discuss a triangulation of some geometric entity that is being triangulated. There
are triangulations of point sets, polygons, polyhedra, and many other structures. Consider
points in the plane (or in any Euclidean space).

Denition 2.1 (triangulation of a point set). Let S be a nite set of points in the plane. A
triangulation of S is a simplicial complex T such that S is the set of vertices in T, and the
union of all the simplices in T is the convex hull of S�—that is, |T| = conv S .

Does every point set have a triangulation? Yes. Consider the lexicographic triangula-
tion illustrated in Figure 2.1. To construct one, sort the points lexicographically (that is, by
x-coordinate, ordering points with the same x-coordinate according to their y-coordinates),
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32 Delaunay Mesh Generation

Figure 2.1: Incremental construction of a lexicographic triangulation.

yielding a sorted sequence v1, v2, . . . , vn of points. Dene the lexicographic triangulation
Ti of the rst i points by induction as follows. The rst triangulation is T1 = {v1}. Each
subsequent triangulation is Ti = Ti−1 ∪ {vi} ∪ {conv ({vi} ∪ σ) : σ ∈ Ti−1 and the relative
interior of conv ({vi} ∪ σ) intersects no simplex in Ti−1}.

Even if the points in S are all collinear, there is a triangulation of S : Tn contains n
vertices, n − 1 collinear edges connecting them, and no triangles.

A triangulation of n points in the plane has at most 2n − 5 triangles and 3n − 6 edges as
a consequence of Euler�’s formula. With no change, Denition 2.1 denes triangulations of
point sets in higher-dimensional Euclidean spaces as well.

2.2 The Delaunay triangulation
The Delaunay triangulation of a point set S , introduced by Boris Nikolaevich Delaunay in
1934, is characterized by the empty circumdisk property: no point in S lies in the interior
of any triangle�’s circumscribing disk; recall Denition 1.17.

Denition 2.2 (Delaunay). In the context of a nite point set S , a triangle is Delaunay
if its vertices are in S and its open circumdisk is empty�— i.e. contains no point in S .
Note that any number of points in S can lie on a Delaunay triangle�’s circumcircle. An
edge is Delaunay if its vertices are in S and it has at least one empty open circumdisk. A
Delaunay triangulation of S , denoted Del S , is a triangulation of S in which every triangle
is Delaunay, as illustrated in Figure 2.2.

One might wonder whether every point set has a Delaunay triangulation, and how many
Delaunay triangulations a point set can have. The answer to the rst question is �“yes.�”
Section 2.3 gives some intuition for why this is true, and Section 2.5 gives a proof.

The Delaunay triangulation of S is unique if and only if no four points in S lie on a
common empty circle, a fact proved in Section 2.7. Otherwise, there are Delaunay triangles

Figure 2.2: Every triangle in a Delaunay triangulation has an empty open circumdisk.
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Two-dimensional Delaunay triangulations 33

(a) (b) (c)

Figure 2.3: Three ways to dene a Delaunay structure in the presence of cocircular vertices.
(a) Include all the Delaunay simplices. (b) Choose a subset of Delaunay simplices that
constitutes a triangulation. (c) Exclude all crossing Delaunay edges, and fuse overlapping
Delaunay triangles into Delaunay polygons.

and edges whose interiors intersect, as illustrated in Figure 2.3(a). Most applications omit
some of these triangles and edges so that the survivors form a simplicial complex, as in
Figure 2.3(b). Depending on which Delaunay simplices one keeps and which one discards,
one obtains different Delaunay triangulations.

It is sometimes useful to unite the intersecting triangles into a single polygon, depicted
in Figure 2.3(c). The Delaunay subdivision obtained this way is a polyhedral complex,
rather than a simplicial complex. It has the advantage of being the geometric dual of the
famous Voronoi diagram, discussed in Section 7.1.

Clearly, a simplex�’s being Delaunay does not guarantee that it is in every Delau-
nay triangulation of a point set. But a slightly stronger property does provide that
guarantee.

Denition 2.3 (strongly Delaunay). In the context of a nite point set S , a triangle τ is
strongly Delaunay if its vertices are in S and its closed circumdisk contains no point in S
except the vertices of τ. An edge e is strongly Delaunay if its vertices are in S and it has at
least one closed circumdisk that contains no point in S except the vertices of e. Every point
in S is a strongly Delaunay vertex.

Every Delaunay triangulation of S contains every strongly Delaunay simplex, a fact
proved in Section 2.7. The Delaunay subdivision contains the strongly Delaunay edges and
triangles, and no others.

Consider two examples of strongly Delaunay edges. First, every edge on the bound-
ary of a triangulation of S is strongly Delaunay. Figure 2.4 shows why. Second, the edge
connecting a point v ∈ S to its nearest neighbor w ∈ S is strongly Delaunay, because the
smallest closed disk containing v and w does not contain any other point in S . Therefore,
every Delaunay triangulation connects every vertex to its nearest neighbor.

2.3 The parabolic lifting map
Given a nite point set S , the parabolic lifting map transforms the Delaunay subdivision
of S into faces of a convex polyhedron in three dimensions, as illustrated in Figure 2.5.
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Figure 2.4: Every edge on the boundary of a convex triangulation is strongly Delaunay,
because it is always possible to nd an empty disk that contains its endpoints and no other
vertex.

y S
z

S +

x

Figure 2.5: The parabolic lifting map.

This relationship between Delaunay triangulations and convex hulls has two consequences.
First, it makes many properties of the Delaunay triangulation intuitive. For example, from
the fact that every nite point set has a polyhedral convex hull, it follows that every nite
point set has a Delaunay triangulation. Second, it brings to mesh generation the power
of a huge literature on polytope theory and algorithms. For example, every convex hull
algorithm is a Delaunay triangulation algorithm!

The parabolic lifting map sends each point p = (x, y) ∈ R2 to a point p+ = (x, y, x2 +
y2) ∈ R3. Call p+ the lifted companion of p.

Consider the convex hull conv S + of the lifted points S + = {v+ : v ∈ S }. Figure 2.5
illustrates its downward-facing faces. Formally, a face f of conv S + is downward-facing if
no point in conv S + is directly below any point in f , with respect to the z-axis. Call the
collection of downward-facing faces the underside of conv S +. Projecting the underside of
conv S + to the x-y plane (by discarding every point�’s z-coordinate) yields the Delaunay sub-
division of S . If S has more than one Delaunay triangulation, this Delaunay subdivision has
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Two-dimensional Delaunay triangulations 35

non-triangular polygons, like the hexagon in Figure 2.3(c). Triangulating these polygonal
faces yields a Delaunay triangulation.

For a simplex σ in the plane, its lifted companion σ+ is the simplex embedded in R3
whose vertices are the lifted companions of the vertices of σ. Note that σ+ is at and does
not curve to hug the paraboloid. The following lemmas show that every Delaunay simplex�’s
lifted companion is included in a downward-facing face of conv S +.

Lemma 2.1 (Lifting Lemma). Let C be a circle in the plane. Let C+ = {p+ : p ∈ C} be
the ellipse obtained by lifting C to the paraboloid. Then the points of C+ lie on a plane h,
which is not parallel to the z-axis. Furthermore, every point p inside C lifts to a point p+
below h, and every point p outside C lifts to a point p+ above h. Therefore, testing whether
a point p is inside, on, or outside C is equivalent to testing whether the lifted point p+ is
below, on, or above h.

Proof. Let o and r be the center and radius of C, respectively. Let p be a point in
the plane. The z-coordinate of p+ is ‖p‖2. By expanding d(o, p)2, we have the identity
‖p‖2 = 2〈o, p〉 − ‖o‖2 + d(o, p)2. With o and r xed and p ∈ R2 varying, the equation
z = 2〈o, p〉 − ‖o‖2 + r2 denes a plane h in R3, not parallel to the z-axis. For every point
p ∈ C, d(o, p) = r, so C+ ⊂ h. For every point p ! C, if d(o, p) < r, then the lifted point p+
lies below h, and if d(o, p) > r, then p+ lies above h. !

Proposition 2.2. Let σ be a simplex whose vertices are in S , and let σ+ be its lifted com-
panion. Then σ is Delaunay if and only if σ+ is included in some downward-facing face of
conv S +. The simplex σ is strongly Delaunay if and only if σ+ is a downward-facing face
of conv S +.

Proof. If σ is Delaunay, σ has a circumcircle C that encloses no point in S . Let h be the
unique plane in R3 that includes C+. By the Lifting Lemma (Lemma 2.1), no point in S +
lies below h. Because the vertices of σ+ are in C+, h ⊃ σ+. Therefore, σ+ is included in a
downward-facing face of the convex hull of S +. If σ is strongly Delaunay, every point in
S + lies above h except the vertices of σ+. Therefore, σ+ is a downward-facing face of the
convex hull of S +. The converse implications follow by reversing the argument. !

The parabolic lifting map works equally well for Delaunay triangulations in three or
more dimensions; the Lifting Lemma (Lemma 2.1) and Proposition 2.2 generalize to higher
dimensions without any new ideas. Proposition 2.2 implies that any algorithm for construct-
ing the convex hull of a point set in Rd+1 can construct the Delaunay triangulation of a point
set in Rd.

2.4 The Delaunay Lemma
Perhaps the most important result concerning Delaunay triangulations is the Delaunay
Lemma, proved by Boris Delaunay himself. It provides an alternative characterization of
the Delaunay triangulation: a triangulation whose edges are locally Delaunay.
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ee

Figure 2.6: At left, e is locally Delaunay. At right, e is not.

Denition 2.4 (locally Delaunay). Let e be an edge in a triangulation T in the plane. If e
is an edge of fewer than two triangles in T, then e is said to be locally Delaunay. If e is an
edge of exactly two triangles τ1 and τ2 in T, then e is said to be locally Delaunay if it has
an open circumdisk containing no vertex of τ1 nor τ2. Equivalently, the open circumdisk of
τ1 contains no vertex of τ2. Equivalently, the open circumdisk of τ2 contains no vertex of
τ1.

Figure 2.6 shows two different triangulations of six vertices. In the triangulation at left,
the edge e is locally Delaunay, because the depicted circumdisk of e does not contain either
vertex opposite e. Nevertheless, e is not Delaunay, thanks to other vertices in e�’s circumdisk.
In the triangulation at right, e is not locally Delaunay; every open circumdisk of e contains
at least one of the two vertices opposite e.

The Delaunay Lemma has several uses. First, it provides a linear-time algorithm to
determine whether a triangulation of a point set is Delaunay: simply test whether every
edge is locally Delaunay. Second, it implies a simple algorithm for producing a Delaunay
triangulation called the ip algorithm (Section 2.5). The ip algorithm helps to prove that
Delaunay triangulations have useful optimality properties. Third, the Delaunay Lemma
helps to prove the correctness of other algorithms for constructing Delaunay triangulations.

As with many properties of Delaunay triangulations, the lifting map provides intuition
for the Delaunay Lemma. On the lifting map, the Delaunay Lemma is essentially the ob-
servation that a simple polyhedron is convex if and only if its has no reex edge. A reex
edge is an edge where the polyhedron is locally nonconvex; that is, two adjoining triangles
meet along that edge at a dihedral angle greater than 180◦, measured through the interior of
the polyhedron. If a triangulation has an edge that is not locally Delaunay, that edge�’s lifted
companion is a reex edge of the lifted triangulation (by the Lifting Lemma, Lemma 2.1).

Lemma 2.3 (Delaunay Lemma). Let T be a triangulation of a point set S . The following
three statements are equivalent.

(i) Every triangle in T is Delaunay (i.e. T is Delaunay).

(ii) Every edge in T is Delaunay.

(iii) Every edge in T is locally Delaunay.

Proof. If the points in S are all collinear, S has only one triangulation, which trivially
satises all three properties.

Otherwise, let e be an edge in T; e is an edge of at least one triangle τ ∈ T. If τ is
Delaunay, τ�’s open circumdisk is empty, and because τ�’s circumdisk is also a circumdisk
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Figure 2.7: (a) Because τ�’s open circumdisk contains v, some edge between v and τ is not
locally Delaunay. (b) Because v lies above e1 and in τ�’s open circumdisk, and because w1
lies outside τ�’s open circumdisk, v must lie in τ1�’s open circumdisk.

of e, e is Delaunay. Therefore, Property (i) implies Property (ii). If an edge is Delaunay, it is
clearly locally Delaunay too, so Property (ii) implies Property (iii). The proof is complete
if Property (iii) implies Property (i). Of course, this is the hard part.

Suppose that every edge in T is locally Delaunay. Suppose for the sake of contradiction
that Property (i) does not hold. Then some triangle τ ∈ T is not Delaunay, and some vertex
v ∈ S is inside τ�’s open circumdisk. Let e1 be the edge of τ that separates v from the interior
of τ, as illustrated in Figure 2.7(a). Without loss of generality, assume that e1 is oriented
horizontally, with τ below e1.

Draw a line segment # from the midpoint of e1 to v�—see the dashed line in Figure 2.7(a).
If the line segment intersects some vertex other than v, replace vwith the lowest such vertex
and shorten # accordingly. Let e1, e2, e3, . . ., em be the sequence of triangulation edges (from
bottom to top) whose relative interiors intersect #. Because T is a triangulation of S , every
point on the line segment lies either in a single triangle or on an edge. Let wi be the vertex
above ei that forms a triangle τi in conjunction with ei. Observe that wm = v.

By assumption, e1 is locally Delaunay, so w1 lies outside the open circumdisk of τ. As
Figure 2.7(b) shows, it follows that the open circumdisk of τ1 includes the portion of τ�’s
open circumdisk above e1 and, hence, contains v. Repeating this argument inductively, we
nd that the open circumdisks of τ2, . . . , τm contain v. But wm = v is a vertex of τm, which
contradicts the claim that v is in the open circumdisk of τm. !

2.5 The ip algorithm
The ip algorithm has at least three uses: it is a simple algorithm for computing a Delaunay
triangulation, it is the core of a constructive proof that every nite set of points in the plane
has a Delaunay triangulation, and it is the core of a proof that the Delaunay triangulation
optimizes several geometric criteria when compared with all other triangulations of the
same point set.
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Figure 2.8: (a) In this nonconvex quadrilateral, e cannot be ipped, and e is locally Delau-
nay. (b) The edge e is locally Delaunay. (c) The edge e is not locally Delaunay. The edge
created by a ip of e is locally Delaunay.

Let S be a point set to be triangulated. The ip algorithm begins with any triangulation
T of S ; for instance, the lexicographic triangulation described in Section 2.1. The Delaunay
Lemma tells us that T is Delaunay if and only if every edge in T is locally Delaunay. The
ip algorithm repeatedly chooses any edge that is not locally Delaunay and ips it.

The union of two triangles that share an edge is a quadrilateral, and the shared edge is
a diagonal of the quadrilateral. To ip an edge is to replace it with the quadrilateral�’s other
diagonal, as illustrated in Figure 2.6. An edge ip is legal only if the two diagonals cross
each other�—equivalently, if the quadrilateral is strictly convex. Fortunately, unippable
edges are always locally Delaunay, as Figure 2.8(a) shows.

Proposition 2.4. Let e be an edge in a triangulation of S . Either e is locally Delaunay, or
e is ippable and the edge created by ipping e is locally Delaunay.

Proof. Let v and w be the vertices opposite e. Consider the quadrilateral dened by e, v,
and w, illustrated in Figure 2.8. Let D be the open disk whose boundary passes through v
and the vertices of e.

If w is outside D, as in Figure 2.8(b), then the empty circumdisk D demonstrates that e
is locally Delaunay.

Otherwise, w is in the section of D bounded by e and opposite v. This section is shaded
in Figure 2.8(c). The quadrilateral is thus strictly convex, so e is ippable. Furthermore, the
open disk that is tangent to D at v and has w on its boundary does not contain the vertices
of e, because D includes it, as Figure 2.8(c) demonstrates. Therefore, the edge vw is locally
Delaunay. !

Proposition 2.4 shows that the ip algorithm can ip any edge that is not locally Delau-
nay, thereby creating an edge that is. Unfortunately, the outer four edges of the quadrilateral
might discover that they are no longer locally Delaunay, even if they were locally Delaunay
before the ip. If the ip algorithm repeatedly ips edges that are not locally Delaunay, will
it go on forever? The following proposition says that it won�’t.

Proposition 2.5. Given a triangulation of n points, the ip algorithm terminates after O(n2)
edge ips, yielding a Delaunay triangulation.
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Proof. Let T be the initial triangulation provided as input to the ip algorithm. Let T+ =
{σ+ : σ ∈ T} be the initial triangulation lifted to the parabolic lifting map; T+ is a simplicial
complex embedded in R3. If T is Delaunay, then T+ triangulates the underside of conv S +;
otherwise, by the Lifting Lemma (Lemma 2.1), the edges of T that are not locally Delaunay
lift to reex edges of T+.

By Proposition 2.4, an edge ip replaces an edge that is not locally Delaunay with one
that is. In the lifted triangulation T+, a ip replaces a reex edge with a convex edge. Let
Q be the set containing the four vertices of the two triangles that share the ipped edge.
Then convQ+ is a tetrahedron whose upper faces are the pre-ip simplices and whose lower
faces are the post-ip simplices. Imagine the edge ip as the act of gluing the tetrahedron
convQ+ to the underside of T+.

Each edge ip monotonically lowers the lifted triangulation, so once ipped, an edge
can never reappear. The ip algorithm can perform no more than n(n−1)/2 ips�—the num-
ber of edges that can be dened on n vertices�—so it must terminate. But the ip algorithm
terminates only when every edge is locally Delaunay. By the Delaunay Lemma, the nal
triangulation is Delaunay. !

The fact that the ip algorithm terminates helps to prove that point sets have Delaunay
triangulations.

Proposition 2.6. Every nite set of points in the plane has a Delaunay triangulation.

Proof. Section 2.1 demonstrates that every nite point set has at least one triangulation.
By Proposition 2.5, the application of the ip algorithm to that triangulation produces a
Delaunay triangulation. !

An efficient implementation of the ip algorithm requires one extra ingredient. How
quickly can one nd an edge that is not locally Delaunay? To repeatedly test every edge
in the triangulation would be slow. Instead, the ip algorithm maintains a list of edges that
might not be locally Delaunay. The list initially contains every edge in the triangulation.
Thereafter, the ip algorithm iterates the following procedure until the list is empty, where-
upon the algorithm halts.

• Remove an edge from the list.

• Check whether the edge is still in the triangulation, and if so, whether it is locally
Delaunay.

• If the edge is present but not locally Delaunay, ip it, and add the four edges of the
ipped quadrilateral to the list.

The list may contain multiple copies of the same edge, but they do no harm.
Implemented this way, the ip algorithm runs in O(n + k) time, where n is the number

of vertices (or triangles) of the triangulation and k is the number of ips performed. In
the worst case, k = Θ(n2), giving O(n2) running time. But there are circumstances where
the ip algorithm is fast in practice. For instance, if the vertices of a Delaunay mesh are
perturbed by small displacements during a physical simulation, it might take only a small
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Figure 2.9: A Delaunay ip increases the angle opposite edge uw and, if ∠wxu is acute,
reduces the size of the circumdisk of the triangle adjoining that edge.

number of ips to restore the Delaunay property. In this circumstance, the ip algorithm
probably outperforms any algorithm that reconstructs the triangulation from scratch.

2.6 The optimality of the Delaunay triangulation
Delaunay triangulations are valuable in part because they optimize several geometric crite-
ria: the smallest angle, the largest circumdisk, and the largest min-containment disk. Recall
from Denition 1.20 that the min-containment disk of a triangle is the smallest closed disk
that includes it. For a triangle with no obtuse angle, the circumdisk and the min-containment
disk are the same, but for an obtuse triangle, the min-containment disk is smaller.

Proposition 2.7. Flipping an edge that is not locally Delaunay increases the minimum
angle and reduces the largest circumdisk among the triangles changed by the ip.

Proof. Let uv be the ipped edge, and let wvu and xuv be the triangles deleted by the ip,
so wxu and xwv are the triangles created by the ip.

The angle opposite the edge uw is ∠wvu before the ip, and ∠wxu after the ip. As
Figure 2.9 illustrates, because the open circumdisk of wvu contains x, the latter angle is
greater than the former angle by the Inscribed Angle Theorem, a standard fact about circle
geometry that was known to Euclid. Likewise, the ip increases the angles opposite wv, vx,
and xu.

Each of the other two angles of the new triangles, ∠xuw and ∠wvx, is a sum of two pre-
ip angles that merge when uv is deleted. It follows that all six angles of the two post-ip
triangles exceed the smallest of the four angles in which uv participates before the ip.

Suppose without loss of generality that the circumdisk of wxu is at least as large as
the circumdisk of xwv, and that ∠wxu ≤ ∠uwx, implying that ∠wxu is acute. Because the
open circumdisk of wvu contains x, it is larger than the circumdisk of wxu, as illustrated in
Figure 2.9. It follows that the largest pre-ip circumdisk is larger than the largest post-ip
circumdisk. !

In Section 4.3, we show that a Delaunay ip never increases the largest min-
containment disk among the triangles changed by the ip. These local results imply a global
optimality result.

Theorem 2.8. Among all the triangulations of a point set, there is a Delaunay triangula-
tion that maximizes the minimum angle in the triangulation, a Delaunay triangulation that
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minimizes the largest circumdisk, and a Delaunay triangulation that minimizes the largest
min-containment disk.

Proof. Each of these properties is locally improved when an edge that is not locally De-
launay is ipped�—or at least not worsened, in the case of min-containment disks. There is
at least one optimal triangulation T. If T has an edge that is not locally Delaunay, ipping
that edge produces another optimal triangulation. When the ip algorithm runs with T as its
input, every triangulation it iterates through is optimal by induction, and by Proposition 2.5,
that includes a Delaunay triangulation. !

Theorem 2.8 is not the strongest statement we can make, but it is easy to prove. With
more work, one can show that every Delaunay triangulation of a point set optimizes these
criteria. See Exercise 3 for details.

Unfortunately, the only optimality property of Theorem 2.8 that generalizes to Delau-
nay triangulations in dimensions higher than two is the property of minimizing the largest
min-containment ball. However, the list of optimality properties in Theorem 2.8 is not com-
plete. In the plane, the Delaunay triangulation maximizes the mean inradius of its triangles
and minimizes a property called the roughness of a piecewise linearly interpolated func-
tion, which is the integral over the triangulation of the square of the gradient. Section 4.3
discusses criteria related to interpolation error for which Delaunay triangulations of any
dimension are optimal.

Another advantage of the Delaunay triangulation arises in numerical discretizations
of the Laplacian operator ∇2. Solutions to Dirichlet boundary value problems associated
with Laplace�’s equation ∇2ϕ = 0 satisfy a maximum principle: the maximum value of ϕ
always occurs on the domain boundary. Ideally, an approximate solution found by a nu-
merical method should satisfy a discrete maximum principle, both for physical realism and
because it helps to prove strong convergence properties for the numerical method and to
bound its error. A piecewise linear nite element discretization of Laplace�’s equation over
a Delaunay triangulation in the plane satises a discrete maximum principle. Moreover,
the stiffness matrix is what is called a Stieltjes matrix or an M-matrix, which implies that
it can be particularly stable in numerical methods such as incomplete Cholesky factoriza-
tion. These properties extend to three-dimensional Delaunay triangulations for some nite
volume methods but, unfortunately, not for the nite element method.

2.7 The uniqueness of the Delaunay triangulation
The strength of a strongly Delaunay simplex is that it appears in every Delaunay triangu-
lation of a point set. If a point set has multiple Delaunay triangulations, they differ only in
their choices of simplices that are merely Delaunay. Hence, if a point set is generic�—if it
has no four cocircular points�—it has only one Delaunay triangulation.

Let us prove these facts. Loosely speaking, the following proposition says that strongly
Delaunay simplices intersect nicely.

Proposition 2.9. Let σ be a strongly Delaunay simplex, and let τ be a Delaunay simplex.
Then σ ∩ τ is either empty or a shared face of both σ and τ.
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w

xσ

Cτ
τ
v

Cσ

#

Figure 2.10: A strongly Delaunay simplex σ intersects a Delaunay simplex τ at a shared
face of both. The illustration at right foreshadows the fact that this result holds in higher
dimensions too.

Proof. If τ is a face of σ, the proposition follows immediately. Otherwise, τ has a vertex v
that σ does not have. Because τ is Delaunay, it has an empty circumcircle Cτ. Because σ is
strongly Delaunay, it has an empty circumcircle Cσ that does not pass through v, illustrated
in Figure 2.10. But v lies on Cτ, so Cσ " Cτ.

The intersection of circumcircles Cσ ∩Cτ contains zero, one, or two points. In the rst
two cases, the proposition follows easily, so suppose it is two points w and x, and let # be
the unique line through w and x. On one side of #, an arc of Cσ encloses an arc of Cτ, and
because Cσ is empty, no vertex of τ lies on this side of #. Symmetrically, no vertex of σ lies
on the other side of #. Therefore, σ ∩ τ ⊂ #. It follows that σ ∩ # is either ∅, {w}, {x}, or the
edge wx. The same is true of τ ∩ # and, therefore, of σ ∩ τ. !

Proposition 2.9 leads us to see that if a point set has several Delaunay triangulations,
they differ only by the simplices that are not strongly Delaunay.

Proposition 2.10. Every Delaunay triangulation of a point set contains every strongly
Delaunay simplex.

Proof. Let T be any Delaunay triangulation of a point set S . Letσ be any strongly Delaunay
simplex. Let p be a point in the relative interior of σ.

Some Delaunay simplex τ in T contains the point p. By Proposition 2.9, σ ∩ τ is a
shared face of σ and τ. But σ ∩ τ contains p, which is in the relative interior of σ, so
σ ∩ τ = σ. Therefore, σ is a face of τ, so σ ∈ T. !

An immediate consequence of this proposition is that �“most�” point sets�—at least, most
point sets with randomly perturbed real coordinates�—have just one Delaunay triangulation.

Theorem 2.11. Let S be a point set. Suppose no four points in S lie on a common empty
circle. Then S has one unique Delaunay triangulation.

Proof. By Proposition 2.6, S has at least one Delaunay triangulation. Because no four
points lie on a common empty circle, every Delaunay simplex is strongly Delaunay. By
Proposition 2.10, every Delaunay triangulation of S contains every Delaunay simplex. By
denition, no Delaunay triangulation contains a triangle that is not Delaunay. Hence, the
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Delaunay triangulation is uniquely dened as the set of all Delaunay triangles and their
faces. !

Theorem 2.11 does not preclude the possibility that all the vertices might be collinear.
In that case, the vertices have a unique triangulation that has edges but no triangles and is
vacuously Delaunay.

2.8 The weighted Delaunay triangulation
The parabolic lifting map connects Delaunay triangulations with convex hulls. It also sug-
gests a generalization of Delaunay triangulations in which lifted vertices are not required to
lie on the paraboloid. This observation is exploited by several mesh generation algorithms.

The simplest version of this idea begins with a planar point set S and assigns each point
an arbitrary height to which it is lifted in R3. Imagine taking the convex hull of the points
lifted to R3 and projecting its underside down to the plane, yielding a convex subdivision
called the weighted Delaunay subdivision. If some of the faces of this subdivision are not
triangular, they may be triangulated arbitrarily, and S has more than one weighted Delaunay
triangulation.

In recognition of the special properties of the parabolic lifting map, it is customary to
endow each point v ∈ S with a scalar weight ωv that represents how far its height deviates
from the paraboloid. Specically, v�’s height is ‖v‖2 − ωv, and its lifted companion is

v+ = (vx, vy, v2x + v2y − ωv).

A positive weight thus implies that the point�’s lifted companion is below the paraboloid; a
negative implies above. The reason weight is dened in opposition to height is so that in-
creasing a vertex�’s weight will tend to increase its inuence on the underside of the convex
hull conv S +.

Given a weight assignment ω : S → R, we denote the weighted point set S [ω]. If
the weight of a vertex v is so small that its lifted companion v+ is not on the underside
of conv S [ω]+, as illustrated in Figure 2.11, it does not appear in the weighted Delaunay
subdivision at all, and v is said to be submerged or redundant. Submerged vertices create
some confusion of terminology, because a weighted Delaunay triangulation of S is not
necessarily a triangulation of S�—it might omit some of the vertices in S .

If every vertex in S has a weight of zero, every weighted Delaunay triangulation of
S is a Delaunay triangulation of S . No vertex is submerged because every point on the
paraboloid is on the underside of the convex hull of the paraboloid.

The weighted analog of a Delaunay simplex is called a weighted Delaunay simplex,
and the analog of a circumdisk is a witness plane.

Denition 2.5 (weighted Delaunay triangulation; witness). Let S [ω] be a weighted point
set in R3. A simplex σ whose vertices are in S is weighted Delaunay if σ+ is included in
a downward-facing face of conv S [ω]+. In other words, there exists a non-vertical plane
hσ ⊂ R3 such that hσ ⊃ σ+ and no vertex in S [ω]+ lies below hσ. The plane hσ is called
a witness to the weighted Delaunay property of σ. A weighted Delaunay triangulation of
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χ+

v+

z

v

τσχ

hχ = hσ

hτ

τ+σ+
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R2

Figure 2.11: The triangles χ, σ, and τ are all weighted Delaunay, but only τ is strongly
weighted Delaunay. Triangles χ and σ have the same witness plane hχ = hσ, and τ has a
different witness hτ. The vertex v is submerged.

S [ω], denoted Del S [ω], is a triangulation of a subset of S such that |Del S [ω]| = conv S
and every simplex in Del S [ω] is weighted Delaunay with respect to S [ω].

Figure 2.11 illustrates three weighted Delaunay triangles and their witnesses. All their
edges and vertices are weighted Delaunay as well, but the submerged vertex v is not
weighted Delaunay. A triangle has a unique witness, but an edge or vertex can have an
innite number of witnesses.

The weighted analog of a strongly Delaunay simplex is a strongly weighted Delaunay
simplex.

Denition 2.6 (strongly weighted Delaunay). A simplex σ is strongly weighted Delaunay
if σ+ is a downward-facing face of conv S [ω]+ and no vertex in S [ω]+ lies on σ+ except the
vertices of σ+. In other words, there exists a non-vertical plane hσ ⊂ R3 such that hσ ⊃ σ+
and in S [ω]+ lies above hσ, except the vertices of σ+. The plane hσ is a witness to the
strongly weighted Delaunay property of σ.

Of the three triangles in Figure 2.11, only τ is strongly weighted Delaunay. All the
edges are strongly weighted Delaunay except the edge shared by χ and σ. All the vertices
are strongly weighted Delaunay except v.

Proposition 2.2 shows that if all the weights are zero, �“weighted Delaunay�” is equiva-
lent to �“Delaunay�” and �“strongly weighted Delaunay�” is equivalent to �“strongly Delaunay.�”
If a simplex σ is weighted Delaunay, it appears in at least one weighted Delaunay trian-
gulation of S . If σ is strongly weighted Delaunay, it appears in every weighted Delaunay
triangulation of S (by a generalization of Proposition 2.10).

Denition 2.7 (generic). A weighted point set S [ω] in R2 is generic if no four points in
S [ω]+ lie on a common non-vertical plane in R3.

If a weighted point set is generic, then every weighted Delaunay simplex is strongly
weighted Delaunay, and the point set has exactly one weighted Delaunay triangulation. For
points with weight zero, this denition is equivalent to the statement that no four points are
cocircular.
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2.9 Symbolic weight perturbations
Some algorithms for constructing Delaunay triangulations, like the gift-wrapping algorithm
described in Section 3.11, have difficulties triangulating point sets that have multiple Delau-
nay triangulations. These problems can be particularly acute in three or more dimensions.
One way to make the points generic is to perturb them in space so that their Delaunay trian-
gulation is unique. A better way is to assign the points innitesimal weights such that they
have one unique weighted Delaunay triangulation. Because the weights are innitesimal,
that triangulation is also an ordinary Delaunay triangulation.

To put this idea on rm mathematical ground, replace the innitesimals with tiny, nite
weights that are symbolic�—their magnitudes are not explicitly specied. Given a point set
S = {v1, v2, . . . , vn}, assign vertex vi a weight of εi, where ε > 0 is presumed to be so small
that making it smaller would not change the weighted Delaunay triangulation. There is no
need to compute an ε that satises this presumption; it is enough to know that such an ε
exists.

An intuitive way to understand these weights is to imagine the result of a procedure
that perturbs the vertex weights one at a time. Initially every vertex has a weight of zero,
and the Delaunay subdivision may have some polygons that are not triangular. Perturb the
weight of each vertex v1, v2, . . . in turn to subdivide the non-triangular polygons adjoining
the perturbed vertex. The perturbation of vertex vi�’s weight is chosen so that v+i is not
coplanar with any three other lifted vertices, and it is chosen sufficiently small that if v+i
was above the affine hull of three other lifted vertices, it remains above that affine hull
after the perturbation. Therefore, every polygon adjoining vi in the Delaunay subdivision
after the perturbation must be a triangle, and no face not adjoining vi is changed by the
perturbation. Both these goals are achieved by choosing each weight perturbation to be
innitesimally smaller than all the previous weight perturbations�—for instance, a weight
of εi in the limit as ε > 0 approaches zero.

Proposition 2.12. Let S be a set of points in the plane. Let ω : S → R be the weight
assignment described above. The following statements hold.

• If a simplex is strongly Delaunay with respect to S , it is strongly weighted Delaunay
with respect to S [ω].

• If a simplex is strongly weighted Delaunay with respect to S [ω], it is Delaunay with
respect to S .

• There is exactly one weighted Delaunay triangulation of S [ω], which is a Delaunay
triangulation of S .

Proof. Let σ be a simplex that is strongly Delaunay with respect to S . Then σ is strongly
weighted Delaunay with respect to S [0], and some plane h ⊃ σ+ is a witness to that fact.
If σ is a triangle, vertical perturbations of the vertices of σ+ induce a unique perturbation
of h. If σ is an edge or a vertex, choose one or two arbitrary points in h that are affinely
independent of σ+ and x them so that a perturbation of σ+ uniquely perturbs h.

Every vertex in S + lies above h except the vertices of σ+, which lie on h. If ε is suf-
ciently small, the vertically perturbed points S [ω]+ preserve this property: every vertex
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in S [ω]+ lies above the perturbed witness plane for the perturbed σ+, except the vertices
of the perturbed σ+. Therefore, σ is strongly weighted Delaunay with respect to S [ω] too,
conrming the rst statement of the proposition.

If a simplex σ is strongly weighted Delaunay with respect to S [ω], then every vertex in
S [ω]+ lies above some witness plane h ⊃ σ+ except the vertices of σ+. If ε is sufficiently
small, the vertically perturbed points S + nearly preserve this property: every vertex in S +
lies above or on the perturbed witness plane for the perturbed σ+. (If this were not so, some
vertex would have moved from below the affine hull of three other vertices to above their
affine hull; this can be prevented by making ε smaller.) This conrms the second statement
of the proposition.

If ε is sufficiently small, no four vertices of S [ω]+ lie on a common non-vertical plane,
so every face of the weighted Delaunay subdivision of S [ω] is a triangle, and the weighted
Delaunay triangulation of S [ω] is unique. Every simplex of this triangulation is Delaunay
with respect to S , so it is a Delaunay triangulation of S . !

The converse of the second statement of Proposition 2.12 is not true: a simplex that is
Delaunay with respect to S is not necessarily weighted Delaunay with respect to S [ω]. This
is not surprising; the purpose of the weight perturbations is to break coplanarities in S + and
eliminate some of the Delaunay simplices so that the Delaunay triangulation is unique.

An important advantage of symbolic perturbations is that it is easy to simulate them in
software�—see Exercise 2 in Chapter 3�—and they do not introduce the numerical problems
associated with nite, numerical perturbations. Software for constructing Delaunay triangu-
lations can ignore the symbolic perturbations until it encounters four cocircular vertices�—if
constructing a weighted Delaunay triangulation, four vertices whose lifted companions are
coplanar. In that circumstance only, the software must simulate the circumstance where the
four lifted vertices are perturbed so they are not coplanar.

2.10 Constrained Delaunay triangulations in the plane
As planar Delaunay triangulations maximize the minimum angle, do they solve the problem
of triangular mesh generation? No, for two reasons illustrated in Figure 2.12. First, skinny
triangles might appear anyway. Second, the Delaunay triangulation of a domain�’s vertices
might not respect the domain�’s boundary. Both these problems can be solved by introducing
additional vertices, as illustrated.

An alternative solution to the second problem is to use a constrained Delaunay triangu-
lation (CDT). A CDT is dened with respect to a set of points and segments that demarcate
the domain boundary. Every segment is required to become an edge of the CDT. The trian-
gles of a CDT are not required to be Delaunay; instead, they must be constrained Delaunay,
a property that partly relaxes the empty circumdisk property.

One virtue of a CDT is that it can respect arbitrary segments without requiring the
insertion of any additional vertices besides the vertices of the segments. Another is that the
CDT inherits the Delaunay triangulation�’s optimality: among all triangulations of a point
set that include all the segments, the CDT maximizes the minimum angle, minimizes the
largest circumdisk, and minimizes the largest min-containment disk.
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Figure 2.12: The Delaunay triangulation (upper right) may omit domain edges and contain
skinny triangles. A Steiner Delaunay triangulation (lower left) can x these faults by intro-
ducing new vertices. A constrained Delaunay triangulation (lower right) xes the rst fault
without introducing new vertices.

f g

gf

Figure 2.13: A two-dimensional piecewise linear complex and its constrained Delaunay
triangulation. Each polygon may have holes, slits, and vertices in its interior.

2.10.1 Piecewise linear complexes and their triangulations

The domain over which a CDT is dened (and the input to a CDT construction algorithm) is
not just a set of points; it is a complex composed of points, edges, and polygons, illustrated
in Figure 2.13. The purpose of the edges is to dictate that triangulations of the complex must
contain those edges. The purpose of the polygons is to specify the region to be triangulated.
The polygons are linear 2-cells (recall Denition 1.7), which are not necessarily convex and
may have holes.

Denition 2.8 (piecewise linear complex). In the plane, a piecewise linear complex (PLC)
P is a nite set of linear cells�—vertices, edges, and polygons�—that satises the following
properties.

• The vertices and edges in P form a simplicial complex. That is, P contains both
vertices of every edge in P, and the relative interior of an edge in P intersects no
vertex in P nor any other edge in P.

• For each polygon f in P, the boundary of f is a union of edges in P.

• If two polygons in P intersect, their intersection is a union of edges and vertices in
P.
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The edges in a PLC P are called segments to distinguish them from other edges in a tri-
angulation of P. The underlying space of a PLC P, denoted |P|, is the union of its contents;
that is, |P| = ⋃ f∈P f . Usually, the underlying space is the domain to be triangulated.1

Figure 2.13 shows a PLC and a triangulation of it. Observe that the intersection of the
linear 2-cells f and g has multiple connected components, including two line segments and
one isolated point, which are not collinear. The faces of the complex that represent this
intersection are three edges and six vertices.

Every simplicial complex and every polyhedral complex is a PLC. But PLCs are more
general, and not just because they permit nonconvex polygons. As Figure 2.13 illustrates,
segments and isolated vertices can oat in a polygon�’s interior; they constrain how the
polygon can be triangulated. One purpose of these oating constraints is to permit the
application of boundary conditions at appropriate locations in a mesh of a PLC.

Whereas the faces of a simplex are dened in a way that depends solely on the sim-
plex, and the faces of a convex polyhedron are too, the faces of a polygon are dened in
a fundamentally different way that depends on both the polygon and the PLC it is a part
of. An edge of a polygon might be a union of several segments in the PLC; these segments
and their vertices are faces of the polygon. A PLC may contain segments and edges that lie
in the relative interior of a polygon; these are also considered to be faces of the polygon,
because they constrain how the polygon can be subdivided into triangles.

Denition 2.9 (face of a linear cell). The faces of a linear cell f (polygon, edge, or vertex)
in a PLC P are the linear cells in P that are subsets of f , including f itself. The proper
faces of f are all the faces of f except f .

A triangulation of P must cover every polygon and include every segment.

Denition 2.10 (triangulation of a planar PLC). Let P be a PLC in the plane. A triangu-
lation of P is a simplicial complex T such that P and T have the same vertices, T contains
every edge in P (and perhaps additional edges), and |T| = |P|.

It is not difficult to see that a simplex can appear in a triangulation ofP only if it respects
P. (See Exercise 4.)

Denition 2.11 (respect). A simplex σ respects a PLC P if σ ⊆ |P| and for every f ∈ P

that intersects σ, f ∩ σ is a union of faces of σ.

Proposition 2.13. Every simple polygon has a triangulation. Every PLC in the plane has
a triangulation too.

Proof. Let P be a simple polygon. If P is a triangle, it clearly has a triangulation. Oth-
erwise, consider the following procedure for triangulating P. Let ∠uvw be a corner of P
having an interior angle less than 180◦. Two such corners are found by letting v be the
lexicographically least or greatest vertex of P.

1If one takes the vertices and edges of a planar PLC and discards the polygons, one has a simplicial complex
in the plane with no triangles. This complex is called a planar straight line graph (PSLG). Most publications
about CDTs take a PSLG as the input and assume that the CDT should cover the PSLG�’s convex hull. PLCs
are more expressive, as they can restrict the triangulation to a nonconvex region of the plane.
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v w

u

x

Figure 2.14: The edge vx cuts this simple polygon into two simple polygons.

Figure 2.15: Inserting a segment into a triangulation.

If the open edge uw lies strictly in P�’s interior, then cutting uvw from P yields a poly-
gon having one edge fewer; triangulate it recursively. Otherwise, uvw contains at least one
vertex of P besides u, v, and w, as illustrated in Figure 2.14. Among those vertices, let x be
the vertex farthest from the line aff uw. The open edge vx must lie strictly in P�’s interior,
because if it intersected an edge of P, that edge would have a vertex further from aff uw.
Cutting P at vx produces two simple polygons, each with fewer edges than P; triangulate
them recursively. In either case, the procedure produces a triangulation of P.

Let P be a planar PLC. Consider the following procedure for triangulating P. Begin
with an arbitrary triangulation of the vertices in P, such as the lexicographic triangulation
described in Section 2.1. Examine each segment in P to see if it is already an edge of the
triangulation. Insert each missing segment into the triangulation by deleting all the edges
and triangles that intersect its relative interior, creating the new segment, and retriangulating
the two polygonal cavities thus created (one on each side of the segment), as illustrated in
Figure 2.15. The cavities might not be simple polygons, because they might have edges
dangling in their interiors, as shown. But it is straightforward to verify that the procedure
discussed above for triangulating a simple polygon works equally well for a cavity with
dangling edges.

The act of inserting a segment never deletes another segment, because two segments in
P cannot cross. Therefore, after every segment is inserted, the triangulation contains all of
them. Finally, delete any simplices not included in |P|. !

Denition 2.10 does not permit T to have vertices absent from P, but mesh generation
usually entails adding new vertices to guarantee that the triangles have high quality. This
motivates the notion of a Steiner triangulation.

Denition 2.12 (Steiner triangulation of a PLC). Let P be a PLC. A Steiner triangulation
of P, also known as a conforming triangulation of P or a mesh of P, is a simplicial complex
T such that T contains every vertex in P and possibly more, every edge in P is a union of
edges in T, and |T| = |P|. The new vertices in T, absent from P, are called Steiner points. A
Steiner Delaunay triangulation of P, also known as a conforming Delaunay triangulation
of P, is a Steiner triangulation of P in which every simplex is Delaunay.
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τ
e

Figure 2.16: The edge e and triangle τ are constrained Delaunay. Bold lines represent seg-
ments.

2.10.2 The constrained Delaunay triangulation

Constrained Delaunay triangulations (CDTs) offer a way to force a triangulation to respect
the edges in a PLC without introducing new vertices, while maintaining some of the ad-
vantages of Delaunay triangulations. However, it is necessary to relax the requirement that
all triangles be Delaunay. The terminology can be confusing: whereas every Steiner De-
launay triangulation is a Delaunay triangulation (of some point set), constrained Delaunay
triangulations generally are not.

Recall the Delaunay Lemma: a triangulation of a point set is Delaunay if and only if
every edge is locally Delaunay. Likewise, there is a Constrained Delaunay Lemma (Sec-
tion 2.10.3) that offers the simplest denition of a CDT: a triangulation of a PLC is con-
strained Delaunay if and only if every edge is locally Delaunay or a segment. Thus, a CDT
differs from a Delaunay triangulation in three ways: it is not necessarily convex, it is re-
quired to contain the edges in a PLC, and those edges are exempted from being locally
Delaunay.

The dening characteristic of a CDT is that every triangle is constrained Delaunay, as
dened below.

Denition 2.13 (visibility). Two points x and y are visible to each other if the line segment
xy respects P; recall Denition 2.11. We also say that x and y can see each other. A linear
cell in P that intersects the relative interior of xy but does not include xy is said to occlude
the visibility between x and y.

Denition 2.14 (constrained Delaunay). In the context of a PLC P, a simplex σ is con-
strained Delaunay if P contains the vertices of σ, σ respects P, and there is an open cir-
cumdisk of σ that contains no vertex in P that is visible from a point in the relative interior
of σ.

Figure 2.16 illustrates examples of a constrained Delaunay edge e and a constrained
Delaunay triangle τ. Bold lines indicate PLC segments. Although e has no empty circum-
disk, the depicted open circumdisk of e contains no vertex that is visible from the relative
interior of e. There are two vertices in the disk, but both are hidden behind segments. Hence,
e is constrained Delaunay. Similarly, the open circumdisk of τ contains two vertices, but
both are hidden from the interior of τ by segments, so τ is constrained Delaunay.
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(a) (b) (c)

Figure 2.17: (a) A piecewise linear complex. (b) The Delaunay triangulation of its vertices.
(c) Its constrained Delaunay triangulation.

Denition 2.15 (constrained Delaunay triangulation). A constrained Delaunay triangu-
lation (CDT) of a PLC P is a triangulation of P in which every triangle is constrained
Delaunay.

Figure 2.17 illustrates a PLC, a Delaunay triangulation of its vertices, and a constrained
Delaunay triangulation of the PLC. In the CDT, every triangle is constrained Delaunay,
every edge that is not a PLC segment is constrained Delaunay, and every vertex is trivially
constrained Delaunay.

CDTs and Steiner Delaunay triangulations are two different ways to force a triangula-
tion to conform to the boundary of a geometric domain. CDTs partly sacrice the Delaunay
property for the benet of requiring no new vertices. For mesh generation, new vertices are
usually needed anyway to obtain good triangles, so many Delaunay meshing algorithms
use Steiner Delaunay triangulations. But some algorithms use a hybrid of CDTs and Steiner
Delaunay triangulations because it helps to reduce the number of new vertices. A Steiner
CDT or conforming CDT of P is a Steiner triangulation of P in which every triangle is
constrained Delaunay.

2.10.3 Properties of the constrained Delaunay triangulation

For every property of Delaunay triangulations discussed in this chapter, there is an anal-
ogous property of constrained Delaunay triangulations. This section summarizes them.
Proofs are omitted, but each of them is a straightforward extension of the corresponding
proof for Delaunay triangulations.

The Delaunay Lemma generalizes to CDTs, and provides a useful alternative denition:
a triangulation of a PLC P is a CDT if and only if every one of its edges is locally Delaunay
or a segment in P.

Lemma 2.14 (Constrained Delaunay Lemma). Let T be a triangulation of a PLC P. The
following three statements are equivalent.

• Every triangle in T is constrained Delaunay (i.e. T is constrained Delaunay).

• Every edge in T not in P is constrained Delaunay.
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• Every edge in T not in P is locally Delaunay.

One way to construct a constrained Delaunay triangulation of a PLC P is to begin with
any triangulation of P. Apply the ip algorithm, modied so that it never ips a segment:
repeatedly choose any edge of the triangulation that is not in P and not locally Delaunay,
and ip it. When no such edge survives, the Constrained Delaunay Lemma tells us that the
triangulation is constrained Delaunay.

Proposition 2.15. Given a triangulation of a PLC having n vertices, the modied ip al-
gorithm (which never ips a PLC segment) terminates after O(n2) edge ips, yielding a
constrained Delaunay triangulation.

Proposition 2.16. Every PLC has a constrained Delaunay triangulation.

The CDT has the same optimality properties as the Delaunay triangulation, except that
the optimality is with respect to a smaller set of triangulations�—those that include the
PLC�’s edges.

Theorem 2.17. Among all the triangulations of a PLC, every constrained Delaunay trian-
gulation maximizes the minimum angle in the triangulation, minimizes the largest circum-
disk, and minimizes the largest min-containment disk.

A sufficient but not necessary condition for the CDT to be unique is that no four vertices
are cocircular.

Theorem 2.18. If a PLC is generic�—no four of its vertices lie on a common circle�—then the
PLC has one unique constrained Delaunay triangulation, which contains every constrained
Delaunay simplex.

2.11 Notes and exercises
Delaunay triangulations and the Delaunay Lemma were introduced by Boris Delaunay�’s
seminal 1934 paper [69]. The relationship between Delaunay triangulations and convex
hulls was discovered by Brown [34], who proposed a different lifting map that projects the
points onto a sphere. The parabolic lifting map of Seidel [190, 90] is numerically better
behaved than the spherical lifting map.

The ip algorithm, the incremental insertion algorithm, and the Delaunay triangula-
tion�’s property of maximizing the minimum angle were all introduced in a classic paper by
Charles Lawson [131]. D�’Azevedo and Simpson [67] show that two-dimensional Delau-
nay triangulations minimize the largest circumdisk and the largest min-containment disk.
Lambert [129] shows that the Delaunay triangulation maximizes the mean inradius (equiva-
lently, the sum of inradii) of its triangles. Rippa [175] shows that it minimizes the roughness
(dened in Section 2.6) of a piecewise linearly interpolated function, and Powar [172] gives
a simpler proof. Ciarlet and Raviart [63] show that for Dirichlet boundary value problems
on Laplace�’s equation, nite element discretizations with piecewise linear elements over a
triangulation in the plane with no obtuse angles have solutions that satisfy a discrete max-
imum principle. The result extends easily to all Delaunay triangulations in the plane, even
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ones with obtuse angles, but it is not clear who rst made this observation. Miller, Talmor,
Teng, and Walkington [148] extend the result to a nite volume method that uses a three-
dimensional Delaunay triangulation and its Voronoi dual, with Voronoi cells as control
volumes.

The symbolic weight perturbation method of Section 2.9 originates with Edelsbrunner
and Mücke [89, Section 5.4].

Constrained Delaunay triangulations in the plane were mathematically formalized by
Lee and Lin [133] in 1986, though algorithms that unwittingly construct CDTs appeared
much earlier [97, 159]. Lee and Lin extend to CDTs Lawson�’s proof that Delaunay trian-
gulations maximize the minimum angle.

Exercises
1. Draw the Delaunay triangulation of the following point set.

2. Let P and Q be two disjoint point sets in the plane. (Think of them as a red point
set and a black point set.) Let p ∈ P and q ∈ Q be two points from these sets that
minimize the Euclidean distance d(p, q). Prove that pq is an edge of Del (P ∪ Q).
This observation leads easily to an O(n log n)-time algorithm for nding p and q, the
red-black closest pair.

3. Let S be a point set in the plane. S may have subsets of four or more cocircular
points, so S may have many Delaunay triangulations.

(a) Prove that it is possible to transform a triangulation of a convex polygon to any
other triangulation of the same polygon by a sequence of edge ips.

(b) Prove that it is possible to ip from any Delaunay triangulation of S to any
other Delaunay triangulation of S , such that every intermediate triangulation is
also Delaunay.

(c) Prove that every Delaunay triangulation of S maximizes its minimum angle�—
there is no triangulation of S whose smallest angle is greater.

4. Show that a simplex can appear in a triangulation of a PLC P (Denition 2.10) only
if it respects P (Denition 2.11).
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5. Recall that every Delaunay triangulation of a point set contains every strongly De-
launay edge, but there is no such guarantee for Delaunay edges that are not strongly
Delaunay. Show constructively that for any PLC P, every constrained Delaunay edge
is in at least one CDT of P. Hint: See Exercise 3(b).

6. Prove Lemma 2.14, the Constrained Delaunay Lemma.

7. Recall that a triangle τ is constrained Delaunay with respect to a PLC P if its vertices
are in P, it respects P, and the open circumdisk of τ contains no vertex in P that is
visible from a point in τ�’s interior.
Let τ be a triangle that satises the rst two of those three conditions. Let q be a point
in the interior of τ. Prove that if no vertex of P in τ�’s open circumdisk is visible from
q, then no vertex of P in τ�’s open circumdisk is visible from any point in the interior
of τ, so τ is constrained Delaunay.


