
Concise Machine Learning

Jonathan Richard Shewchuk
February 15, 2024

Department of Electrical Engineering and Computer Sciences
University of California at Berkeley

Berkeley, California 94720

Abstract

This report contains lecture notes for UC Berkeley’s introductory class on Machine Learning. It covers many
methods for classification and regression, and several methods for clustering and dimensionality reduction.
It is concise because nothing is included that cannot be written or spoken in a single semester’s lectures (with
whiteboard lectures and almost no slides!) and because the choice of topics is limited to a small selection of
particularly useful, popular algorithms.

Supported in part by the National Science Foundation under Awards CCF-1423560 and CCF-1909204, in part by the University of
California Lab Fees Research Program, and in part by an Alfred P. Sloan Research Fellowship. The claims in this document are
those of the author. They are not endorsed by the sponsors or the U.S. Government.

Keywords: machine learning, classification, regression, density estimation, dimensionality reduction, clus-
tering, perceptrons, support vector machines (SVMs), Gaussian discriminant analysis, linear discriminant
analysis (LDA), quadratic discriminant analysis (QDA), logistic regression, decision trees, random forests,
ensemble learning, bagging, boosting, AdaBoost, neural networks, convolutional neural networks (CNNs,
ConvNets), nearest neighbor search, least-squares linear regression, logistic regression, polynomial regres-
sion, ridge regression, Lasso, bias-variance tradeoff, maximum likelihood estimation (MLE), principal com-
ponents analysis (PCA), singular value decomposition (SVD), random projection, latent factor analysis,
latent semantic indexing, k-means clustering, hierarchical clustering, spectral graph clustering, the kernel
trick, learning theory

Contents

1 Introduction 1

2 Linear Classifiers and Perceptrons 7

3 Perceptron Learning; Maximum Margin Classifiers 13

4 Soft-Margin Support Vector Machines; Features 18

5 Machine Learning Abstractions and Numerical Optimization 25

6 Decision Theory; Generative and Discriminative Models 31

7 Gaussian Discriminant Analysis, including QDA and LDA 36

8 Eigenvectors and the (Anisotropic) Multivariate Normal Distribution 41

9 Anisotropic Gaussians: Maximum Likelihood Estimation, QDA, and LDA 47

10 Regression, including Least-Squares Linear and Logistic Regression 54

11 More Regression; Newton’s Method; ROC Curves 59

12 Statistical Justifications; the Bias-Variance Decomposition 65

13 Shrinkage: Ridge Regression, Subset Selection, and Lasso 71

14 Decision Trees 76

15 More Decision Trees, Ensemble Learning, and Random Forests 81

16 The Kernel Trick 89

17 Neural Networks 94

18 Neurobiology; Variations on Neural Networks 101

19 Better Neural Network Training; Convolutional Neural Networks 108

20 Unsupervised Learning and Principal Components Analysis 116

21 The Singular Value Decomposition; Clustering 125

i

22 High Dimensions; Random Projection; the Pseudoinverse 133

23 Learning Theory 137

24 Boosting; Nearest Neighbor Classification 143

25 Nearest Neighbor Algorithms: Voronoi Diagrams and k-d Trees 148

A Bonus Lecture: Spectral Graph Clustering 153

B Bonus Lecture: Multiple Eigenvectors; Latent Factor Analysis 161

ii

About this Report

This report compiles my lectures notes for UC Berkeley’s class CS 189/289A, Machine Learning, which
is both an undergraduate and introductory graduate course. I hope it will serve as a fast introduction to
the subject for readers who are already comfortable with vector calculus, linear algebra, probability, and
statistics. Please consult my CS 189/289A web page1 as an addendum to this report; it includes an extended
description of each lecture and additional web links and reading assignments related to the lectures. Consider
this report and the web page to be living documents; both will be refined a bit every time I teach the class.

The term “lecture notes” has shifted to include long textbook-style treatments written by professors as
supplements to their classes. Not so here. This report compiles the actual notes that I lecture from. I call
it Concise Machine Learning because I include almost nothing that I do not have time to write or speak
during one fourteen-week semester of twice-weekly 80-minute lectures. (After holidays and the midterm
exam, that amounts to 25 lectures.) Words that appear [in brackets] are spoken; everything else is written on
the “whiteboard”—in my class, a tablet computer. My whiteboard software permits me to incorporate (and
write on) figures, included here. However, I am largely anti-Powerpoint and I resort to prepared slides for
just three or four brief segments during the semester.

These notes might be ideal for mathematically sophisticated readers who want to learn the basics of machine
learning as quickly as possible. But they’re not ideal for everybody. The time limitation necessitates that
many details are omitted. I believe that the most mathematically well-prepared readers will be able to fill in
those details themselves. But many readers, including most students who take the class, will need additional
readings or discussion sections for greater detail. My class web page lists additional readings for most of
the lectures, many of them from two textbooks that have been kindly made available for free on the web:
An Introduction to Statistical Learning with Applications in R,2 second edition, by Gareth James, Daniela
Witten, Trevor Hastie, and Robert Tibshirani, Springer, New York, 2021, ISBN # 978-1-0716-1417-4; and
The Elements of Statistical Learning: Data Mining, Inference, and Prediction,3 second edition, by Trevor
Hastie, Robert Tibshirani, and Jerome Friedman, Springer, New York, 2008. Wikipedia also has excellent
introductions to many machine learning algorithms. Readers wanting the verbose kind of “lecture notes”
should consider the fine ones written by Stanford University’s Andrew Ng.4 I have no interest in duplicating
these efforts; instead, I’m aiming for the neglected niche of “shortest introduction.” (And perhaps also “best
stolen illustrations.”)

The other thing that makes this report concise is the choice of topics. CS 189/289A was introduced at UC
Berkeley in the spring of 2013 by Prof. Jitendra Malik, and most of his topic choices remain intact here.
Jitendra told me that he only taught a machine learning algorithm if he or his collaborators had used it
successfully for some application. He said, “the machine learning course is too important to leave to the
machine learning experts”—that is, users of machine learning algorithms often have a more clear-eyed view
of their usefulness than inventors of machine learning algorithms.

I thank Peter Bartlett, Alyosha Efros, Isabelle Guyon, and Jitendra Malik—the previous teachers of CS
189/289A—for their lectures and lecture notes, from which I learned the topic myself. While I’ve given the
lectures my own twist and rearranged the material a lot, I am ultimately making incremental improvements
(and perhaps incremental worsenings) to a structure they handed down to me. I also thank Carlos Flores for
sharing screenshots from my lectures.

1https://people.eecs.berkeley.edu/∼jrs/189/
2https://www.statlearning.com
3https://hastie.su.domains/ElemStatLearn/
4http://cs229.stanford.edu/notes2020spring/

iii

iv

1 Introduction

CS 189 / 289A [Spring 2024]
Machine Learning
Jonathan Shewchuk

https://people.eecs.berkeley.edu/∼jrs/189/

Homework 1 due next Wednesday.

Questions: Please use Ed Discussion, not email. [Ed Discussion has an option for private questions, but
please use public for most questions so other people can benefit.]

For personal matters only, jrs@berkeley.edu

Discussion sections (Tue & Wed):
Attend any section. [We’ll put up a list on Ed Discussion.]
[We might have a few advanced sections, including research discussion or exam problem preparation.]
Sections start Tuesday. [Next week.]

[Enrollment: 703 students max. 452 waitlisted. Expecting many drops. EECS grads have highest priority;
CD/DS undergrads second; non-EECS grads third; a few concurrent enrollment students will be admitted.]

[Textbooks: Available free online. Linked from class web page.]

Springer Texts in Statistics

Gareth James
Daniela Witten
Trevor Hastie
Robert Tibshirani

An Introduction
to Statistical
Learning
with Applications in R

Second Edition

Springer Series in Statistics

Trevor Hastie
Robert Tibshirani
Jerome Friedman

Springer Series in Statistics

The Elements of
Statistical Learning
Data Mining, Inference, and Prediction

The Elem
ents of Statistical Learning

During the past decade there has been an explosion in computation and information tech-
nology. With it have come vast amounts of data in a variety of fields such as medicine, biolo-
gy, finance, and marketing. The challenge of understanding these data has led to the devel-
opment of new tools in the field of statistics, and spawned new areas such as data mining,
machine learning, and bioinformatics. Many of these tools have common underpinnings but
are often expressed with different terminology. This book describes the important ideas in
these areas in a common conceptual framework. While the approach is statistical, the
emphasis is on concepts rather than mathematics. Many examples are given, with a liberal
use of color graphics. It should be a valuable resource for statisticians and anyone interested
in data mining in science or industry. The book’s coverage is broad, from supervised learning
(prediction) to unsupervised learning. The many topics include neural networks, support
vector machines, classification trees and boosting—the first comprehensive treatment of this
topic in any book.

This major new edition features many topics not covered in the original, including graphical
models, random forests, ensemble methods, least angle regression & path algorithms for the
lasso, non-negative matrix factorization, and spectral clustering. There is also a chapter on
methods for “wide” data (p bigger than n), including multiple testing and false discovery rates.

Trevor Hastie, Robert Tibshirani, and Jerome Friedman are professors of statistics at
Stanford University. They are prominent researchers in this area: Hastie and Tibshirani
developed generalized additive models and wrote a popular book of that title. Hastie co-
developed much of the statistical modeling software and environment in R/S-PLUS and
invented principal curves and surfaces. Tibshirani proposed the lasso and is co-author of the
very successful An Introduction to the Bootstrap. Friedman is the co-inventor of many data-
mining tools including CART, MARS, projection pursuit and gradient boosting.

› springer.com

S T A T I S T I C S

ISBN 978-0-387-84857-0

Trevor Hastie • Robert Tibshirani • Jerome Friedman
The Elements of Statictical Learning

Hastie • Tibshirani • Friedm
an

Second Edition

2 Jonathan Richard Shewchuk

Prerequisites

Vector calculus: Math 53 [or another vector calculus course]
Linear algebra: Math 54, Math 110, or EE 16A+16B [or another linear algebra course]
Probability: CS 70, EECS 126, or Stat 134 [or another probability course]
Plentiful programming experience [TAs have no obligation to look at your code.]
NOT CS 188

Grading: 189

40% 7 Homeworks. Late policy: 5 slip days total
20% Midterm: TBA, 6:30–8:30 PM
40% Final Exam: Friday, May 10, 3–6 PM

Grading: 289A

40% HW
20% Midterm
20% Final
20% Project

Cheating

– Discussion of HW problems is encouraged. Showing other students small amounts of code is okay.
– All homeworks, including programming, must be written individually.
– We will actively check for plagiarism.
– Typical penalty is a large NEGATIVE score, but I reserve right to give an instant F for even one

violation, and will always give an F for two.

[Last time I taught CS 61B, we had to punish roughly 100 people for cheating. It was very painful. Please
don’t put me through that again.]

CORE MATERIAL

– Finding patterns in data; using them to make predictions.
– Models and statistics help us understand patterns.
– Optimization algorithms “learn” the patterns.

[The most important part of this is the data. Data drives everything else.
You cannot learn much if you don’t have enough data.
You cannot learn much if your data has bad quality.
But it’s amazing what you can do if you have lots of good data.
Machine learning has changed a lot in the last two decades because the internet has made truly vast quantities
of data available. For instance, with a little patience you can download tens of millions of photographs. Then
you can build a 3D model of Paris.
Some techniques that had fallen out of favor, like neural networks, have come back big in recent years
because researchers found that they work so much better when you have vast quantities of data.]

Introduction 3

CLASSIFICATION

– Collect training points with class labels: reliable debtors & defaulted debtors
– Evaluate new applicants—predict their class

4.2 Why Not Linear Regression? 129

Balance

In
co

m
e

Default Default

0 500 1000 1500 2000 2500

0
20

00
0

40
00

0
60

00
0

No Yes

0
50

0
10

00
15

00
20

00
25

00

B
al

an
ce

No Yes

0
20

00
0

40
00

0
60

00
0

In
co

m
e

FIGURE 4.1. The Default data set. Left: The annual incomes and monthly
credit card balances of a number of individuals. The individuals who defaulted on
their credit card payments are shown in orange, and those who did not are shown
in blue. Center: Boxplots of balance as a function of default status. Right:
Boxplots of income as a function of default status.

4.2 Why Not Linear Regression?

We have stated that linear regression is not appropriate in the case of a
qualitative response. Why not?

Suppose that we are trying to predict the medical condition of a patient
in the emergency room on the basis of her symptoms. In this simplified
example, there are three possible diagnoses: stroke, drug overdose, and
epileptic seizure. We could consider encoding these values as a quantita-
tive response variable, Y , as follows:

Y =

⎧
⎪⎨
⎪⎩

1 if stroke;

2 if drug overdose;

3 if epileptic seizure.

Using this coding, least squares could be used to fit a linear regression model
to predict Y on the basis of a set of predictors X1, . . . , Xp. Unfortunately,
this coding implies an ordering on the outcomes, putting drug overdose in
between stroke and epileptic seizure, and insisting that the difference
between stroke and drug overdose is the same as the difference between
drug overdose and epileptic seizure. In practice there is no particular
reason that this needs to be the case. For instance, one could choose an
equally reasonable coding,

Y =

⎧
⎪⎨
⎪⎩

1 if epileptic seizure;

2 if stroke;

3 if drug overdose.

creditcardscrop.pdf (ISL, Figure 4.1) [The problem of classification. We are given data
points, each belonging to one of two classes: orange crosses represent people who de-
faulted on their credit cards, and blue circles represent those who didn’t. Then we are given
additional points whose class is unknown, and we are asked to predict what class each new
point is in. Given the credit card balance and annual income of new applicants, predict
whether they will default on their debt.]

decision boundary

[Draw this figure by hand. classify.pdf]
[Draw 2 colors of dots, almost but not quite linearly separable.]
[“How do we classify a new point?” Draw a point in a third color.]
[One possibility: look at its nearest neighbor.]
[Another possibility: draw a linear decision boundary; label it.]
[Those are two different models for the nature of this data.]

4 Jonathan Richard Shewchuk

[We’ll learn some ways to compute linear decision boundaries in the next several lectures. But for now, let’s
compare these two methods.]16 2. Overview of Supervised Learning

1−Nearest Neighbor Classifier

o
o

ooo

o

o

o

o

o

o

o

o

o
o

o

o o

o
o

o

o

o

o

o

o

o

o

o

o

o

o

o
o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o
o

o
o

o

o

o

o

o

o

o

o

o

oo o

oo

o
o

o

oo

o

o

o

o
o

o

o

o

o

o

o

o

o

o

o

o

o

o
o

o

o

o
oo

o

o

o

o

o

o
o

o

o

o

o

o

o

o

o
o

o

o

o

o

o

o

o

o ooo
o

o

o
oo o

o

o

o

o

o

o

o

oo
o

o
oo

ooo
o

o

oo
o

o

o

o

o

o

o

o

o o

o

o

o

o

o

o

o
o

o
oo

o

o

o

o

o

o

oo
o

o
o oo

o

o

o

o

o

o

o

o

o

o

FIGURE 2.3. The same classification example in two dimensions as in Fig-
ure 2.1. The classes are coded as a binary variable (BLUE = 0, ORANGE = 1), and
then predicted by 1-nearest-neighbor classification.

2.3.3 From Least Squares to Nearest Neighbors

The linear decision boundary from least squares is very smooth, and ap-
parently stable to fit. It does appear to rely heavily on the assumption
that a linear decision boundary is appropriate. In language we will develop
shortly, it has low variance and potentially high bias.

On the other hand, the k-nearest-neighbor procedures do not appear to
rely on any stringent assumptions about the underlying data, and can adapt
to any situation. However, any particular subregion of the decision bound-
ary depends on a handful of input points and their particular positions,
and is thus wiggly and unstable—high variance and low bias.

Each method has its own situations for which it works best; in particular
linear regression is more appropriate for Scenario 1 above, while nearest
neighbors are more suitable for Scenario 2. The time has come to expose
the oracle! The data in fact were simulated from a model somewhere be-
tween the two, but closer to Scenario 2. First we generated 10 means mk

from a bivariate Gaussian distribution N((1, 0)T , I) and labeled this class
BLUE. Similarly, 10 more were drawn from N((0, 1)T , I) and labeled class
ORANGE. Then for each class we generated 100 observations as follows: for
each observation, we picked an mk at random with probability 1/10, and

2.3 Least Squares and Nearest Neighbors 13

Linear Regression of 0/1 Response

..

.

o
o

ooo

o

o

o

o

o

o

o

o

o
o

o

o o

o
o

o

o

o

o

o

o

o

o

o

o

o

o

o
o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o
o

o
o

o

o

o

o

o

o

o

o

o

o
o o

oo

o
o

o

oo

o

o

o

o
o

o

o

o

o

o

o

o

o

o

o

o

o

o
o

o

o

o
oo

o

o

o

o

o

o
o

o

o

o

o

o

o

o

o
o

o

o

o

o

o

o

o

o ooo
o

o

o
oo o

o

o

o

o

o

o

o

oo
o

o
oo

oo
o

o

o

oo
o

o

o

o

o

o

o

o

o o

o

o

o

o

o

o

o
o

o
oo

o

o

o

o

o

o

oo
o

o
o oo

o

o

o

o

o

o

o

o

o

o

FIGURE 2.1. A classification example in two dimensions. The classes are coded
as a binary variable (BLUE = 0, ORANGE = 1), and then fit by linear regression.
The line is the decision boundary defined by xT β̂ = 0.5. The orange shaded region
denotes that part of input space classified as ORANGE, while the blue region is
classified as BLUE.

The set of points in IR2 classified as ORANGE corresponds to {x : xT β̂ > 0.5},
indicated in Figure 2.1, and the two predicted classes are separated by the
decision boundary {x : xT β̂ = 0.5}, which is linear in this case. We see
that for these data there are several misclassifications on both sides of the
decision boundary. Perhaps our linear model is too rigid— or are such errors
unavoidable? Remember that these are errors on the training data itself,
and we have not said where the constructed data came from. Consider the
two possible scenarios:

Scenario 1: The training data in each class were generated from bivariate
Gaussian distributions with uncorrelated components and different
means.

Scenario 2: The training data in each class came from a mixture of 10 low-
variance Gaussian distributions, with individual means themselves
distributed as Gaussian.

A mixture of Gaussians is best described in terms of the generative
model. One first generates a discrete variable that determines which of

classnear.pdf, classlinear.pdf (ESL, Figures 2.3 & 2.1) [Two examples of classifiers for
the same data: a nearest neighbor classifier (left) and a linear classifier (right). The decision
boundaries are in black.]

[At left we have a nearest neighbor classifier, which classifies a new point by finding the nearest point
in the training data, and assigning it the same class. At right we have a linear classifier, which guesses
that everything above the line is brown, and everything below the line is blue. At right, the linear decision
boundary—the black line—is explicitly computed by the classifier. At left, the decision boundary is not
computed; the classifier just takes a new point and computes the distances to all the training points.]

[The neighbor classifier at left has a big advantage: it classifies all the training data correctly, whereas the
linear classifier does not. But the linear classifier has an advantage too. Somebody please tell me what.]

16 2. Overview of Supervised Learning

1−Nearest Neighbor Classifier

o
o

ooo

o

o

o

o

o

o

o

o

o
o

o

o o

o
o

o

o

o

o

o

o

o

o

o

o

o

o

o
o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o
o

o
o

o

o

o

o

o

o

o

o

o

oo o

oo

o
o

o

oo

o

o

o

o
o

o

o

o

o

o

o

o

o

o

o

o

o

o
o

o

o

o
oo

o

o

o

o

o

o
o

o

o

o

o

o

o

o

o
o

o

o

o

o

o

o

o

o ooo
o

o

o
oo o

o

o

o

o

o

o

o

oo
o

o
oo

ooo
o

o

oo
o

o

o

o

o

o

o

o

o o

o

o

o

o

o

o

o
o

o
oo

o

o

o

o

o

o

oo
o

o
o oo

o

o

o

o

o

o

o

o

o

o

FIGURE 2.3. The same classification example in two dimensions as in Fig-
ure 2.1. The classes are coded as a binary variable (BLUE = 0, ORANGE = 1), and
then predicted by 1-nearest-neighbor classification.

2.3.3 From Least Squares to Nearest Neighbors

The linear decision boundary from least squares is very smooth, and ap-
parently stable to fit. It does appear to rely heavily on the assumption
that a linear decision boundary is appropriate. In language we will develop
shortly, it has low variance and potentially high bias.

On the other hand, the k-nearest-neighbor procedures do not appear to
rely on any stringent assumptions about the underlying data, and can adapt
to any situation. However, any particular subregion of the decision bound-
ary depends on a handful of input points and their particular positions,
and is thus wiggly and unstable—high variance and low bias.

Each method has its own situations for which it works best; in particular
linear regression is more appropriate for Scenario 1 above, while nearest
neighbors are more suitable for Scenario 2. The time has come to expose
the oracle! The data in fact were simulated from a model somewhere be-
tween the two, but closer to Scenario 2. First we generated 10 means mk

from a bivariate Gaussian distribution N((1, 0)T , I) and labeled this class
BLUE. Similarly, 10 more were drawn from N((0, 1)T , I) and labeled class
ORANGE. Then for each class we generated 100 observations as follows: for
each observation, we picked an mk at random with probability 1/10, and

2.3 Least Squares and Nearest Neighbors 15

15-Nearest Neighbor Classifier

.

..

.

o
o

ooo

o

o

o

o

o

o

o

o

o
o

o

o o

o
o

o

o

o

o

o

o

o

o

o

o

o

o

o
o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o
o

o
o

o

o

o

o

o

o

o

o

o

o
o o

oo

o
o

o

oo

o

o

o

o
o

o

o

o

o

o

o

o

o

o

o

o

o

o
o

o

o

o
oo

o

o

o

o

o

o
o

o

o

o

o

o

o

o

o
o

o

o

o

o

o

o

o

o ooo
o

o

o
oo o

o

o

o

o

o

o

o

oo
o

o
oo

oo
o

o

o

oo
o

o

o

o

o

o

o

o

o o

o

o

o

o

o

o

o
o

o
oo

o

o

o

o

o

o

oo
o

o
o oo

o

o

o

o

o

o

o

o

o

o

FIGURE 2.2. The same classification example in two dimensions as in Fig-
ure 2.1. The classes are coded as a binary variable (BLUE = 0, ORANGE = 1) and
then fit by 15-nearest-neighbor averaging as in (2.8). The predicted class is hence
chosen by majority vote amongst the 15-nearest neighbors.

In Figure 2.2 we see that far fewer training observations are misclassified
than in Figure 2.1. This should not give us too much comfort, though, since
in Figure 2.3 none of the training data are misclassified. A little thought
suggests that for k-nearest-neighbor fits, the error on the training data
should be approximately an increasing function of k, and will always be 0
for k = 1. An independent test set would give us a more satisfactory means
for comparing the different methods.

It appears that k-nearest-neighbor fits have a single parameter, the num-
ber of neighbors k, compared to the p parameters in least-squares fits. Al-
though this is the case, we will see that the effective number of parameters
of k-nearest neighbors is N/k and is generally bigger than p, and decreases
with increasing k. To get an idea of why, note that if the neighborhoods
were nonoverlapping, there would be N/k neighborhoods and we would fit
one parameter (a mean) in each neighborhood.

It is also clear that we cannot use sum-of-squared errors on the training
set as a criterion for picking k, since we would always pick k = 1! It would
seem that k-nearest-neighbor methods would be more appropriate for the
mixture Scenario 2 described above, while for Gaussian data the decision
boundaries of k-nearest neighbors would be unnecessarily noisy.

classnear.pdf, classnear15.pdf (ESL, Figures 2.3 & 2.2) [A 1-nearest neighbor classifier
and a 15-nearest neighbor classifier.

[The 15-nearest neighbor classifier classifies a new point by looking at its 15 nearest neighbors and letting
them vote for the correct class.]

[The left figure is an example of what’s called overfitting. In the left figure, observe how intricate the
decision boundary is that separates the positive examples from the negative examples. It’s a bit too intricate
to reflect reality. In the right figure, the decision boundary is smoother. Intuitively, that smoothness is
probably more likely to correspond to reality.]

Introduction 5

Classifying Digits

Classifica9on(Pipeline(

•  Collect(Training(Images(
–  Posi9ve:((
– Nega9ve:((

•  Training(Time(
–  Compute(feature(vectors(for(posi9ve(and(nega9ve(
example(images(

–  Train(a(classifier(
•  Test(Time(
–  Compute(feature(vector(on(new(test(image:((
–  Evaluate(classifier((

sevensones.pdf [In the MNIST digit recognition problem, we are given handwritten digits,
and we are asked to learn to distinguish them. See Homework 1.]

Express these images as vectors

3 3 3 3
0 0 2 3
0 0 1 3
3 3 3 3

→

3
3
3
3
0
0
2
3
0
0
1
3
3
3
3
3

Images are points in 16-dimensional space. Linear decision boundary is a hyperplane.

TRAIN, VALIDATE, TEST

How we classify:
– We are given labeled data—sample points with class labels.
– Hold back a subset of the labeled points, called the validation set. Maybe 20%. The other 80% is the

training set. [Warning: the term training data is not used consistently. Often “training data” refers to
all the labeled data. You have to judge from context.]

– Train one or more classifiers: they learn to distinguish 7 from not 7. Use training set to learn model
weights. Do NOT use validation set to train!!!

– Usually, train multiple learning algorithms, or one algorithm with multiple hyperparameter settings,
or both [using the same training set for each].

– Validate the trained classifiers on the validation set. Choose classifier/hyperparameters with lowest
validation error. Called validation. [When we do validation, we are not learning any more. We are
checking what classes our trained classifiers assign to our validation set, and counting how often
they’re right. We use this to judge our models—not how well they remember the training set labels.]

– Optional: Test the best classifer on a test set of NEW data. Final evaluation. Typically you do NOT
have the labels. [But somebody else might have them, and assign you a score!]

6 Jonathan Richard Shewchuk

[When I underline a word or phrase, that usually means it’s a definition. My advice to you is to memorize
the definitions I cover in class.]

3 kinds of error:
– Training error: fraction of training set not classified correctly. [This is zero with the 1-nearest neighbor

classifier, but nonzero with the 15-nearest neighbor and linear classifiers. But that doesn’t mean the
1-nearest neighbor classifier is always better. Remember that you cannot include the validation data
in this calculation, even if somebody calls it “training data.”]

– Validation error: fraction of validation set misclassified. Use this to choose classifier/hyperparameters.
[You didn’t use the validation set to train, so even the 1-nearest neighbor classifier can classify these
points wrong. Validation error is almost always higher than training error.]

– Test error: fraction of test set misclassified. Used to evaluate you.

Most ML algorithms have a few hyperparameters that control over/underfitting, e.g. k in k-nearest neighbors.

error

rate

k: # of nearest neighbors

0
.1

0
0

.1
5

0
.2

0
0

.2
5

0
.3

0

151 101 69 45 31 21 11 7 5 3 1

Train

Test

Bayes

Linear

overfit!

best (7)

underfit

test error

training error

overfitlabeled.pdf (modified from ESL, Figure 2.4)

– overfitting: when the validation/test error deteriorates because the classifier becomes too sensitive to
outliers or other spurious patterns.

– underfitting: when the validation/test error deteriorates because the classifier is not flexible enough to
fit patterns.

– outliers: points with atypical labels (e.g., rich borrower who defaulted anyway). Increase risk of
overfitting.

[In machine learning, the goal is to create a classifier that generalizes to new examples we haven’t seen yet.
Overfitting and underfitting are both counterproductive to that goal. So we’re always seeking a compromise:
we want decision boundaries that make fine distinctions without being downright superstitious.]

Kaggle.com:
– Runs ML competitions, including our HWs
– We use 2 data sets:

public set labels available during competition
private test set labels known only to Kaggle

[If your public results are a lot better than your private results, we will know that you overfitted.]

Linear Classifiers and Perceptrons 7

2 Linear Classifiers and Perceptrons

CLASSIFIERS

You are given sample of n observations, each with d features [aka predictors].
Some observations belong to class C; some do not.

Example: Observations are bank loans
Features are income & age (d = 2)
Some are in class “defaulted,” some are not

Goal: Predict whether future borrowers will default,
based on their income & age.

Represent each observation as a point in d-dimensional space,
called a sample point / a feature vector / independent variables.

C

C

X

X

X

X

X

X

X

X

X

X

C

C

C

C

C

X

CX

X

X

X

X

X

X

C

C

C

C

C

C

C

C

X

X

X

X

C

C

C X

X C

C

C

C

C

income

age

income

age

income

age

overfitting

[Draw this by hand; decision boundaries last. classify3.pdf]

[We draw these lines/curves separating C’s from X’s. Then we use these curves to predict which future
borrowers will default. In the last example, though, we’re probably overfitting, which could hurt our predic-
tions.]

decision boundary: the boundary chosen by our classifier to separate items in the class from those not.

overfitting: When sinuous decision boundary fits sample points so well that it doesn’t classify future points
well.

[A reminder that underlined phrases are definitions, worth memorizing.]

Some (not all) classifiers work by computing a

decision function: A function f (x) that maps a point x to a scalar such that
f (x) > 0 if x ∈ class C;
f (x) ≤ 0 if x < class C.

Aka predictor function or discriminant function.

For these classifiers, the decision boundary is {x ∈ Rd : f (x) = 0}
[That is, the set of all points where the decision function is zero.]
Usually, this set is a (d − 1)-dimensional surface in Rd.

{x : f (x) = 0} is also called an isosurface of f for the isovalue 0.

f has other isosurfaces for other isovalues, e.g., {x : f (x) = 1}.

8 Jonathan Richard Shewchuk

-2

-1

0

1

2

3

4

4

4

4

5

5

5
5

-6 -4 -2 0 2 4 6
-6

-4

-2

0

2

4

6

radiusplot.pdf, radiusiso.pdf [3D plot and isocontour plot of the cone] f (x, y) =
√

x2 + y2 − 3.

[Imagine a decision function in Rd, and imagine its (d − 1)-dimensional isosurfaces.]

radiusiso3d.pdf

[One of these spheres could be the decision boundary.]

linear classifier: The decision boundary is a line/plane.
Usually uses a linear decision function. [Sometimes no decision fn.]

Linear Classifiers and Perceptrons 9

Math Review

[I will write vectors in matrix notation.]

Vectors: x =

x1
x2
x3
x4
x5

= [x1 x2 x3 x4 x5]⊤

Think of x as a point in 5-dimensional space.

Conventions (often, but not always):
uppercase roman = matrix, random variable, set X
lowercase roman = vector x
Greek = real scalar α

Some integers: n = # of sample points
d = # of features (per point)
= dimension of sample points

i j k = indices
function (often scalar) f (), s(), . . .

Euclidean inner product (aka dot product): x · y = x1y1 + x2y2 + ... + xdyd

also written x⊤y
Clearly, f (x) = w · x + α is a linear function in x.

Euclidean norm: ∥x∥ =
√

x · x =
√

x2
1 + x2

2 + ... + x2
d

∥x∥ is the length (aka Euclidean length) of a vector x.
Given a vector x , 0, x

∥x∥ is a unit vector (length 1).
“Normalize a vector x”: replace x with x

∥x∥ .

Use dot products to compute angles:

θ x

y cos θ =
x · y
∥x∥ ∥y∥

=
x
∥x∥︸︷︷︸

length 1

·
y
∥y∥︸︷︷︸

length 1

obtuserightacute

x · y > 0 x · y = 0 x · y < 0

Given a linear decision function f (x) = w · x + α, the decision boundary is

H = {x : w · x = −α}.

The set H is called a hyperplane. (A line in 2D, a plane in 3D.)

[A hyperplane is what you get when you generalize the idea of a plane to higher dimensions. The three most
important things to understand about a hyperplane is (1) it has dimension d−1 and it cuts the d-dimensional
space into two halves; (2) it’s flat; and (3) it’s infinite.]

10 Jonathan Richard Shewchuk

Theorem: Let x, y be 2 points that lie on H. Then w · (y − x) = 0.

Proof: w · (y − x) = −α − (−α) = 0. [Therefore, w is orthogonal to any line segment that lies on H.]

w is called the normal vector of H,
because (as the theorem shows) w is normal (perpendicular) to H.
[I.e., w is perpendicular to every line on H.]

w

w · x = −2
w · x = 1

w · x = 0 [Draw black part first, then red parts. hyperplane.pdf]

If w is a unit vector, then f (x) = w · x + α is the signed distance from x to H. [See Discussion 1.]
I.e., positive on w’s side of H; negative on other side.

Moreover, the distance from H to the origin is α. [How do we know that?]

Hence α = 0 if and only if H passes through origin.

[w does not have to be a unit vector for the classifier to work.
If w is not a unit vector, w · x + α is the signed distance times some real.
If you want to fix that, you can rescale the equation by computing ∥w∥ and dividing both w and α by ∥w∥.]

The coefficients in w, plus α, are called weights (or parameters or regression coefficients).

[That’s why we call the vector w; “w” stands for “weights.”]

The training points are linearly separable if there exists a hyperplane that correctly classifies all the training
points.

[At the beginning of this lecture, I showed you one plot that’s linearly separable and two that are not.]

[We will investigate some linear classifiers that only work for linearly separable data and some that do a
decent job with non-separable data. Obviously, if your data are not linearly separable, a linear classifier
cannot do a perfect job. But we’re still happy if we can find a classifier that usually predicts correctly.]

A Simple Classifier

Centroid method: compute mean µC of all training points in class C and mean µX of all points NOT in C.

We use the decision function

f (x) = (µC − µX)︸ ︷︷ ︸
normal vector

·x − (µC − µX) ·
µC + µX

2︸ ︷︷ ︸
midpoint between µC, µX

so the decision boundary is the hyperplane that bisects line segment w/endpoints µC, µX.

Linear Classifiers and Perceptrons 11

XX

X

C C

C

C

C

X

C

X

X

[Draw data, then µC, µX, then line & normal. centroid.pdf]

[In this example, there’s clearly a linear classifier that classifies every training point correctly, and the cen-
troid method isn’t it.
Note that this is hardly the worst example I could have given.
If you’re in the mood for an easy puzzle, pull out a sheet of paper and think of an example, with lots of
training points, where the centroid method misclassifies every training point but two.]

[Nevertheless, there are circumstances where this method works well, like when all your positive examples
come from one Gaussian distribution, and all your negative examples come from another.]

[We can sometimes improve this classifier by adjusting the scalar term α to minimize the number of mis-
classified points. Then the hyperplane has the same normal vector, but a different position.]

Perceptron Algorithm (Frank Rosenblatt, 1957)

Slow, but correct for linearly separable points.

Uses a numerical optimization algorithm, namely, gradient descent.

[Poll:
How many of you know what gradient descent is?
How many of you know what a linear program is?
How many of you know what the simplex algorithm for linear programming is?
How many of you know what a quadratic program is?

We’re going to learn what most of these things are. As machine learning people, we will be heavy users
of optimization methods. Unfortunately, I won’t have time to teach you algorithms for many optimization
problems, but we’ll learn a few. To learn more, take EECS 127.]

Consider n sample points X1, X2, ..., Xn.

[The reason I’m using capital X here is because we typically store these vectors as rows of a matrix X. So
the subscript picks out a row of X, representing a specific sample point.]

For each sample point, the label yi =

{
1 if Xi ∈ class C, and
−1 if Xi < C.

For simplicity, consider only decision boundaries that pass through the origin. (We’ll fix this later.)

12 Jonathan Richard Shewchuk

Goal: find weights w such that
Xi · w ≥ 0 if yi = 1, and
Xi · w ≤ 0 if yi = −1. [remember, Xi · w is the signed distance]

Equivalently: yiXi · w ≥ 0. ← inequality called a constraint.

Idea: We define a risk function R that is positive if some constraints are violated. Then we use optimization
to choose w that minimizes R. [That’s how we train a perceptron classifier.]

Define the loss function

L(z, yi) =
{

0 if yiz ≥ 0, and
−yiz otherwise.

[Here, z is the classifier’s prediction, and yi is the correct answer.]

If z has the same sign as yi, the loss function is zero (happiness).
But if z has the wrong sign, the loss function is positive.

[For each training point, you want to get the loss function down to zero, or as close to zero as possible. It’s
called the “loss function” because the bigger it is, the bigger a loser your classifier is.]

Define risk function (aka objective function or cost function)

R(w) =
1
n

n∑
i=1

L(Xi · w, yi)

=
1
n

∑
i∈V

−yiXi · w where V is the set of indices i for which yiXi · w < 0.

If w classifies all X1, . . . , Xn correctly, then R(w) = 0.
Otherwise, R(w) is positive, and we want to find a better w.

Goal: Solve this optimization problem:

Find w that minimizes R(w).

riskplot.pdf [Plot of risk R(w). Every point in the dark green flat spot is a minimum. We’ll
look at this more next lecture.]

Perceptron Learning; Maximum Margin Classifiers 13

3 Perceptron Learning; Maximum Margin Classifiers

Perceptron Algorithm (cont’d)

Recall:
– linear decision fn f (x) = w · x (for simplicity, no α)
– decision boundary {x : f (x) = 0} (a hyperplane through the origin)
– sample points X1, X2, . . . , Xn ∈ Rd; class labels y1, . . . , yn = ±1
– goal: find weights w such that yiXi · w ≥ 0
– goal, revised: find w that minimizes R(w) =

∑
i∈V

−yiXi · w [risk function]

where V = {i : yiXi · w < 0}.

[Our original problem was to find a separating hyperplane in one space, which I’ll call x-space. But we’ve
transformed this into a problem of finding an optimal point in a different space, which I’ll call w-space. It’s
important to understand transformations like this, where a geometric structure in one space becomes a point
in another space.]

Objects in x-space transform to objects in w-space:

x-space w-space
hyperplane: {z : w · z = 0} point: w
point: x hyperplane: {z : x · z = 0}

Point x lies on hyperplane {z : w · z = 0} ⇔ w · x = 0⇔ point w lies on hyperplane {z : x · z = 0} in w-space.

[So a hyperplane transforms to a point that represents its normal vector. And a sample point transforms to
the hyperplane whose normal vector is the sample point.]

[In this algorithm, the transformations happen to be symmetric: a hyperplane in x-space transforms to a
point in w-space the same way that a hyperplane in w-space transforms to a point in x-space. That won’t
always be true for the decision boundaries we use this semester.]

If we want to enforce inequality x · w ≥ 0, that means
– in x-space, x should be on the same side of {z : w · z = 0} as w
– in w-space, w ” ” ” ” ” ” ” {z : x · z = 0} as x

C

X

X

x-space w-space

w w

[Draw this by hand. xwspace.pdf]
[Observe that the x-space sample
points are the normal vectors for the
w-space lines. We can choose w to be
anywhere in the shaded region.]

[For a sample point x in class C, w and x must be on the same side of the hyperplane that x transforms into.
For a point x not in class C (marked by an X), w and x must be on opposite sides of the hyperplane that x
transforms into. These rules determine the shaded region above, in which w must lie.]

[Again, what have we accomplished? We have switched from the problem of finding a hyperplane in x-
space to the problem of finding a point in w-space. That’s a better fit to how we think about optimization
algorithms.]

14 Jonathan Richard Shewchuk

[Let’s take a look at the risk function these three sample points create.]

-4 -2 0 2 4

-4

-2

0

2

4

riskplot.pdf, riskiso.pdf [Plot & isocontours of risk R(w). Note how R’s creases match the
lines in the w-space drawn above.]

[In this plot, we can choose w to be any point in the bottom pizza slice; all those points minimize R.]

[We have an optimization problem; we need an optimization algorithm to solve it.]

An optimization algorithm: gradient descent on R.

[Draw the typical steps of gradient descent on the plot of R.]

Given a starting point w, find gradient of R with respect to w; this is the direction of steepest ascent.
Take a step in the opposite direction. Recall [from your vector calculus class]

∇R(w) =

∂R
∂w1
∂R
∂w2
...
∂R
∂wd

 and ∇w(z · w) =

z1
z2
...

zd

 = z

∇R(w) =
∑
i∈V

∇ − yiXi · w = −
∑
i∈V

yiXi

At any point w, we walk downhill in direction of steepest descent, −∇R(w).

w← arbitrary nonzero starting point (good choice is any yiXi)
while R(w) > 0

V ← set of indices i for which yiXi · w < 0
w← w + ϵ

∑
i∈V

yiXi

return w

ϵ > 0 is the step size aka learning rate, chosen empirically. [Best choice depends on input problem!]

Problem: Slow! Each step takes O(nd) time. [Can we improve this?]

Perceptron Learning; Maximum Margin Classifiers 15

Optimization algorithm 2: stochastic gradient descent

Idea: each step, pick one misclassified Xi;
do gradient descent on loss fn L(Xi · w, yi).

Called the perceptron algorithm. Each step takes O(d) time.
[Not counting the time to search for a misclassified Xi.]

while some yiXi · w < 0
w← w + ϵ yiXi

return w

[Stochastic gradient descent is quite popular and we’ll see it several times more this semester, especially
for neural networks. However, stochastic gradient descent does not work for every problem that gradient
descent works for. The perceptron risk function happens to have special properties that guarantee that
stochastic gradient descent will always succeed.]

What if separating hyperplane doesn’t pass through origin?
Add a fictitious dimension. Decision fn is

f (x) = w · x + α = [w1 w2 α] ·

 x1
x2
1

Now we have sample points in Rd+1, all lying on hyperplane xd+1 = 1.

Run perceptron algorithm in (d + 1)-dimensional space. [We are simulating a general hyperplane in
d dimensions by using a hyperplane through the origin in d + 1 dimensions.]

[The perceptron algorithm was invented in 1957 by Frank Rosenblatt at the Cornell Aeronautical Laboratory.
It was originally designed not to be a program, but to be implemented in hardware for image recognition on
a 20 × 20 pixel image. Rosenblatt built a Mark I Perceptron Machine that ran the algorithm, complete with
electric motors to do weight updates.]

frankrosenblatt.jpg, perceptron.jpg [Frank Rosenblatt (from Cornell Chronicl) and his
Mark I Perceptron Machine. This is what it took to process a 20 × 20 image in 1957.]

16 Jonathan Richard Shewchuk

[Then he held a press conference where he predicted that perceptrons would be “the embryo of an electronic
computer that [the Navy] expects will be able to walk, talk, see, write, reproduce itself and be conscious of
its existence.” We’re still waiting on that.]

[One interesting aspect of the perceptron algorithm is that it’s an “online algorithm,” which means that if
new training points come in while the algorithm is already running, you can just throw them into the mix
and keep looping.]

[Perceptron Convergence Theorem: If data is linearly separable, perceptron algorithm will find a linear
classifier that classifies all data correctly in at most O(r2/γ2) iterations, where r = max ∥Xi∥ is “radius of
data” and γ is the “maximum margin.”]
[I’ll define “maximum margin” shortly.]

[We’re not going to prove this, because perceptrons are obsolete.]

[Although the step size/learning rate ϵ doesn’t appear in that big-O expression, it does have an effect on the
running time, but the effect is hard to characterize. The algorithm gets slower if ϵ is too small because it has
to take lots of steps to get down the hill. But it also gets slower if ϵ is too big for a different reason: it jumps
right over the region with zero risk and oscillates back and forth for a long time.]

[Although stochastic gradient descent is faster for this problem than gradient descent, the perceptron algo-
rithm is still slow. There’s no reliable way to choose a good step size ϵ. Fortunately, optimization algorithms
have improved a lot since 1957. You can get rid of the step size by using a decent modern “line search” al-
gorithm. Better yet, you can find a better decision boundary much more quickly by quadratic programming,
which is what we’ll talk about next.]

MAXIMUM MARGIN CLASSIFIERS

The margin of a linear classifier is the distance from the decision boundary to the nearest training point.
What if we make the margin as wide as possible?

CX

X

X

X

X

X

C

C

CC

C

w · x + α = 1
w · x + α = 0w · x + α = −1 [Draw this by hand. maxmargin.pdf]

We enforce the constraints

yi (w · Xi + α) ≥ 1 for i ∈ [1, n]

[Notice that the right-hand side is a 1, rather than a 0 as it was for the perceptron algorithm. It’s not obvious,
but this a better way to formulate the problem, partly because it makes it impossible for the weight vector w
to get set to zero.]

Perceptron Learning; Maximum Margin Classifiers 17

Recall: if ∥w∥ = 1, signed distance from hyperplane to Xi is w · Xi + α.
Otherwise, it’s w

∥w∥ · Xi +
α
∥w∥ . [We’ve normalized the expression to get a unit weight vector.]

Hence the margin is mini
1
∥w∥ |w · Xi + α|︸ ︷︷ ︸

≥1

≥ 1
∥w∥ . [We get the inequality by substituting the constraints.]

To maximize the margin, minimize ∥w∥. Optimization problem:
Find w and α that minimize ∥w∥2

subject to yi(Xi · w + α) ≥ 1 for all i ∈ [1, n]

Called a quadratic program in d + 1 dimensions and n constraints.
It has one unique solution! [If the points are linearly separable; otherwise, it has no solution.]

[A reason we use ∥w∥2 as an objective function, instead of ∥w∥, is that the length function ∥w∥ is not smooth
at w = 0, whereas ∥w∥2 is smooth everywhere. This makes optimization easier.]

The solution gives us a maximum margin classifier, aka a hard-margin support vector machine (SVM).

[Technically, this isn’t really a support vector machine yet; it doesn’t fully deserve that name until we add
features and kernels, which we’ll study in later lectures.]

At the optimal solution, the margin is exactly 1
∥w∥ . [Because at least one constraint holds with equality.]

There is a slab of width 2
∥w∥ containing no sample points [with the hyperplane running along its middle].

[Let’s see what these constraints look like in weight space.]

-1.0 -0.8 -0.6 -0.4 -0.2
w2

-1.0

-0.5

0.5

1.0
alpha

weight3d.pdf, weightcross.pdf [This is an example of what the linear constraints look like
in the 3D weight space (w1,w2, α) for the SVM we’ve been studying with three training
points. The SVM is looking for the point nearest the α-axis that lies above the blue plane
(representing an in-class training point) but below the red and pink planes (representing
out-of-class training points). In this example, that optimal point lies where the three planes
intersect. At right we see a 2D cross section w1 = 1/17 of the 3D space, because the
optimal solution lies in this cross section. The constraints say that the solution must lie
in the leftmost pizza slice, while being as close to the origin as possible, so the optimal
solution is where the three lines meet.]

[Like the perceptron algorithm, a hard-margin SVM works only with linearly separable point sets. We’ll fix
that in the next lecture.]

18 Jonathan Richard Shewchuk

4 Soft-Margin Support Vector Machines; Features

SOFT-MARGIN SUPPORT VECTOR MACHINES (SVMs)

Solves 2 problems:
– Hard-margin SVMs fail if data not linearly separable.
– ” ” ” sensitive to outliers. 9.2 Support Vector Classifiers 345

−1 0 1 2 3

−1
0

1
2

3

−1 0 1 2 3
−1

0
1

2
3

X1X1

X
2

X
2

FIGURE 9.5. Left: Two classes of observations are shown in blue and in
purple, along with the maximal margin hyperplane. Right: An additional blue
observation has been added, leading to a dramatic shift in the maximal margin
hyperplane shown as a solid line. The dashed line indicates the maximal margin
hyperplane that was obtained in the absence of this additional point.

• Greater robustness to individual observations, and

• Better classification of most of the training observations.

That is, it could be worthwhile to misclassify a few training observations
in order to do a better job in classifying the remaining observations.

The support vector classifier, sometimes called a soft margin classifier,
support
vector
classifier

soft margin
classifier

does exactly this. Rather than seeking the largest possible margin so that
every observation is not only on the correct side of the hyperplane but
also on the correct side of the margin, we instead allow some observations
to be on the incorrect side of the margin, or even the incorrect side of
the hyperplane. (The margin is soft because it can be violated by some
of the training observations.) An example is shown in the left-hand panel
of Figure 9.6. Most of the observations are on the correct side of the margin.
However, a small subset of the observations are on the wrong side of the
margin.

An observation can be not only on the wrong side of the margin, but also
on the wrong side of the hyperplane. In fact, when there is no separating
hyperplane, such a situation is inevitable. Observations on the wrong side of
the hyperplane correspond to training observations that are misclassified by
the support vector classifier. The right-hand panel of Figure 9.6 illustrates
such a scenario.

9.2.2 Details of the Support Vector Classifier

The support vector classifier classifies a test observation depending on
which side of a hyperplane it lies. The hyperplane is chosen to correctly

sensitive.pdf (ISL, Figure 9.5) [Example where one outlier moves the hard-margin SVM
decision boundary a lot.]

Idea: Allow some points to violate the margin, with slack variables.
Modified constraint for point i:

yi(Xi · w + α) ≥ 1 − ξi
[Observe that the only difference between these constraints and the hard-margin constraints we saw last
lecture is the extra slack term ξi.]
[We also impose new constraints, that the slack variables are never negative.]

ξi ≥ 0

[This inequality ensures that all sample points that don’t violate the margin are treated the same; they all
have ξi = 0. Point i has nonzero ξi if and only if it violates the margin.]

C

C

C

C

X

C

C

X

X

X

C

C

C

C
C

C

X

X

X

X

X

X

X

X

X

X

X

X

C

X

ξ4/∥w∥

ξ5/∥w∥

ξ3/∥w∥

1/∥w∥

1/∥w∥ (margin)

ξ2/∥w∥

ξ1/∥w∥

w · x + α = 0

slacker+.pdf [A margin where some points have slack.]

Re-define “margin” to be 1/∥w∥. [For soft-margin SVMs, the margin is no longer the distance from the
decision boundary to the nearest training point; instead, it’s 1/∥w∥.]

Soft-Margin Support Vector Machines; Features 19

To prevent abuse of slack, we add a loss term to objective fn.

Optimization problem:
Find w, α, and ξi that minimize ∥w∥2 +C

∑n
i=1 ξi

subject to yi(Xi · w + α) ≥ 1 − ξi for all i ∈ [1, n]
ξi ≥ 0 for all i ∈ [1, n]

. . . a quadratic program in d + n + 1 dimensions and 2n constraints.
[It’s a quadratic program because its objective function is quadratic and its constraints are linear inequalities.]

C > 0 is a scalar regularization hyperparameter that trades off:
small C big C

desire maximize margin 1/∥w∥ keep most slack variables zero or small
danger underfitting overfitting

(misclassifies much (awesome training, awful test)
training data)

outliers less sensitive very sensitive
boundary more “flat” more sinuous

[The last row only applies to nonlinear decision boundaries, which we’ll discuss next. Obviously, a linear
decision boundary can’t be “sinuous.”]

Use validation to choose C.
348 9. Support Vector Machines

−1 0 1 2

−3
−2

−1
0

1
2

3

−1 0 1 2

−3
−2

−1
0

1
2

3

−1 0 1 2

−3
−2

−1
0

1
2

3

−1 0 1 2

−3
−2

−1
0

1
2

3

X1X1

X1X1

X
2

X
2

X
2

X
2

FIGURE 9.7. A support vector classifier was fit using four different values of the
tuning parameter C in (9.12)–(9.15). The largest value of C was used in the top
left panel, and smaller values were used in the top right, bottom left, and bottom
right panels. When C is large, then there is a high tolerance for observations being
on the wrong side of the margin, and so the margin will be large. As C decreases,
the tolerance for observations being on the wrong side of the margin decreases,
and the margin narrows.

but potentially high bias. In contrast, if C is small, then there will be fewer
support vectors and hence the resulting classifier will have low bias but
high variance. The bottom right panel in Figure 9.7 illustrates this setting,
with only eight support vectors.

The fact that the support vector classifier’s decision rule is based only
on a potentially small subset of the training observations (the support vec-
tors) means that it is quite robust to the behavior of observations that
are far away from the hyperplane. This property is distinct from some of
the other classification methods that we have seen in preceding chapters,
such as linear discriminant analysis. Recall that the LDA classification rule

svmC.pdf (ISL, Figure 9.7) [Examples of how the slab varies with C. Smallest C at upper
left; largest C at lower right.]

[One way to think about slack is to pretend that slack is money we can spend to buy permission for a sample
point to violate the margin. The further a point penetrates the margin, the bigger the fine you have to pay.
We want to make the margin as wide as possible, but we also want to spend as little money as possible. If
the regularization parameter C is small, it means we’re willing to spend lots of money on violations so we
can get a wider margin. If C is big, it means we’re cheap and we won’t pay much for violations, even though
we’ll suffer a narrower margin. If C is infinite, we’re back to a hard-margin SVM.]

20 Jonathan Richard Shewchuk

FEATURES

Q: How to do nonlinear decision boundaries?

A: Make nonlinear features that lift points into a higher-dimensional space.
High-d linear classifier→ low-d nonlinear classifier.

[Features work with all classifiers—not only linear classifiers like perceptrons and SVMs, but also classifiers
that are not linear.]

Example 1: The parabolic lifting map

Φ : Rd → Rd+1

Φ(x) =
[

x
∥x∥2

]
← lifts x onto paraboloid xd+1 = ∥x∥2

[We’ve added one new feature, ∥x∥2. Even though the new feature is just a function of other input features,
it gives our linear classifier more power. Now an SVM can have spheres as decision boundaries.]

Find a linear classifier in Φ-space.
It induces a sphere classifier in x-space.

X

X
X

X

X
X

X

C

C

C

C C

C

XX

X

X

XX

X

X

X

C

C
C

C
C

C

X

X

X

X
X

∥x∥2

x1

x2

x1

[Draw this by hand. circledec.pdf]

Theorem: Φ(X1), . . ., Φ(Xn) are linearly separable iff X1, . . ., Xn are separable by a hypersphere.
(Possibly an∞-radius hypersphere = hyperplane.)

Proof: Consider hypersphere in Rd w/center c & radius ρ. x is inside iff

∥x − c∥2 < ρ2

∥x∥2 − 2c · x + ∥c∥2 < ρ2

[−2c⊤ 1]︸ ︷︷ ︸
normal vector in Rd+1

[
x
∥x∥2

]
︸ ︷︷ ︸
Φ(x)

< ρ2 − ∥c∥2

Hence points inside sphere↔ lifted points underneath hyperplane in Φ-space.
[The implication works in both directions.]

[Hyperspheres include hyperplanes as a special, degenerate case. A hyperplane is essentially a hypersphere
with infinite radius. So hypersphere decision boundaries can do everything hyperplane decision boundaries
can do, plus a lot more. With the parabolic lifting map, if you pick a hyperplane in Φ-space that is vertical,
you get a hyperplane in x-space.]

Soft-Margin Support Vector Machines; Features 21

Example 2: Ellipsoid/hyperboloid/paraboloid decision boundaries

[Draw 2D examples of ellipse & hyperbola.]

In 3D, these have the formula

Ax2
1 + Bx2

2 +Cx2
3 + Dx1x2 + Ex2x3 + Fx3x1 +Gx1 + Hx2 + Ix3 + α = 0

[Here, the capital letters are scalars, not matrices.]

quadrics.png (courtesy Rahul Narain) [Quadrics in 3D.]

[If we add all the quadratic monomials as features, our decision boundaries can be arbitrary ellipsoids,
hyperboloids, and paraboloids.]

Φ(x) = [x2
1 x2

2 x2
3 x1x2 x2x3 x3x1 x1 x2 x3]⊤

[For perceptron or regression, add a
1 at end. For SVM, the 1 is built-in.]

Decision function is [A B C D E F G H I]︸ ︷︷ ︸
w⊤

·Φ(x) + α

[Now, our decision function can be any degree-2 polynomial.]

Isosurface defined by this equation is called a quadric.
A linear decision boundary in Φ-space imposes a quadric decision boundary in x-space.
[The word quadric just means an isosurface of a degree-2 polynomial. In the special case of two dimensions,
it’s also known as a conic section. Our decision boundary can be an arbitrary ellipsoid, hyperboloid, or
paraboloid.]

[When d is large, there are order-d2 cross-terms in Φ-space! So we are adding a lot of new features. This
will impose a serious computational cost on a classifier like a support vector machine. But it might be worth
it to find good classifiers for data that aren’t linearly separable.]

Φ(x) : Rd → R(d2+3d)/2 [For perceptron or regression, add 1 for the fictitious dimension.]

[If all these extra features make the classifier overfit or make it too slow, you can leave out the cross-terms
and include only quadratic terms like x2

1, x2
2, etc. Then the number of added features is linear in d, not

quadratic in d. If you do that, your decision boundaries can be axis-aligned ellipsoids and axis-aligned
hyperboloids, but they can’t be rotated in arbitrary ways.]

22 Jonathan Richard Shewchuk

Example 3: Decision fn is degree-p polynomial

E.g., a cubic in R2:

Φ(x) = [x3
1 x2

1x2 x1x2
2 x3

2 x2
1 x1x2 x2

2 x1 x2]⊤

Φ(x) : Rd → RO(dp)

[Now we’re really blowing up the number of features! If you have, say, 100 features per sample point and
you want to use degree-4 decision functions, then each lifted feature vector has a length of roughly 4 million,
and your learning algorithm will take approximately forever to run.]

[However, later in the semester we will learn an extremely clever trick that allows us to work with these
huge feature vectors very quickly, without ever computing them. It’s called “kernelization” or “the kernel
trick.” So even though it appears now that working with degree-4 polynomials is computationally infeasible,
it can actually be done quickly.]

Figure 6: The e↵ect of the degree of a polynomial kernel. The polynomial kernel of degree
1 leads to a linear separation (A). Higher degree polynomial kernels allow a more flexible
decision boundary (B-C). The style follows that of Figure 5.

features. The dimensionality of the feature-space associated with the above
example is quadratic in the number of dimensions of the input space. If we
were to use monomials of degree d rather than degree 2 monomials as above,
the dimensionality would be exponential in d, resulting in a substantial
increase in memory usage and the time required to compute the discriminant
function. If our data are high-dimensional to begin with, such as in the case
of gene expression data, this is not acceptable. Kernel methods avoid this
complexity by avoiding the step of explicitly mapping the data to a high
dimensional feature-space.

We have seen above (Equation (5)) that the weight vector of a large
margin separating hyperplane can be expressed as a linear combination of
the training points, i.e. w =

Pn
i=1 yi↵ixi. The same holds true for a large

class of linear algorithms, as shown by the representer theorem (see [2]).
Our discriminant function then becomes

f(x) =
nX

i=1

yi↵i h�(xi),�(x)i + b. (7)

The representation in terms of the variables ↵i is known as the dual repre-
sentation (cf. Section “Classification with Large Margin”). We observe that
the dual representation of the discriminant function depends on the data
only through dot products in feature-space. The same observation holds for
the dual optimization problem (Equation (4)) when replace xi with �(xi)
(analogously for xj).

If the kernel function k(x,x0) defined as

k(x,x0) =
⌦
�(x),�(x0)

↵
(8)

10

degree5.pdf [Hard-margin SVMs with degree 1/2/5 decision functions. Observe that the
margin tends to get wider as the degree increases.]

[Increasing the degree like this accomplishes two things.
– First, the data might become linearly separable when you lift them to a high enough degree, even if

the original data are not linearly separable.
– Second, raising the degree can widen the margin, so you might get a more robust decision boundary

that generalizes better to test data.

However, if you raise the degree too high, you will overfit the data and then generalization will get worse.]

Soft-Margin Support Vector Machines; Features 23

Features

SVMs with polynomial features of various degrees:

degree = 1 degree = 2 degree = 5

21 / 48

Features

The features we choose are very important!

We want them to be rich enough to accurately represent a good
classifier.

This suggests we should make our set of features as rich as possible:
linear is a special case of quadratic is a special case of cubic... Why
not include them all?

The richer the set of features, the more likely we will encounter
overfitting.

It’s a balancing act: we want our features to be as complex as
necessary to represent the classifier, but no more complex.

22 / 48

Features and overfitting

What happens to this picture as sample size grows?

23 / 48

Features

Digit recognition

What features should we use?

Grey scale level for each pixel
Orientation histograms
Polynomials of these

24 / 48

overfit.pdf [Training vs. test error for degree 1/2/5 decision functions. (Artist’s conception;
these aren’t actual calculations, just hand-drawn guesses. Please send me email if you know
where to find figures like this with actual data.) In this example, a degree-2 decision gives
the smallest test error.]

[You should search for the ideal degree—not too small, not too big. It’s a balancing act between underfitting
and overfitting. The degree is an example of a hyperparameter that can be optimized by validation.]

[If you’re using both polynomial features and a soft-margin SVM, now you have two hyperparameters:
the degree and the regularization hyperparameter C. Generally, the optimal C will be different for every
polynomial degree, so when you change the degree, you should run validation again to find the best C for
that degree.]

24 Jonathan Richard Shewchuk

[So far I’ve talked only about polynomial features. But features can get much more complicated than
polynomials, and they can be tailored to fit a specific problem. Let’s consider a type of feature you might
use if you wanted to implement, say, a handwriting recognition algorithm.]

Example 5: Edge detection

Edge detector: algorithm for approximating grayscale/color gradients in image, e.g.,
– tap filter
– Sobel filter
– oriented Gaussian derivative filter

[images are discrete, not continuous fields, so approximation of gradients is necessary.]

[See “Image Derivatives” on Wikipedia.]

Collect line orientations in local histograms (each having 12 orientation bins per region); use histograms as
features (instead of raw pixels).

orientgrad.png [Image histograms.]

Paper: Maji & Malik, 2009.

[If you want to, optionally, use these features in future homeworks and try to win the Kaggle competition,
this paper is a good online resource.]

[When they use a linear SVM on the raw pixels, Maji & Malik get an error rate of 15.38% on the test set.
When they use a linear SVM on the histogram features, the error rate goes down to 2.64%.]

[Many applications can be improved by designing application-specific features. There’s no limit but your
own creativity and ability to discern the structure hidden in your application.]

Machine Learning Abstractions and Numerical Optimization 25

5 Machine Learning Abstractions and Numerical Optimization

ML ABSTRACTIONS [some meta comments on machine learning]

[When you write a large computer program, you break it down into subroutines and modules. Many of you
know from experience that you need to have the discipline to impose strong abstraction barriers between
different modules, or your program will become so complex you can no longer manage nor maintain it.]

[When you learn a new subject, it helps to have mental abstraction barriers, too, so you know when you can
replace one approach with a different approach. I want to give you four levels of abstraction that can help
you think about machine learning. It’s important to make mental distinctions between these four things, and
the code you write should have modules that reflect these distinctions as well.]

APPLICATION/DATA

data labeled or not?
yes: labels categorical (classification) or quantitative (regression)?
no: similarity (clustering) or positioning (dimensionality reduction)?

MODEL [what kinds of hypotheses are permitted?]

e.g.:
– decision fns: linear, polynomial, logistic, neural net, . . .
– nearest neighbors, decision trees
– features
– low vs. high capacity (affects overfitting, underfitting, inference)

OPTIMIZATION PROBLEM

– variables, objective fn, constraints
e.g., unconstrained, convex program, least squares, PCA

OPTIMIZATION ALGORITHM

e.g., gradient descent, simplex, SVD

[In this course, we focus primarily on the middle two levels. As a data scientist, you might be given an
application, and your challenge is to turn it into an optimization problem that we know how to solve. We
will talk about optimization algorithms, but usually data analysts use optimization codes that are faster and
more robust than what they would write themselves.]

[The second level, the model, has a huge effect on the success of your learning algorithm. Sometimes you
get a big improvement by tailoring the model or its features to fit the structure of your specific data. The
model also has a big effect on whether you overfit or underfit. And if you want a model that you can interpret
so you can do inference, the model has to have a simple structure. Lastly, you have to pick a model that
leads to an optimization problem that can be solved. Some optimization problems are just too hard.]

[It’s important to understand that when you change something in one level of this diagram, you probably
have to change all the levels underneath it. If you switch your model from a linear classifier to a neural net,
your optimization problem changes, and your optimization algorithm changes too.]

26 Jonathan Richard Shewchuk

[Not all machine learning methods fit this four-level decomposition. Nevertheless, for everything you learn
in this class, think about where it fits in this hierarchy. If you don’t distinguish which math is part of the
model and which math is part of the optimization algorithm, this course will be very confusing for you.]

OPTIMIZATION PROBLEMS

[I want to familiarize you with some types of optimization problems that can be solved reliably and effi-
ciently, and the names of some of the optimization algorithms used to solve them. An important skill for
you to develop is to be able to go from an application to a well-defined optimization problem. That skill
depends on your ability to recognize well-studied types of optimization problems.]

Unconstrained

Goal: Find w that minimizes (or maximizes) a continuous objective fn f (w).

f is smooth if its gradient is continuous too.

A global minimum of f is a value w such that f (w) ≤ f (v) for every v.
A local minimum ” ” ” ” ” ” ” ” ” ”

for every v in a tiny ball centered at w.
[In other words, you cannot walk downhill from w.]

global minimum
local minima

[Draw this by hand. minima.pdf]

Usually, finding a local minimum is easy;
finding the global minimum is hard. [or impossible]

Exception: A function is convex if for every x, y ∈ Rd,
the line segment connecting (x, f (x)) to (y, f (y)) does not go below f (·).

yx [Draw this by hand. convex.pdf]

Formally: for every x, y ∈ Rd and β ∈ [0, 1], f (x + β(y − x)) ≤ f (x) + β(f (y) − f (x)).
E.g., perceptron risk fn is convex and nonsmooth.

Machine Learning Abstractions and Numerical Optimization 27

[When you sum together convex functions, you always get a convex function. The perceptron risk function
is a sum of convex loss functions, so it is convex.]

A [continuous] convex function [on a closed, convex domain] has either
– no minimum (goes to −∞), or
– just one local minimum, or
– a connected set of local minima that are all global minima with equal f .

[The perceptron risk function is in the last category.]
[In the last two cases, if you walk downhill, you eventually reach a global minimum.]

Gradient descent: repeat w← w − ϵ ∇ f (w)

learningrates20.gif (Gajanan Bhat, gbhat.com) [Gradient descent with different learning
rates ϵ. Top left: painfully small. Top right: reasonable, but still smaller than ideal. Bottom
left: reasonable, but larger than ideal. Bottom right: too large; diverges. This is an animated
GIF; see https://gbhat.com/machine learning/gradient descent learning rates.html .]

– Fails/diverges if ϵ too large.
– Slow if ϵ too small.
– ϵ often optimized by trial & error [for slow learners like neural networks].

[The best value of ϵ is hard to guess. One common technique for dealing with divergence is to check whether
a step of gradient descent increases the function value rather than decreasing it; if so, reduce the step size.]

[That’s a simple example of what’s called an adaptive learning rate or a learning rate schedule. These
adaptations become even more important when you do stochastic gradient descent or when you optimize
non-convex, very twisty objective functions. We’ll revisit the idea when we learn neural networks.]

28 Jonathan Richard Shewchuk

[One interesting aspect of gradient descent that these figures illustrate is that it usually never reaches the
exact local minimum. Instead, it gets closer and closer forever, but never exactly reaches the true minimum.
We call this behavior “convergence.” The last question of Homework 2 will give you some understanding
of why convergence happens under the right conditions.]

[When we have a feature space with more than one dimension, another problem arises, which is that the
learning rate that’s good for one direction might be terrible in another direction. Consider the three examples
of gradient descent below.]

-4 -2 2 4
w1

-2

2

4

6

w2

-4 -2 2 4
w1

-2

2

4

6

w2

-4 -2 2 4
w1

-2

2

4

6

w2

goodcondition.pdf, illcondition105.pdf, illcondition055.pdf [Left: 20 iterations of gradi-
ent descent on a well-conditioned quadratic function, f (w) = 2w2

1 + w2
2, with a modest step

size ϵ = 0.105. Center: 20 iterations on an ill-conditioned function, f (w) = 10w2
1 + w2

2; the
same step size is now too large. Right: after reducing the step size to ϵ = 0.055, we have
convergence again but we aren’t approaching the minimum nearly as quickly.]

[The step size that works for the left example is too large for the center example; it diverges in the w1-
direction. At right, we reduce the step size and obtain convergence. But now convergence is slow in the
w2-direction.]

High ellipticity of the contours, a.k.a. ill-conditioning of the Hessian, means no learning rate is good in all
directions.

[The Hessian matrix is said to be ill-conditioned if its largest eigenvalue is much larger than its small-
est eigenvalue. Ill-conditioning can be a problem even for simple methods like linear regression, making
it harder to solve the problem. In response to these observations, there are adaptive learning rate algo-
rithms that explicitly choose different learning rates in different directions. Famous examples are Adam and
RMSprop.]

[There are many applications where you don’t have a convex objective function. Then gradient descent
usually can find a local minimum, but not necessarily a global minimum. And often there is no guarantee
that the local minimum you find will be nearly as good as the global minimum. Nevertheless, gradient
descent is used for a lot of nonconvex machine learning problems too. For example, neural networks try
to optimize an objective function that has lots of local minima. But stochastic gradient descent is still the
algorithm of choice for training neural nets. We’ll talk more later in the semester about why.]

Machine Learning Abstractions and Numerical Optimization 29

Linear Program

Linear objective fn + linear inequality constraints.

Goal: Find w that maximizes (or minimizes) c · w
subject to Aw ≤ b

where A is n × d matrix, b ∈ Rn, expressing n linear constraints:
Ai · w ≤ bi, i ∈ [1, n]

in w-space:

optimum
c

active constraint

active constraint

feasible
region

[Draw this by hand. linprog.pdf]

The set of points w that satisfy all constraints is a convex polytope called the feasible region F [shaded].
The optimum is the point in F that is furthest in the direction c. [What does convex mean?]
A point set P is convex if for every p, q ∈ P, the line segment with endpoints p, q lies entirely in P.

[What is a polytope? Just a polyhedron, generalized to higher dimensions.]

The optimum achieves equality for some constraints (but not most), called the active constraints of the
optimum. [In the figure above, there are two active constraints. In an SVM, active constraints correspond to
the training points that touch or violate the slab, and these points are also known as support vectors.]

[Sometimes, there is more than one optimal point. For example, in the figure above, if c pointed straight up,
every point on the top horizontal edge would be optimal. The set of optimal points is always convex.]

Example: EVERY feasible point (w, α) gives a linear classifier:

Find w, α that satisfies yi(w · Xi + α) ≥ 1 for all i ∈ [1, n]

[This is the problem of finding a feasible point. This problem can be cast as a slightly different linear
program that uses an objective function to make all the inequalities be satisfied strictly if that’s possible.]

IMPORTANT: The data are linearly separable iff the feasible region is not the empty set.
→ Also true for maximum margin classifier (quadratic program)

[The most famous algorithm for linear programming is the simplex algorithm, invented by George Dantzig
in 1947. The simplex algorithm is indisputably one of the most important and useful algorithms of the
20th century. It walks along edges of the feasible region, traveling from vertex to vertex until it finds an
optimum.]

[Linear programming is very different from unconstrained optimization; it has a much more combinatorial
flavor. If you knew which constraints would be the active constraints once you found the solution, it would
be easy; the hard part is figuring out which constraints should be the active ones. There are exponentially
many possibilities, so you can’t afford to try them all. So linear programming algorithms tend to have a
very discrete, computer science feeling to them, like graph algorithms, whereas unconstrained optimization
algorithms tend to have a continuous, numerical mathematics feeling.]

30 Jonathan Richard Shewchuk

[Linear programs crop up everywhere in engineering and science, but they’re usually in disguise. An ex-
tremely useful talent you should develop is to recognize when a problem is a linear program.]

[A linear program solver can find a linear classifier, but it can’t find the maximum margin classifier. We
need something more powerful.]

Quadratic Program

Quadratic, convex objective fn + linear inequality constraints.

Goal: Find w that minimizes f (w) = w⊤Qw + c⊤w
subject to Aw ≤ b

where Q is a symmetric, positive semidefinite matrix.

[A matrix is positive semidefinite if w⊤Qw > 0 for all w.]

If Q is positive definite, only one local minimum! [Which is therefore the global minimum.]

[What if Q is not positive definite? If Q is indefinite, then f is not convex, the minimum is not always
unique, and quadratic programming is NP-hard. If Q is positive semidefinite, meaning w⊤Qw ≥ 0 for all w,
then f is convex and quadratic programming is tractable, but there may be infinitely many solutions.]

Example: Find maximum margin classifier.

1
2

3

4

5

6

7

8

9

10

1010

10

11

11

1111

12

1212

1213

13

13 13

14

14

14 14

15

15

1515

16

16

16

16

17
17

17
17

-3 -2 -1 0 1 2 3
-3

-2

-1

0

1

2

3

quadratic.pdf [Left: A hard-margin SVM minimizes the objective function w2
1+w2

2. Right:
A reminder that there is also an α-axis, so the isosurfaces of the objective function are really
cylinders. On the left isocontours, draw two polygons—one with one active constraint, and
one with two—and show the constrained minimum for each polygon. “In a hard-margin
SVM, we are looking for the point in this polygon that’s closest to the α-axis.”]

Algs for quadratic programming:
– Simplex-like [commonly used for general-purpose quadratic programs, but not as good for SVMs as

the following two algorithms that specifically exploit properties of SVMs]
– Sequential minimal optimization (SMO, used in LIBSVM, “SVC” in scikit)
– Coordinate descent (used in LIBLINEAR, “LinearSVC” in scikit)

Numerical optimization @ Berkeley: EECS 127/227AT/227BT/227C.

Decision Theory; Generative and Discriminative Models 31

6 Decision Theory; Generative and Discriminative Models

DECISION THEORY aka Risk Minimization

[Today I’m going to talk about a style of classifier very different from SVMs. The classifiers we’ll cover in
the next few weeks are based on probability.]

[One aspect of probabilistic data is that sometimes a point in feature space doesn’t have just one class.
Suppose your data is adult men and women with just one feature: their height. You want to train a classifier
that takes in an adult’s height and returns a classification, man or woman. Suppose you are asked to predict
the sex of a 5’5” adult. Well, your training set includes some 5’5” women and some 5’5” men. What should
you do?]
[In your feature space, you have two training points at the same location with different classes. More
generally, the height distributions of men and women overlap. Obviously, in that case, you can’t draw a
decision boundary that classifies all points with 100% accuracy.]

Multiple sample points with different classes could lie at same point:
we want a probabilistic classifier.

Suppose 10% of population has cancer, 90% doesn’t.
Probability distributions for occupation conditioned on cancer, P(X|Y):

job (X) miner farmer other
cancer (Y = 1) 20% 50% 30%
no cancer (Y = −1) 1% 10% 89%

[caps here mean random variables, not matrices.]

[I made these numbers up. Please don’t take them as medical advice.]

Recall: P(X) = P(X|Y = 1) P(Y = 1) + P(X|Y = −1) P(Y = −1)
P(X = farmer) = 0.5 × 0.1 + 0.1 × 0.9 = 0.14 [. . . so 14% of random people are farmers]

You meet a farmer. Guess whether he has cancer?

[If you’re in a hurry, you might see that 50% of people with cancer are farmers, but only 10% of people with
no cancer are farmers, and conclude that a typical farmer probably has cancer. But that would be wrong,
because that reasoning fails to take the prior probabilities into account.]

Bayes’ Theorem:

↓ posterior probability ↓ prior prob. ↓ if X = farmer

P(Y = 1|X) =
P(X|Y = 1)P(Y = 1)

P(X)
=

0.05
0.14

P(Y = −1|X) =
P(X|Y = −1)P(Y = −1)

P(X)
=

0.09
0.14

[These two probs always sum to 1.]

P(cancer | farmer) = 5/14 ≈ 36%.

[So we probably shouldn’t diagnose cancer.]

[BUT . . . we’re assuming that we want to maximize the chance of a correct prediction. But that’s not always
the right assumption. If you’re developing a cheap screening test for cancer, you’d rather have more false
positives and fewer false negatives. A false negative might mean somebody misses an early diagnosis and
dies of a cancer that could have been treated if caught early. A false positive just means that you spend more
money on more accurate tests. When there’s an asymmetry between the awfulness of false positives and
false negatives, we can quantify that with a loss function.]

32 Jonathan Richard Shewchuk

A loss function L(z, y) specifies badness if classifier predicts z, true class is y.

E.g., L(z, y) =

1 if z = 1, y = −1, false positive is bad
5 if z = −1, y = 1, false negative is BAAAAAD
0 if z = y. [loss should always be zero for a perfectly correct prediction!]

A 36% probability of loss 5 is worse than a 64% prob. of loss 1,
so we recommend further cancer screening.

The loss fn above is asymmetrical.
[A symmetrical loss is the same for false positives and false negatives. For example . . .]

The 0-1 loss function is L(z, y) =
{

1 if z , y, [always 1 for a wrong prediction]
0 if z = y. [always 0 for a correct prediction]

[Another application where you want a very asymmetrical loss function, besides medical diagnosis, is spam
detection. Putting a good email in the spam folder is much worse than putting spam in your inbox.]

Let r : Rd → ±1 be a decision rule, aka classifier:
a fn that maps a feature vector x to 1 (“in class”) or −1 (“not in class”).

The risk for r is the expected loss over all values of x, y: [Memorize this definition!]

R(r) = E[L(r(X),Y)]

=
∑

x

L(r(x), 1) P(Y = 1|X = x) + L(r(x),−1) P(Y = −1|X = x)
 P(X = x)

= P(Y = 1)
∑

x

L(r(x), 1) P(X = x|Y = 1) + P(Y = −1)
∑

x

L(r(x),−1) P(X = x|Y = −1)

The Bayes decision rule aka Bayes classifier is the fn r∗ that minimizes functional R(r).
Assuming L(1, 1) = L(−1,−1) = 0,

r∗(x) =
{

1 if L(−1, 1) P(Y = 1|X = x) > L(1,−1) P(Y = −1|X = x),
−1 otherwise

When L is symmetrical, [the big, key principle you should memorize is]
pick the class with the biggest posterior probability.
[But if the loss function is asymmetrical, then you must weight the posteriors with the losses.]
In cancer example, r∗(miner) = 1, r∗(farmer) = 1, and r∗(other) = −1.

The Bayes risk, aka optimal risk, is the risk of the Bayes classifier.
[In our cancer example, the last expression for risk R gives:]

R(r∗) = 0.1(5 × 0.3) + 0.9(1 × 0.01 + 1 × 0.1) = 0.249 No decision rule gives a lower risk.

[It is interesting that, if we really know all these probabilities, we really can construct an ideal probabilistic
classifier. But in real applications, we rarely know these probabilities; the best we can do is use statistical
methods to estimate them.]

Deriving/using r∗ is called risk minimization.

[Did you memorize the two boldfaced lines above yet?]

Decision Theory; Generative and Discriminative Models 33

Continuous Distributions

Suppose X has a continuous probability density fn (PDF).

Review: [Go back to your CS 70 or stats notes if you don’t remember this.]

x2x1 x

f (x) [Draw this by hand. integrate.pdf]

prob. that random variable X ∈ [x1, x2] =
∫ x2

x1

f (x) dx [shaded area]

area under whole curve = 1 =
∫ ∞

−∞

f (x) dx expected value of g(X) : E[g(X)] =
∫ ∞

−∞

g(x) f (x) dx

mean µ = E[X] =
∫ ∞

−∞

x f (x) dx variance σ2 = E[(X − µ)2] = E[X2] − µ2

[Perhaps our cancer statistics look like this.]

x

fX|Y=1(x)

fX|Y=−1(x)

Draw this figure by hand (cancerconditional.png) [The area under each curve is 1.]

[Let’s use the 0-1 loss function. In other words, suppose you want a classifier that maximizes the chance of
a correct prediction. The wrong answer would be to look where these two curves cross and make that be the
decision boundary. As before, it’s wrong because it doesn’t take into account the prior probabilities.]

Suppose P(Y = 1) = 1/3, P(Y = −1) = 2/3, 0-1 loss.

xBayes optimal decision boundary

fX|Y=1(x)P(Y = 1) fX|Y=−1(x)P(Y = −1)

Draw this figure by hand (cancerposterior.png)

[To maximize the chance you’ll predict correctly whether somebody has cancer, the Bayes decision rule
looks up x on this chart and picks the curve with the highest probability. In this example, that means you
pick cancer when x is left of the optimal decision boundary, and no cancer when x is to the right.]

34 Jonathan Richard Shewchuk

Define risk as before, replacing summations with integrals.

R(r) = E[L(r(X),Y)]

= P(Y = 1)
∫

L(r(x), 1) fX|Y=1(x) dx +

P(Y = −1)
∫

L(r(x),−1) fX|Y=−1(x) dx.

For Bayes decision rule, Bayes risk is the area under minimum of functions above. [Shade it.]
Assuming L(1, 1) = L(−1,−1) = 0,

R(r∗) =
∫

min
y=±1

L(−y, y) fX|Y=y(x) P(Y = y) dx.

[If you want to use an asymmetrical loss function, just scale the curves vertically in the figure above.]

If L is 0-1 loss, [then the risk has a particularly nice interpretation:]
R(r) = P(r(x) is wrong) [which makes sense, because R is the expected loss.]
and the Bayes optimal decision boundary is {x : P(Y = 1|X = x)︸ ︷︷ ︸

decision fn

= 0.5︸︷︷︸
isovalue

}

fX|Y=1(x)P(Y = 1)

Bayes optimal decision boundary

fX|Y=−1(x)P(Y = −1)

qda3d.pdf, qdacontour.pdf [Two different views of the same 2D Gaussians.]

[Notice that the accuracy of the probabilities is most important near the decision boundary. Far away from
the decision boundary, a bit of error in the probabilities probably wouldn’t change the classification.]

[You can also have multi-class classifiers, choosing among three or more classes. The Bayesian approach is
a particularly convenient way to generate multi-class classifiers, because you can simply choose whichever
class has the greatest posterior probability. Then the decision boundary lies wherever two or more classes
are tied for the highest probability.]

Decision Theory; Generative and Discriminative Models 35

3 WAYS TO BUILD CLASSIFIERS

(1) Generative models (e.g., LDA) [We’ll learn about LDA next lecture.]
– Assume sample points come from probability distributions, different for each class.
– Guess form of distributions
– For each class C, fit distribution parameters to class C points, giving fX|Y=C(x)
– For each C, estimate P(Y = C)
– Bayes’ Theorem gives P(Y |X)
– If 0-1 loss, pick class C that maximizes P(Y = C|X = x) [posterior probability]

equivalently, maximizes fX|Y=C(x) P(Y = C)

(2) Discriminative models (e.g., logistic regression)
[We’ll learn about logistic regression in a few weeks.]

– Model P(Y |X) directly

(3) Find decision boundary (e.g., SVM)
– Model r(x) directly (no posterior)

Advantage of (1 & 2): P(Y |X) tells you probability your guess is wrong
[This is something SVMs don’t do.]

Advantage of (1): you can diagnose outliers: f (x) is very small
Disadvantages of (1): often hard to estimate distributions accurately;

real distributions rarely match standard ones.

[What I’ve written here doesn’t actually define the phrases “generative model” or “discriminative model.”
The proper definitions accord with the way statisticians think about models. A generative model is a full
probabilistic model of all variables, whereas a discriminative model provides a model only for the target
variables that we want to predict.]

[It’s important to remember that we rarely know precisely the value of any of these probabilities. There is
usually error in all of these probabilities. In practice, generative models are most popular when you have
phenomena that are well approximated by the normal distribution or another “nice” distribution. Generative
methods also tend to be more stable than other methods when the number of training points is small or when
there are a lot of outliers.]

36 Jonathan Richard Shewchuk

7 Gaussian Discriminant Analysis, including QDA and LDA

GAUSSIAN DISCRIMINANT ANALYSIS

Fundamental assumption: each class has a normal distribution [a Gaussian].

X ∼ N(µ, σ2) : f (x) =
1

(
√

2πσ)d
exp

(
−
∥x − µ∥2

2σ2

)
. [µ & x = vectors; σ = scalar; d = dimension]

For each class C, suppose we know mean µC and variance σ2
C, yielding PDF fX|Y=C(x),

and prior πC = P(Y = C).

QC(x)

Bayes optimal decision boundary

fX|Y=C(x) πC

fX|Y=D(x) πD

QD(x)

qda3d.pdf, qdacontour.pdf, Q.pdf [Probability density functions for two classes.]

[This PDF is halfway between the univariate normal distribution and the standard multivariate normal distri-
bution. It is multivariate: x and µ can be vectors, and I’ve plotted an example in a 2D feature space. But the
variance σ2 is just a scalar; for simplicity, we will avoid the covariance matrix until next lecture. That’s why
the isocontours are circles and not ellipses. I call this the isotropic normal distribution, because the variance
is the same in every direction. Next lecture, we’ll look at anisotropic Gaussians where the isosurfaces are
ellipsoids. Here, the Bayes optimal decision boundary is an ellipse.]

Given x, Bayes decision rule r∗(x) predicts class C that maximizes fX|Y=C(x) πC.
[Remember our last lecture’s main principle: pick the class with the biggest posterior probability!]

lnω is monotonically increasing for ω > 0, so it is equivalent to maximize

QC(x) = ln
(
(
√

2π)d fX|Y=C(x) πC
)
= −
∥x − µC∥

2

2σ2
C

− d lnσC + ln πC. [QC is quadratic in x]

[In a 2-class problem, you can also incorporate an asymmetrical loss function by adding ln L(not C,C)
to QC(x). In a multi-class problem, asymmetric loss is more difficult to account for, because the penalty for
guessing wrong might depend on both the wrong guess and the true class.]

Quadratic Discriminant Analysis (QDA)

Suppose only 2 classes C, D. Then the Bayes classifier is

r∗(x) =
{

C if QC(x) − QD(x) > 0,
D otherwise. [Picks the class with the biggest posterior probability]

Gaussian Discriminant Analysis, including QDA and LDA 37

Decision fn is QC(x) − QD(x) (quadratic); Bayes decision boundary is QC(x) − QD(x) = 0.
– In 1D, B.d.b. may have 1 or 2 points. [Solutions to a quadratic equation]
– In d-D, B.d.b. is a quadric. [In 2D, that’s a conic section; see figure above]

[You might not be satisfied with just knowing how each point is classified. One of the great things about
QDA is that you can also estimate the probability that your prediction is correct. Let’s work that out.]

To recover posterior probabilities in 2-class case, use Bayes.

P(Y = C|X) =
fX|Y=C πC

fX|Y=C πC + fX|Y=D πD

recall eQC(x) = (
√

2π)d fX|Y=C(x) πC [by definition of QC]

P(Y = C|X = x) =
eQC(x)

eQC(x) + eQD(x) =
1

1 + eQD(x)−QC(x)

= s(QC(x) − QD(x)), where

s(γ) =
1

1 + e−γ
⇐ logistic fn aka sigmoid fn [recall QC − QD is the decision fn]

-4 -2 0 2 4
x

0.2

0.4

0.6

0.8

1.0
s(x)

logistic.pdf [The logistic function. Write
beside it:] s(0) = 1

2 , s(∞) → 1, s(−∞) → 0,
monotonically increasing.

[We interpret s(0) = 1
2 as saying that on

the decision boundary, there’s a 50% chance
of class C and a 50% chance of class D.]

Multi-class QDA: [QDA works very naturally with more than 2 classes.]

multiplicative.pdf [Multi-class QDA partitions the feature space into regions. In two or
more dimensions, you typically wind up with multiple decision boundaries that adjoin each
other at joints. It looks like a sort of Voronoi diagram. In fact, it’s a special kind of Voronoi
diagram called a multiplicatively, additively weighted Voronoi diagram.]

38 Jonathan Richard Shewchuk

Linear Discriminant Analysis (LDA)

[LDA is a variant of QDA with linear decision boundaries. It’s less likely to overfit than QDA.]

Fundamental assumption: all the Gaussians have same variance σ2.
[The equations simplify nicely in this case.]

QC(x) − QD(x) =
(µC − µD) · x

σ2︸ ︷︷ ︸
w·x

−
∥µC∥

2 − ∥µD∥
2

2σ2 + ln πC − ln πD.︸ ︷︷ ︸
+α

[The quadratic terms in QC and QD canceled each other out!]
Now it’s a linear classifier!

– decision boundary is w · x + α = 0
– posterior is P(Y = C|X = x) = s(w · x + α)

[The effect of “s(w · x + α)” is to scale and translate the logistic fn in x-space.]

-3 -2 -1 1 2 3
x

0.2

0.4

0.6

0.8

1.0

P(x)

lda1d.pdf, lda2d.pdf [Two Gaussians (red) and the logistic function (black). The logistic
function is the right Gaussian divided by the sum of the Gaussians. Observe that even when
the Gaussians are 2D, the logistic function still looks 1D.]

Special case: if πC = πD =
1
2
⇒ (µC − µD) · x − (µC − µD) ·

(
µC + µD

2

)
= 0.

This is the centroid method!

Multi-class LDA: choose C that maximizes linear discriminant fn
µC · x
σ2 −

∥µC∥
2

2σ2 + ln πC.

voronoi.pdf [When you have many classes, their LDA decision boundaries form a classical
Voronoi diagram if the priors πC are equal. All the Gaussians have the same width.]

Gaussian Discriminant Analysis, including QDA and LDA 39

MAXIMUM LIKELIHOOD ESTIMATION OF PARAMETERS (Ronald Fisher, circa 1912)

[To use Gaussian discriminant analysis, we must first fit Gaussians to the sample points and estimate the
class prior probabilities. We’ll do priors first—they’re easier, because they involve a discrete distribution.
Then we’ll fit the Gaussians—they’re less intuitive, because they’re continuous distributions.]

Let’s flip biased coins! Heads with probability p; tails w/prob. 1 − p. [But we don’t know p.]

10 flips, 8 heads, 2 tails. [Let me ask you a weird question.] What is the most likely value of p?

of heads is X ∼ B(n, p), binomial distribution:

P[X = x] =
(
n
x

)
px (1 − p)n−x [this is the probability of getting exactly x heads in n coin flips]

Prob. of x = 8 heads in n = 10 flips is

P[X = 8] = 45p8 (1 − p)2 def
= L(p)

Written as a fn of distribution parameter p, this prob. is the likelihood fn L(p).

Maximum likelihood estimation (MLE): A method of estimating the parameters of a statistical model by
picking the params that maximize [the likelihood function] L.
. . . is one method of density estimation: estimating a PDF [probability density function] from data.

[Let’s phrase it as an optimization problem.]

Find p that maximizes L(p).

0.2 0.4 0.6 0.8 1.0

0.05

0.10

0.15

0.20

0.25

0.30

binomlikelihood.pdf [Graph of L(p) for this example.]

Solve by finding critical point of L:

dL
dp
= 360p7(1 − p)2 − 90p8(1 − p) = 0

⇒ 4(1 − p) − p = 0 ⇒ p = 0.8

[It shouldn’t seem surprising that a coin that is biased so it comes up heads 80% of the time is the coin most
likely to produce 8 heads in 10 flips.]

[Note: d2L
dp2 � −18.9 < 0 at p = 0.8, confirming it’s a maximum.]

[Here’s how this applies to prior probabilities.]
Suppose our training set is n points, with x in class C. Then our estimated prior for class C is π̂C = x/n.

40 Jonathan Richard Shewchuk

Likelihood of a Gaussian

Given sample points X1, X2, . . . , Xn, find best-fit Gaussian.

[Now we want to fit a normal distribution to data, instead of a binomial distribution. If you draw a random
point from a normal distribution, what is the probability that it will be exactly at X1?]

[Zero. So it might seem like we have a problem here. With a continuous distribution, the probability of
generating any particular point is zero. But we’re just going to ignore that and do “likelihood” anyway.]

Likelihood of drawing these points [in the specified order] is

L(µ, σ; X1, . . . , Xn) = f (X1) f (X2) · · · f (Xn). [How do we maximize this?]

The log likelihood ℓ(·) is the ln of the likelihood L(·).
Maximizing likelihood ⇔ maximizing log likelihood.

ℓ(µ, σ; X1, ..., Xn) = ln f (X1) + ln f (X2) + ... + ln f (Xn)

=

n∑
i=1

(
−
∥Xi − µ∥

2

2σ2 − d ln
√

2π − d lnσ
)

︸ ︷︷ ︸
ln of normal PDF

Set ∇µℓ = 0,
∂ℓ

∂σ
= 0 [Find the critical point of ℓ]

∇µℓ =

n∑
i=1

Xi − µ

σ2 = 0 ⇒ µ̂ =
1
n

n∑
i=1

Xi [The hats ˆ mean “estimated”]

∂ℓ

∂σ
=

n∑
i=1

∥Xi − µ∥
2 − dσ2

σ3 = 0 ⇒ σ̂2 =
1

dn

n∑
i=1

∥Xi − µ∥
2

We don’t know µ exactly, so substitute µ̂ for µ to compute σ̂.

Takeaway: use sample mean & variance of pts in class C to estimate mean & variance of Gaussian for
class C.
For QDA: estimate conditional mean µ̂C & conditional variance σ̂2

C of each class C separately [as above]
& estimate the priors:

π̂C =
nC∑
D nD ⇐ total sample points in all classes

[π̂C is the coin flip parameter]

For LDA: same means & priors; one variance for all classes:

σ̂2 =
1

dn

∑
C

∑
{i:yi=C}

∥Xi − µ̂C∥
2 ⇐ pooled within-class variance

[Notice that although LDA is computing one variance for all the data, each sample point contributes with
respect to its own class’s mean. This gives a very different result than if you simply use the global mean!
It’s usually smaller than the global variance. We say “within-class” because we use each point’s distance
from its class’s mean, but “pooled” because we then pool all the classes together.]

Eigenvectors and the (Anisotropic) Multivariate Normal Distribution 41

8 Eigenvectors and the (Anisotropic) Multivariate Normal Distribution

EIGENVECTORS

[I don’t know if you were properly taught about eigenvectors here at Berkeley, but I sure don’t like the way
they’re taught in most linear algebra books. So I’ll start with a review. You all know the definition of an
eigenvector:]

Given square matrix A, if Av = λv for some vector v , 0, scalar λ, then
v is an eigenvector of A and λ is the eigenvalue of A associated w/v.

[But what does that mean? It means that v is a magical vector that, after being multiplied by A, still points
in the same direction, or in exactly the opposite direction.]

A3v

v
A2v

Av

Eigenvalue 2:

w

Eigenvalue −1
2 :

Aw

A2w

A3w

Draw this figure by hand (eigenvectors.pdf)

[For most matrices, most vectors don’t have this property. So the ones that do are special, and we call them
eigenvectors.]
[Clearly, when you scale an eigenvector, it’s still an eigenvector. Only the direction matters, not the length.
Let’s look at a few consequences.]

Theorem: if v is eigenvector of A w/eigenvalue λ,
then v is eigenvector of Ak w/eigenvalue λk [k is a +ve integer; we will use Theorem later]

Proof: A2v = A(λv) = λAv = λ2v, etc.

Theorem: moreover, if A is invertible,
then v is eigenvector of A−1 w/eigenvalue 1/λ

Proof: A−1v = A−1(1
λAv) = 1

λv [look at the figures above, but go from right to left.]

[Stated simply: When you invert a matrix, the eigenvectors don’t change, but the eigenvalues get inverted.
When you square a matrix, the eigenvectors don’t change, but the eigenvalues get squared.]

[Those theorems are pretty obvious. The next theorem is not obvious at all.]

42 Jonathan Richard Shewchuk

Spectral Theorem: every real, symmetric n × n matrix has real eigenvalues and
n eigenvectors that are mutually orthogonal, i.e., v⊤i v j = 0 for all i , j

[This takes about a page of math to prove. One detail is that a matrix can have more than n eigenvector
directions. If two eigenvectors happen to have the same eigenvalue, then every linear combination of those
eigenvectors is also an eigenvector. Then you have infinitely many eigenvector directions, but they all span
the same plane. So you just arbitrarily pick two vectors in that plane that are orthogonal to each other. By
contrast, the set of eigenvalues is always uniquely determined by a matrix, including the multiplicity of the
eigenvalues.]

We can use them as a basis for Rn.

Building a Matrix with Specified Eigenvectors

[There are a lot of applications where you’re given a matrix, and you want to extract the eigenvectors and
eigenvalues. But when you’re learning the math, I think it’s more intuitive to go in the opposite direction.
Suppose you know what eigenvectors and eigenvalues you want, and you want to create the matrix that has
those eigenvectors and eigenvalues.]

Choose n mutually orthogonal unit n-vectors v1, . . . , vn [so they specify an orthonormal coordinate system]
Let V = [v1 v2 . . . vn] ⇐ n × n matrix
Observe: V⊤V = I [off-diagonal 0’s because the vectors are orthogonal]

[diagonal 1’s because they’re unit vectors]
⇒ V⊤ = V−1 ⇒ VV⊤ = I

V is orthonormal matrix: acts like rotation (or reflection)

Choose some eigenvalues λi:

Let Λ =

λ1 0 . . . 0
0 λ2 0
...

. . .
...

0 0 . . . λn

 [diagonal matrix of eigenvalues]

Defn. of eigenvector: AV = VΛ
[This is the same definition of eigenvector I gave you at the start of the lecture—Av = λv—but this version
covers all n eigenvectors in one statement. How do we find the A that satisfies this equation?]

⇒ AVV⊤ = VΛV⊤ [which proves . . .]

Theorem: A = VΛV⊤ =
∑n

i=1 λi viv⊤i︸︷︷︸
outer product: n × n matrix, rank 1

has chosen eigenvectors/values

This is a matrix factorization called the eigendecomposition. [every real, symmetric matrix has one]
Example: [Using the eigenvectors and eigenvalues from the start of the lecture]

A =
[

1/
√

2 1/
√

2
1/
√

2 −1/
√

2

] [
2 0
0 −1/2

] [
1/
√

2 1/
√

2
1/
√

2 −1/
√

2

]
=

[
3/4 5/4
5/4 3/4

]
.

[This completes our task of finding a symmetric matrix with specified orthonormal eigenvectors and eigen-
values. Again, it is more common in practice that you are given a symmetric matrix, such as a sample
covariance matrix, and you need to compute its eigenvectors and eigenvalues. That’s harder. But I think that
going from eigenvectors to the matrix helps to build intuition.]

Eigenvectors and the (Anisotropic) Multivariate Normal Distribution 43

Observe: A2 = VΛV⊤VΛV⊤ = VΛ2V⊤ A−2 = VΛ−2V⊤

[This is another way to see that squaring a matrix squares its eigenvalues without changing its eigenvectors.
It also suggests a way to define a matrix square root.]
Given a symmetric PSD matrix Σ, we can find a symmetric square root A = Σ1/2:

compute eigenvectors/values of Σ
take square roots of Σ’s eigenvalues
reassemble matrix A [with the same eigenvectors as Σ but changed eigenvalues]

[Again, the first step of this algorithm—computing the eigenvectors and eigenvalues of a matrix—is much
harder than the remaining two steps.]

Visualizing Quadratic Forms

[My favorite way to visualize a symmetric matrix is to graph something called the quadratic form, which
shows how applying the matrix affects the length of a vector.]

The quadratic form of M is x⊤Mx.

Suppose you want a matrix whose quadratic form has the isocontours at right below, which are circles
transformed by A. [The same matrix A I’ve been using, which stretches along the direction with eigenvalue 2
and shrinks along the direction with eigenvalue −1/2.]

1

2

3

4

5 5

5

5

6 6

6

6

7

7

7

7

-2 -1 0 1 2
-2

-1

0

1

2

isocontours
transformed by A

−→

z-space x-space
q1(z) = ∥z∥2 q2(x) = ???

1.

2.

2.

3.

3.

4.

4.

5.

5.

6.

6.

7.

7.

8.

8.

9.
9.

10.

10.

11.

11.

12.

12.

13.

13.

14.

14.

15.

15.

16.

16.

17.

17.

18.

18.

19.

19.

-2 -1 0 1 2
-2

-1

0

1

2

∥z∥2
???

circles.pdf, ellipses.pdf, circlebowl.pdf, ellipsebowl.pdf
[Both figures at left are plots of ∥z∥2, and both figures at right are plots of x⊤A−2x.
(Draw the stretch direction (1, 1) with eigenvalue 2 and the shrink direction (1,−1) with
eigenvalue − 1

2 on the ellipses at right.)]

44 Jonathan Richard Shewchuk

That is, we want q2(Az) = q1(z).
Answer: set x = Az.
Then q2(x) = q1(z) = q1(A−1x) = ∥A−1x∥2 = x⊤A−2x.

The isocontours of the quadratic form x⊤A−2x are ellipsoids determined by the eigenvectors/values of A.
{x : x⊤A−2x = 1} is an ellipsoid with axes v1, v2, . . . , vn and

radii λ1, λ2, . . . , λn
because if vi has length 1 (vi lies on unit circle), x = Avi has length λi (Avi lies on the ellipsoid).

Therefore, contours of x⊤Mx are ellipsoids determined by eigenvectors/values of M−1/2.
[The eigenvalues of M−1/2 are the inverse square roots of the eigenvalues of M.]

Special case: A (or M) is diagonal ⇔ eigenvectors are coordinate axes
⇔ ellipsoids are axis-aligned

[Draw axis-aligned isocontours for a diagonal metric.]

A symmetric matrix M is
positive definite if w⊤Mw > 0 for all w , 0⇔ all eigenvalues positive
positive semidefinite if w⊤Mw ≥ 0 for all w⇔ all eigenvalues nonnegative
indefinite if +ve eigenvalue & −ve eigenvalue
invertible if no zero eigenvalue

pos definite pos semidefinite indefinite

posdef.pdf, possemi.pdf, indef.pdf
[Examples of quadratic forms for positive definite, positive semidefinite, and indefinite ma-
trices. Positive eigenvalues correspond to axes where the curvature goes up; negative eigen-
values correspond to axes where the curvature goes down. (Draw the eigenvector directions,
and draw the flat trough in the positive semidefinite bowl.)]

Every squared matrix is pos semidef, including A−2. [Eigenvalues of A−2 are squared, cannot be negative.]
If A−2 exists, it is pos def. [An invertible matrix has no zero eigenvalues.]

What about the isosurfaces of x⊤Mx for a +ve semidef, singular M?

[If M is only positive semidefinite, but not positive definite, the isosurfaces are cylinders instead of ellipsoids.
These cylinders have ellipsoidal cross sections spanning the directions with nonzero eigenvalues, but they
run in straight lines along the directions with zero eigenvalues.]

Eigenvectors and the (Anisotropic) Multivariate Normal Distribution 45

ANISOTROPIC GAUSSIANS

[Let’s revisit the multivariate Gaussian distribution, with different variances along different directions.]

X ∼ N(µ,Σ) [X and µ are d-vectors. X is a random variable with mean µ.]

f (x) =
1√

(2π)d |Σ|
exp

(
−

1
2

(x − µ)⊤ Σ−1 (x − µ)
)

↑ determinant of Σ

Σ is the d × d SPD covariance matrix.
Σ−1 is the d × d SPD precision matrix.

Write f (x) = n(q(x)), where q(x) = (x − µ)⊤ Σ−1 (x − µ)
↑ ↑

R→ R, exponential Rd → R, quadratic

[Now q(x) is a function we understand—it’s just a quadratic bowl centered at µ, the quadratic form of the
precision matrix Σ−1. The other function n(·) is a simple, monotonic, convex function, an exponential of the
negation of half its argument. This mapping n(·) does not change the isosurfaces.]

Principle: given monotonic n : R→ R, isosurfaces of n(q(x)) are same as q(x) (different isovalues).

1.

2.

2.

3.

3.

4.

4.

5.

5.

6.

6.

7.

7.

8.

8.

9.
9.

10.

10.

11.

11.

12.

12.

13.

13.

14.

14.

15.

15.

16.

16.

17.

17.

18.

18.

19.

19.

-2 -1 0 1 2
-2

-1

0

1

2

q(x)

→

0 1 2 3 4
x

0.05

0.10

0.15

n(x)

n(·)

→

0.036

0.036

0.072

0.072

0.108

0.108
0.144

0.144

0.18

0.216

0.252

0.288

0.324

0.36

-2 -1 0 1 2
-2

-1

0

1

2

f (x) = n(q(x))
ellipsebowl.pdf, ellipses.pdf, exp.pdf, gauss3d.pdf, gausscontour.pdf

[(Show this figure on a separate “whiteboard” for easy reuse next lecture.) A paraboloid
(left) becomes a bivariate Gaussian (right) after you compose it with a suitable scalar func-
tion (center).]

46 Jonathan Richard Shewchuk

[One of the main ideas is that if you understand the isosurfaces of a quadratic function, then you understand
the isosurfaces of a Gaussian, because they’re the same. The differences are in the isovalues—in particular,
the Gaussian achieves its maximum at the mean, and decreases to zero as you move infinitely far away from
the mean.]

The isocontours of (x − µ)⊤Σ−1(x − µ) are determined by eigenvectors/values of Σ1/2.

1

2

3

4

5 5

5

5

6 6

6

6

7

7

7

7

-2 -1 0 1 2
-2

-1

0

1

2

isocontours transformed
by Σ1/2

−→

1.

2.

2.

3.

3.

4.

4.

5.

5.

6.

6.

7.

7.

8.

8.

9.
9.

10.

10.

11.

11.

12.

12.

13.

13.

14.

14.

15.

15.

16.

16.

17.

17.

18.

18.

19.

19.

-2 -1 0 1 2
-2

-1

0

1

2

Aside: q(x) is the squared distance from Σ−1/2x to Σ−1/2µ. Consider the metric

d(x, µ) =
∥∥∥Σ−1/2x − Σ−1/2µ

∥∥∥ = √
(x − µ)⊤Σ−1(x − µ) =

√
q(x).

[So we think of the precision matrix as a “metric tensor” which defines a metric, a sort of warped distance
from x to the mean µ.]

Covariance

Let R, S be random variables—column vectors or scalars
Cov(R, S) = E[(R − E[R]) (S − E[S])⊤] = E[RS ⊤] − µR µ

⊤
S

Var(R) = Cov(R,R)
If R is a vector, covariance matrix for R is

Var(R) =

Var(R1) Cov(R1,R2) . . . Cov(R1,Rd)

Cov(R2,R1) Var(R2) Cov(R2,Rd)
...

. . .
...

Cov(Rd,R1) Cov(Rd,R2) . . . Var(Rd)

 [symmetric; each Ri is scalar]

For a Gaussian R ∼ N(µ,Σ), one can show Var(R) = Σ. [. . . as you did in Homework 2.]
[An important point is that statisticians didn’t just arbitrarily decide to call Σ a covariance matrix. Rather,
statisticians discovered that if you find the covariance of the normal distribution by integration, it turns out
that the covariance is Σ. This is a happy fact; it’s rather elegant.]

Ri, R j independent ⇒ Cov(Ri,R j) = 0 [the reverse implication is not generally true, but . . .]
Cov(Ri,R j) = 0 AND multivariate normal dist. ⇒ Ri, R j independent

all features pairwise independent ⇒ Var(R) is diagonal [the reverse is not generally true, but . . .]
Var(R) is diagonal AND joint normal

⇔ f (x)︸︷︷︸
multivariate

= f (x1) f (x2) · · · f (xd)︸ ︷︷ ︸
univariate Gaussians

⇒ ellipsoids are axis-aligned, with squared radii on diagonal of Σ = Var(R)

[So when the features are independent, you can write the multivariate Gaussian PDF as a product of uni-
variate Gaussian PDFs. When they aren’t, you can do a change of coordinates to the eigenvector coordinate
system, and write it as a product of univariate Gaussian PDFs in eigenvector coordinates. You did something
very similar in Q6.2 of Homework 2.]

Anisotropic Gaussians: Maximum Likelihood Estimation, QDA, and LDA 47

9 Anisotropic Gaussians: Maximum Likelihood Estimation, QDA, and LDA

ANISOTROPIC GAUSSIANS AND GDA

[Recall from our last lecture the probability density function of the multivariate normal distribution in its
full generality. x and µ are d-vectors.]

Normal PDF: f (x) = n(q(x)), n(q) =
1√

(2π)d |Σ|
e−q/2, q(x) = (x − µ)⊤ Σ−1 (x − µ).

↑ ↑ ↑

R→ R, exponential determinant of Σ Rd → R, quadratic

[The covariance matrix Σ and its symmetric square root and its inverse all play roles in our intuition about
the multivariate normal distribution. Consider their eigendecompositions.]

Σ = VΓV⊤ covariance matrix
↑ eigenvalues of Σ are variances along the eigenvectors, Γii = σ

2
i

Σ1/2 = VΓ1/2V⊤ maps spheres to ellipsoids (Σ1/2 was A in last lecture)
↑ eigenvalues of Σ1/2 are Gaussian widths / ellipsoid radii / standard deviations,

√
Γii = σi

1

2

3

4

5 5

5

5

6 6

6

6

7

7

7

7

-2 -1 0 1 2
-2

-1

0

1

2

Σ1/2

−→

1.

2.

2.

3.

3.

4.

4.

5.

5.

6.

6.

7.

7.

8.

8.

9.
9.

10.

10.

11.

11.

12.

12.

13.

13.

14.

14.

15.

15.

16.

16.

17.

17.

18.

18.

19.

19.

-2 -1 0 1 2
-2

-1

0

1

2

←− quadratic form
q(x) = (x− µ)⊤ Σ−1 (x− µ)

Σ−1 = VΓ−1V⊤ precision matrix (metric tensor) [↑ quadratic form of Σ−1 defines contours]

[Recall from last lecture
that the isocontours of the
multivariate normal
distribution are the same as
the isocontours of the
quadratic form of the
precision matrix Σ−1.]

1.

2.

2.

3.

3.

4.

4.

5.

5.

6.

6.

7.

7.

8.

8.

9.
9.

10.

10.

11.

11.

12.

12.

13.

13.

14.

14.

15.

15.

16.

16.

17.

17.

18.

18.

19.

19.

-2 -1 0 1 2
-2

-1

0

1

2

q(x)

→

0 1 2 3 4
x

0.05

0.10

0.15

n(x)

n(·)

→

0.036

0.036

0.072

0.072

0.108

0.108
0.144

0.144

0.18

0.216

0.252

0.288

0.324

0.36

-2 -1 0 1 2
-2

-1

0

1

2

f (x) = n(q(x))

48 Jonathan Richard Shewchuk

Maximum Likelihood Estimation for Anisotropic Gaussians

Given training points X1, . . . , Xn and classes y1, . . . , yn, find best-fit Gaussians.
Let nC = # of training pts in class C.

[Once again, we want to fit the Gaussian that maximizes the likelihood of generating the training points in a
specified class. This time I won’t derive the maximum-likelihood Gaussian; I’ll just tell you the answer.]

For QDA:

Σ̂C =
1

nC

∑
i:yi=C

(Xi − µ̂C) (Xi − µ̂C)⊤︸ ︷︷ ︸
outer product matrix, d × d

⇐ conditional covariance for pts in class C

Prior π̂C, mean µ̂C: same as last week
[π̂C is number of points in class C ÷ total training points; µ̂C is mean of training points in class C.]

maxlike.jpg [Maximum likelihood estimation takes these points and outputs this Gaussian].

Σ̂C is positive semidefinite, but not always definite!
[If there are some zero eigenvalues, the standard version of QDA just doesn’t work. We can try to fix it by
eliminating the zero-variance dimensions (eigenvectors). Homework 3 suggests a way to do that.]

For LDA:

Σ̂ =
1
n

∑
C

∑
i:yi=C

(Xi − µ̂C) (Xi − µ̂C)⊤ ⇐ pooled within-class covariance matrix

Anisotropic Gaussians: Maximum Likelihood Estimation, QDA, and LDA 49

[Let’s revisit QDA and LDA and see what has changed now that we use the multivariate normal distribution
in its full, anisotropic generality. The short answer is “not much has changed, but the graphs look cooler.”
Conflicting notation warning: capital X represents a random variable, but later it will represent a matrix.]

QDA

Choosing C that maximizes P(Y = C|X = x) is equivalent to maximizing the quadratic discriminant fn

QC(x) = ln
(
(
√

2π)d fX|Y=C(x) πC
)
= −

1
2

(x − µC)⊤ Σ−1
C (x − µC) −

1
2

ln |ΣC| + ln πC.

[This works for any number of classes. In a multi-class problem, you just pick the class with the greatest
quadratic discriminant for x.]

2 classes: Decision fn QC(x) − QD(x) is quadratic, but may be indefinite.
⇒ Decision boundary is a quadric.
Posterior is P(Y = C|X = x) = s(QC(x) − QD(x)) where s(·) is logistic fn.

fX|Y=C(x) & fX|Y=D(x)

-3 -2 -1 0 1 2 3
-3

-2

-1

0

1

2

3
QC − QD

-3 -2 -1 0 1 2 3
-3

-2

-1

0

1

2

3 →

-4 -2 0 2 4
x

0.2

0.4

0.6

0.8

1.0
s(x)

s(·)

→
s(QC − QD)

0.1

0.1

0.2
0.2

0.3

0.3

0.40.4
0.5

0.5

0.6

0.6

0.7

0.7

0.8

0.8

0.9

0.9

-3 -2 -1 0 1 2 3
-3

-2

-1

0

1

2

3

qdaaniso3d.pdf, qdaanisocontour.pdf, qdaanisodiff3d.pdf, qdaanisodiffcontour.pdf,

logistic.pdf, qdaanisoposterior3d.pdf, qdaanisoposteriorcontour.pdf
[(Show this figure on a separate “whiteboard.”) An example where the decision boundary
is a hyperbola—which is not possible with isotropic Gaussians. At left, two anisotropic
Gaussians. Center left, the difference QC − QD. After applying the logistic function to this
difference we obtain the posterior probabilities at right, which tells us the probability that
x is in class C. Observe that we can see the decision boundary in both contour plots: it is
QC − QD = 0 and s(QC − QD) = 0.5. We don’t need to apply the logistic function to find
the decision boundary, but we do need to apply it if we want the posterior probabilities.]

50 Jonathan Richard Shewchuk

[If we actually know the exact, true parameters πC, µC, and ΣC, this procedure gives us the Bayes optimal
decision boundary. By contrast, when we compute approximations π̂C, µ̂C, and Σ̂C from data, that is the
QDA algorithm. We hope the QDA decision boundary will approximate the Bayes optimal decision bound-
ary. Sometimes in our textbooks, you will see examples where they plot both the Bayes optimal decision
boundary and the decision boundary computed by a learning algorithm. (See the figure two pages forward.)
When you see that, the authors know the exact, true probability distributions because they have chosen them
and written a program that produces synthetic data from those distributions. With data from the real world,
you cannot know the Bayes optimal decision boundary.]

Multi-class QDA:

aniso.pdf [When you have many classes, their QDA decision boundaries form an
anisotropic Voronoi diagram. Interestingly, a cell of this diagram might not be connected.]

LDA

One Σ for all classes. Decision fn is
[Once again, the quadratic terms cancel each other out so the decision function is linear and the decision
boundary is a hyperplane.]

QC(x) − QD(x) = (µC − µD)⊤ Σ−1 x︸ ︷︷ ︸
w⊤x

−
µ⊤C Σ

−1 µC − µ
⊤
D Σ
−1 µD

2
+ ln πC − ln πD︸ ︷︷ ︸

+α

.

Decision boundary is w⊤x + α = 0.
Posterior is P(Y = C|X = x) = s(w⊤x + α).

Multi-class LDA: choose class C that maximizes the linear discriminant fn

µ⊤C Σ
−1 x −

µ⊤C Σ
−1 µC

2
+ ln πC. [works for any # of classes]

[Note that we use a linear solver to efficiently compute µ⊤C Σ
−1 just once, so the classifier can evaluate test

points quickly.]

Anisotropic Gaussians: Maximum Likelihood Estimation, QDA, and LDA 51

fX|Y=C(x) & fX|Y=D(x)

-3 -2 -1 0 1 2 3
-3

-2

-1

0

1

2

3

QC − QD

-3 -2 -1 0 1 2 3
-3

-2

-1

0

1

2

3 →

-4 -2 0 2 4
x

0.2

0.4

0.6

0.8

1.0
s(x)

s(·)

→
s(QC − QD)

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9
-3 -2 -1 0 1 2 3

-3

-2

-1

0

1

2

3

ldaaniso3d.pdf, ldaanisocontour.pdf, ldaanisodiff3d.pdf, ldaanisodiffcontour.pdf,

logistic.pdf, ldaanisoposterior3d.pdf, ldaanisoposteriorcontour.pdf
[(Show this figure on a separate “whiteboard.”) In LDA, the decision boundary is always a
hyperplane. Note that Mathematica messed up the top left plot a bit; there should be no red
in the left corner, nor blue in the right corner.]

o

o

o
o

o

o o

o

o

o

o

o

o

o o

o

o

o

o

o

o

o

o

o

o

o

o

oo

o
o

o

o
o

o

o

o
o

o

o

o

o

o

o

o

o

o
o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o o

o

oo

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o
o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o
o

o

o

o

o

o

o

o

o

o

o

o

o
o o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o
o

o

o

o

oo

o

o

o

o

o

o

o

o o

o

o

o

o

o
o

o

o

o

o
o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o
o

oo

o

o o

o

o

o

o

o

o

o

o

o
o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o
o

o

o

o

o
o

o

o

o

o

o

o

oo

o

o

o

o

o

o

o

o

o o

o

o

o

o

o

o

o

o

o

oo

o

o

o

o
o

o

o

o

o
o

o

o

o

o

o

o

o

o

o

o

o o

o

o

o

o

o

o

o

o

o

o

o
o

o

o

o

o

o

o

o

o

o

o

o
o

o

o

o

o

o
o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o
o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o
o

o

o

o

o

o

o

o

o

o

o
o

o

o

o

o

o

o

o

o

o

o

o
o

o

o

o

o

o

o

oo

o

o
o o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

oo

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

••

••

••

•• ••
•• ••

••

••

••

••

LDAdata.pdf (ESL, Figure 4.11) [An example of LDA with messy data. The real-world
distributions almost surely aren’t Gaussians, but LDA still works reasonably well.]

52 Jonathan Richard Shewchuk

Notes on QDA/LDA

– For 2 classes,
– LDA has d + 1 parameters (w, α);

– QDA has
d(d + 3)

2
+ 1 params;

– LDA more likely to underfit;
– QDA more likely to overfit. [The danger is much bigger when the dimension d is large.]

−4 −2 0 2 4

−
4

−
3

−
2

−
1

0
1

2

−4 −2 0 2 4

−
4

−
3

−
2

−
1

0
1

2

X
2

ldaqda.pdf (ISL, Figure 4.9) [In these examples, the Bayes optimal decision boundary is
purple (and dashed), the QDA decision boundary is green, the LDA decision boundary is
black (and dotted). When the Bayes optimal boundary is linear, as at left, LDA gives a
more stable fit whereas QDA may overfit. When the Bayes optimal boundary is curved, as
at right, QDA often gives you a better fit.]

– QDA on data doesn’t find true optimum Bayes classifier.
– estimate distributions from finite data.
– real-world data not perfectly Gaussian.

– Changing priors or loss = adding constants to discriminant fns.
[So it’s very easy. In the 2-class case, it’s equivalent to changing the isovalue . . .]

– Posterior gives decision boundaries for 10% probability, 50%, 90%, etc.
choosing isovalue = probability p is equivalent to

– choosing asymmetrical loss p for false positive, 1 − p for false negative; OR
– choosing πC = 1 − p, πD = p.

– With added features, LDA can give nonlinear boundaries; QDA nonquadratic.

[LDA & QDA are the best method in practice for many applications. In the STATLOG project, either LDA
or QDA were among the top three classifiers for 10 out of 22 datasets. But it’s not because all those datasets
are Gaussian. LDA & QDA work well when the data can only support simple decision boundaries such as
linear or quadratic, because Gaussian models provide stable estimates. See ESL, Section 4.3.]

Anisotropic Gaussians: Maximum Likelihood Estimation, QDA, and LDA 53

Some Terms

Let X be n × d design matrix of sample pts
Each row i of X is a sample pt X⊤i .

[Now I’m using capital X as a matrix instead of a random variable vector. I’m treating Xi as a column vector
to match the standard convention for multivariate PDFs like the Gaussian, but X⊤i is a row of X.]

centering X: subtracting µ⊤ from each row of X. X → Ẋ
[µ⊤ is the mean of all the rows of X. Now the mean of all the rows of Ẋ is zero.]

Let R be drawn from uniform distribution on sample pts. Sample covariance matrix is

Var(R) =
1
n

Ẋ⊤Ẋ.

[This is the simplest way to remember how to compute a covariance matrix for QDA. Imagine you have a
design matrix XC that contains only the sample points of class C; then you have Σ̂C =

1
nC

Ẋ⊤C ẊC.]

[When we have points from an anisotropic Gaussian distribution, sometimes it’s useful to perform a linear
transformation that maps them to an axis-aligned distribution, or maybe even to an isotropic distribution.]

decorrelating Ẋ: applying rotation Z = ẊV , where Var(R) = VΛV⊤

[rotates the sample points to the eigenvector coordinate system]

Then Var(Z) = Λ. [Z has diagonal covariance. If Xi ∼ N(µ,Σ), then approximately, Zi ∼ N(0,Λ).]
[Proof: Var(Z) = 1

n Z⊤Z = 1
n V⊤Ẋ⊤ẊV = V⊤Var(R)V = V⊤VΛV⊤V = Λ.]

original.jpg, centered.jpg, decorrelated.jpg, whitened.jpg

sphering Ẋ: applying transform W = Ẋ Var(R)−1/2 [Recall that Σ−1/2 maps ellipsoids to spheres.]

whitening X: centering + sphering, X → W

Then W has covariance matrix I. [If Xi ∼ N(µ,Σ), then approximately, Wi ∼ N(0, I).]

[Whitening input data is often used with other machine learning algorithms, like SVMs and neural networks.
The idea is that some features may be much bigger than others—for instance, because they’re measured in
different units. SVMs penalize violations by large features more heavily than they penalize small features.
Whitening the data before you run an SVM puts the features on an equal basis.]

[One nice thing about discriminant analysis is that whitening is built in.]

[Incidentally, what we’ve done here—computing a sample covariance matrix and its eigenvectors/values—
is about 75% of an important unsupervised learning method called principal components analysis, or PCA,
which we’ll learn later in the semester.]

54 Jonathan Richard Shewchuk

10 Regression, including Least-Squares Linear and Logistic Regression

REGRESSION aka Fitting Curves to Data

Classification: given point x, predict class (often binary)
Regression: given point x, predict a numerical value

[Classification gives a discrete prediction, whereas regression gives us a quantitative prediction, usually on
a continuous scale.]
[We’ve already seen an example of regression in Gaussian discriminant analysis. QDA and LDA don’t just
give us a classifier; they also give us the probability that a particular class label is correct. So QDA and LDA
do regression on probability values.]

– Choose form of regression fn h(x; w) with parameters w (h = hypothesis)
– like decision fn in classification [e.g., linear, quadratic, logistic in x]

– Choose a cost fn (objective fn) to optimize
– usually based on a loss fn; e.g., empirical risk = expected loss

Some regression fns:
(1) linear: h(x; w, α) = w · x + α
(2) polynomial [equivalent to linear regression with added polynomial features]
(3) logistic: h(x; w, α) = s(w · x + α) recall: logistic fn s(γ) = 1

1+e−γ
[The last choice is interesting. You’ll recall that LDA produces a posterior probability function with this
expression. So the logistic function seems to be a natural form for modeling certain probabilities. If we want
to model posterior probabilities, sometimes we use LDA; but alternatively, we could skip fitting Gaussians
to points, and instead just try to directly fit a logistic function to a set of probabilities.]

Some loss fns: let z be prediction h(x); y be true label
(A) L(z, y) = (z − y)2 squared error
(B) L(z, y) = |z − y| absolute error
(C) L(z, y) = −y ln z − (1 − y) ln(1 − z) logistic loss, aka cross-entropy: y ∈ [0, 1], z ∈ (0, 1)

Some cost fns to minimize:
(a) J(h) = 1

n
∑n

i=1 L(h(Xi), yi) mean loss [you can leave out the “ 1
n ”]

(b) J(h) = maxn
i=1 L(h(Xi), yi) maximum loss

(c) J(h) =
∑n

i=1 ωi L(h(Xi), yi) weighted sum [some points are more important than others]
(d) J(h) = (a), (b), or (c) +λ∥w∥2 ℓ2 penalized/regularized
(e) J(h) = (a), (b), or (c) +λ∥w∥ℓ1 ℓ1 penalized/regularized

Some famous regression methods:
Least-squares linear regr.: (1) + (A) + (a)
Weighted least-squ. linear: (1) + (A) + (c)
Ridge regression: (1) + (A) + (a) + (d)
Lasso: (1) + (A) + (a) + (e)
Logistic regr.: (3) + (C) + (a)
Least absolute deviations: (1) + (B) + (a)
Chebyshev criterion: (1) + (B) + (b)

 quadratic cost; minimize w/calculus

quadratic program
convex cost; minimize w/gradient descent}
linear program

[I have given you several choices of regression function, several choices of loss function, and several choices
of objective function. You can snap one part out and replace it with a different one. But the optimization
algorithm and its speed depend crucially on which parts you pick. Let’s consider some examples.]

Regression, including Least-Squares Linear and Logistic Regression 55

LEAST-SQUARES LINEAR REGRESSION (Gauss, 1801)

Linear regression fn (1) + squared loss fn (A) + cost fn (a).

Find w, α that minimizes
n∑

i=1

(Xi · w + α − yi)2

•• •

•

•

• •

•
•

•
•

••

•

•

•

•
•

•

•

•

•

•

•

•

••

•

•
• •

•

•

•

•

•

•

• •
•

•

•

•

•

•

•

•

•

•

•

••
•

•

•

•

•
•

•

• •

•

• •

•
•

• •
••

•

•

•

•

X1

X2

linregress.pdf (ISL, Figure 3.4) [An example of linear regression.]

Convention: X is n × d design matrix of sample pts
y is n-vector of scalar labels

X11 X12 . . . X1 j . . . X1d

X21 X22 X2 j X2d
...

Xi1 Xi2 Xi j Xid
...

Xn1 Xn2 Xn j Xnd

← point X⊤i

y1
y2

...

yn

↑ ↑

feature column X∗ j y

Usually n > d. [But not always.]

Recall fictitious dimension trick [from Lecture 3]: rewrite h(x) = x · w + α as

[x1 x2 1] ·

 w1
w2
α

 .
Now X is an n × (d + 1) matrix; w is a (d + 1)-vector. [We’ve added a column of all-1’s to the end of X.]
[We rewrite the optimization problem above:]

Find w that minimizes ∥Xw − y∥2 = RSS(w), for residual sum of squares

56 Jonathan Richard Shewchuk

Optimize by calculus:

minimize RSS(w) = w⊤X⊤Xw − 2y⊤Xw + y⊤y

∇ RSS = 2X⊤Xw − 2X⊤y = 0

⇒ X⊤X︸︷︷︸
(d+1)×(d+1)

w = X⊤y︸ ︷︷ ︸
(d+1)−vectors

⇐ the normal equations [w unknown; X & y known]

If X⊤X is singular, problem is underconstrained
[because the sample points all lie on a common hyperplane. Notice that X⊤X is always positive semidefinite.]

We use a linear solver to find w = (X⊤X)−1X⊤︸ ︷︷ ︸
X+, the pseudoinverse of X, (d+1)×n

y [never actually invert the matrix!]

[We never compute X+ directly, but we are interested in the fact that w is a linear transformation of y.]
[X is usually not square, so X can’t have an inverse. However, every X has a pseudoinverse X+, and if X⊤X
is invertible, then X+ is a “left inverse.”]

Observe: X+X = (X⊤X)−1X⊤X = I ⇐ (d + 1) × (d + 1) [which explains the name “left inverse”]

Observe: the predicted values of yi are ŷi = w · Xi ⇒ ŷ = Xw = XX+y = Hy
where H︸︷︷︸

n×n

= XX+ is called the hat matrix because it puts the hat on y

[Ideally, H would be the identity matrix and we’d have a perfect fit, but if n > d + 1, then H is singular.]

Advantages:
– Easy to compute; just solve a linear system.
– Unique, stable solution. [. . . except when the problem is underconstrained.]

Disadvantages:
– Very sensitive to outliers, because errors are squared!
– Fails if X⊤X is singular. [Which means the problem is underconstrained, has multiple solutions.]

[In discussion section 6, we’ll address how to handle the underconstrained case where X⊤X is singular.]

[Apparently, least-squares linear regression was first posed and solved in 1801 by the great mathematician
Carl Friedrich Gauss, who used least-squares regression to predict the trajectory of the planetoid Ceres.
A paper he wrote on the topic is regarded as the birth of modern linear algebra.]

LOGISTIC REGRESSION (David Cox, 1958)

Logistic regression fn (3) + logistic loss fn (C) + cost fn (a).
Fits “probabilities” in range (0, 1).

Usually used for classification. The input yi’s can be probabilities,
but in most applications they’re all 0 or 1.

QDA, LDA: generative models
logistic regression: discriminative model
[We’ve learned from LDA that in classification, the posterior probabilities are often modeled well by a
logistic function. So why not just try to fit a logistic function directly to the data, skipping the Gaussians?]

Regression, including Least-Squares Linear and Logistic Regression 57

With X and w including the fictitious dimension; α is w’s last component . . .
Find w that minimizes

J =
n∑

i=1

L(s(Xi · w), yi) = −
n∑

i=1

yi ln s(Xi · w) + (1 − yi) ln (1 − s(Xi · w))

L(z, 0)

0.0 0.2 0.4 0.6 0.8 1.0
z

1

2

3

4
L(z)

L(z, 0.7)

0.0 0.2 0.4 0.6 0.8 1.0
z

1

2

3

4
L(z)

logloss0.pdf, loglosspt7.pdf [Plots of the loss L(z, y) for y = 0 (left) and y = 0.7 (right). As
you might guess, the left function is minimized at z = 0, and the right function is minimized
at z = 0.7. These loss functions are always convex.]

J(w) is convex! Solve by gradient descent.
[To do gradient descent, we’ll need to compute some derivatives.]

s′(γ) =
d

dγ
1

1 + e−γ
=

e−γ

(1 + e−γ)2

= s(γ) (1 − s(γ))

-4 -2 0 2 4
x

0.2

0.4

0.6

0.8

1.0
s(x)

-4 -2 0 2 4
x

0.05

0.10

0.15

0.20

0.25
s� (x)

logistic.pdf, dlogistic.pdf [Plots of s(γ) (left) and s′(γ) (right).]

Let si = s(Xi · w)

∇w J = −
∑(

yi

si
∇si −

1 − yi

1 − si
∇si

)
= −

∑(
yi

si
−

1 − yi

1 − si

)
si(1 − si) Xi

= −
∑

(yi − si) Xi

= −X⊤(y − s(Xw)) where s(Xw) =

s1
s2
...

sn

 [applies s component-wise to Xw]

58 Jonathan Richard Shewchuk

Gradient descent rule: w← w + ϵ X⊤(y − s(Xw))

Stochastic gradient descent: w← w + ϵ (yi − s(Xi · w)) Xi

Works best if we shuffle points in random order, process one by one.
For very large n, sometimes converges before we visit all points!

[This looks a lot like the perceptron learning rule. The only difference is that the “−si” part is new.]

Starting from w = 0 works well in practice.

problogistic.png, by “mwascom” of Stack Overflow

http://stackoverflow.com/questions/28256058/plotting-decision-boundary-of-logistic-regression
[An example of logistic regression.]

If sample pts are linearly separable and w · x = 0 separates them (with decision boundary touching no pt),
scaling w to have infinite length causes s(Xi ·w)→ 1 for a pt i in class C, s(Xi ·w)→ 0 for a pt not in class C,
and J(w)→ 0 [in the limit as ∥w∥ → ∞].

[Moreover, this is the only way to get the cost function J to approach zero.]

Therefore, logistic regression always separates linearly separable pts!

[In this case, the cost function J(w) has no finite local minimum, but gradient descent will “converge” to a
solution, in the sense that the cost J will get arbitrarily close to zero, though of course the weight vector w
will never become infinitely long.]

[A 2018 paper by Soudry, Hoffer, Nacson, Gunasekar, and Srebro shows that gradient descent applied to
logistic regression eventually converges to the maximum margin classifier, but the convergence is very, very
slow. In practice, logistic regression will usually find a linear separator reasonably quickly, but it’s not a
practical algorithm for maximizing the margin in a reasonable amount of time.]

More Regression; Newton’s Method; ROC Curves 59

11 More Regression; Newton’s Method; ROC Curves

LEAST-SQUARES POLYNOMIAL REGRESSION

Replace each Xi with feature vector Φ(Xi) with all terms of degree 0 . . . p

e.g., Φ(Xi) = [X2
i1 Xi1Xi2 X2

i2 Xi1 Xi2 1]⊤

[Notice that we’ve added the fictitious dimension “1” here, so we don’t need to add it again to do linear or
logistic regression. This basis covers all polynomials quadratic in Xi1 and Xi2.]

Otherwise just like linear or logistic regression.

Log. reg. + quadratic features = same form of posteriors as QDA.

Very easy to overfit!

overunder.png, degree20.png, UScensusquartic.png

[Here are some examples of polynomial overfitting, to show the importance of choosing the polynomial
degree very carefully. At left, we have sampled points from a degree-3 curve (black) with added noise. We
show best-fit polynomials of degrees 2, 4, 6, and 8 found by regression of the black points. The degree-4
curve (green) fits the true curve (black) well, whereas the degree-2 curve (red) underfits and the degree-6
and 8 curves (blue, yellow) overfit the noise and oscillate. The oscillations in the yellow degree-8 curve are
a characteristic problem of polynomial interpolation.]

[At upper right, a degree-20 curve shows just how insane high-degree polynomial oscillations can get. It
takes a great deal of densely spaced data to tame the oscillations in a high degree curve, and there isn’t
nearly enough data here.]

[At lower right, somebody has regressed a degree-4 curve to U.S. census population numbers. The curve
doesn’t oscillate, but can you nevertheless see a flaw? This shows the difficulty of extrapolation outside the
range of the data. As a general rule, extrapolation is much harder than interpolation. The k-nearest neighbor
classifier is one of the few that does extrapolation decently without occasionally returning crazy values.]

60 Jonathan Richard Shewchuk

order10extrap.pdf [From Mehta, Wang, Day, Richardson, Bukov, Fisher, and Schwab, “A
High-Bias, Low-Variance Introduction to Machine Learning for Physicists.”]

[This example shows that a fitted degree-10 polynomial (green) can be tamed by using a very large amount
of training data (left), even if the training data is noisy. The training data was generated from a different
degree-10 polynomial, with noise added. On the right, the same curves are plotted, but the blue diamonds
are test points, some of which go outside the range of the training data. We see that the degree-10 regression
does decent extrapolation for a short distance, albeit only because the original data was also from a degree-10
polynomial.]

WEIGHTED LEAST-SQUARES REGRESSION

Linear regression fn (1) + squared loss fn (A) + cost fn (c).

[The idea of weighted least-squares is that some sample points might be more trusted than others, or there
might be certain points you want to fit particularly well. So you assign those more trusted points a higher
weight. If you suspect some points of being outliers, you can assign them a lower weight.]

Assign each sample pt a weight ωi; collect ωi’s in n × n diagonal matrix Ω.

Greater ωi → work harder to minimize (ŷi − yi)2 recall: ŷ = Xw [ŷi is predicted label for Xi]

Find w that minimizes (Xw − y)⊤Ω(Xw − y) =

n∑
i=1

ωi (Xi · w − yi)2

[As with ordinary least-squares regression, we find the minimum by setting the gradient to zero, which leads
us to the normal equations.]
Solve for w in normal equations: X⊤ΩXw = X⊤Ωy

NEWTON’S METHOD

Iterative optimization method for smooth fn J(w).
Often much faster than gradient descent. [We’ll use Newton’s method for logistic regression.]

Idea: You’re at point v. Approximate J(w) near v by quadratic fn.
Jump to its unique critical pt. Repeat until bored.

More Regression; Newton’s Method; ROC Curves 61

-2 2 4

-20

-10

10

20

30

40

50

-2 2 4

-20

-10

10

20

30

40

50

-2 2 4

-20

-10

10

20

30

40

50

newton1.pdf, newton2.pdf, newton3.pdf [Three iterations of Newton’s method in one-
dimensional space. We seek the minimum of the blue curve, J. Each brown curve is a
local quadratic approximation to J. Each iteration, we jump to the bottom of the brown
parabola.]

newton2D.png [Steps taken by Newton’s method in two-dimensional space.]

Taylor series about v:

∇J(w) = ∇J(v) + (∇2J(v)) (w − v) + O(∥w − v∥2)

where ∇2J(v) is the Hessian matrix of J at v.

Find critical pt w by setting ∇J(w) = 0:

w = v − (∇2J(v))−1 ∇J(v)

[This is an iterative update rule you can repeat until it converges to a solution. As usual, we probably don’t
want to compute a matrix inverse directly. It is faster to solve a linear system of equations, typically by
Cholesky factorization or the conjugate gradient method.]

Newton’s method:

pick starting point w
repeat until convergence

e← solution to linear system (∇2J(w)) e = −∇J(w)
w← w + e

62 Jonathan Richard Shewchuk

Warning: Doesn’t know difference between minima, maxima, saddle pts.
Starting pt must be “close enough” to desired critical pt.

[If the objective function J is actually quadratic, Newton’s method needs only one step to find the exact
solution. The closer J is to quadratic, the faster Newton’s method tends to converge.]

[Newton’s method is superior to blind gradient descent for some optimization problems for several reasons.
First, it tries to find the right step length to reach the minimum, rather than just walking an arbitrary distance
downhill. Second, rather than follow the direction of steepest descent, it tries to choose a better descent
direction.]

[Nevertheless, it has some major disadvantages. The biggest one is that computing the Hessian can be quite
expensive, and it has to be recomputed every iteration. It can work well for low-dimensional weight spaces,
but you would never use it for a neural network, because there are too many weights. Newton’s method
also doesn’t work for most nonsmooth functions. It particularly fails for the perceptron risk function, whose
Hessian is zero, except where the Hessian is not even defined.]

LOGISTIC REGRESSION (continued)

[Let’s use Newton’s method to solve logistic regression faster.]

Recall: s′(γ) = s(γ) (1 − s(γ)), si = s(Xi · w), s =

s1
s2
...

sn

 ,
∇w J = −

n∑
i=1

(yi − si) Xi = −X⊤(y − s)

[Now let’s derive the Hessian too, so we can use Newton’s method.]

∇2
w J(w) =

n∑
i=1

si(1 − si) XiX⊤i = X⊤ΩX where Ω =

s1(1 − s1) 0 . . . 0

0 s2(1 − s2) 0
...

. . .
...

0 0 . . . sn(1 − sn)

Ω is +ve definite ∀w ⇒ X⊤ΩX is +ve semidefinite ∀w ⇒ J(w) is convex.
[The logistic regression cost function is convex, so Newton’s method finds a globally optimal point if it
converges at all.]

Newton’s method:

w← 0
repeat until convergence

e← solution to normal equations (X⊤ΩX) e = X⊤(y − s) Recall: Ω, s are fns of w
w← w + e

[Notice that this looks a lot like weighted least squares, but the weight matrix Ω and the right-hand-side
vector y − s change every iteration. So we call it . . .]
An example of iteratively reweighted least squares.

More Regression; Newton’s Method; ROC Curves 63

[We need to be very careful with the analogy, though. The weights don’t have the same meaning they
had when we learned weighted least-squares regression, because there is no Ω on the right-hand side of
(X⊤ΩX) e = X⊤(y − s). Contrary to what you’d expect, a small weight in Ω causes the Newton iteration to
put more emphasis on a point when it computes e.]

[Misclassified points far from the decision boundary have the most influence on the step e, and correctly
classified points far from the decision boundary have the least (because yi − si is small for such a point).
Points near the decision boundary have medium influence. But if there are no misclassified points far from
the decision boundary, then points near the decision boundary have most of the influence.]

[Here’s one more idea for speeding up logistic regression.] Idea: If n very large, save time by using a random
subsample of the pts per iteration. Increase sample size as you go.

[The principle is that the first iteration isn’t going to take you all the way to the optimal point, so why waste
time looking at all the sample points? Whereas the last iteration should be the most accurate one.]

LDA vs. Logistic Regression

Advantages of LDA:
– For well-separated classes, LDA stable; log. reg. surprisingly unstable
– > 2 classes easy & elegant; log. reg. needs modifying (softmax regression)
– LDA slightly more accurate when classes nearly normal, especially if n is small

Advantages of log. reg.:
– More emphasis on decision boundary; always separates linearly separable pts

[Correctly classified points far from the decision boundary have a small effect on logistic regression—
albeit a bigger effect than they have on SVMs—whereas misclassified points far from the decision
boundary have the biggest effect. By contrast, LDA gives all the sample points equal weight when
fitting Gaussians to them. Weighting points according to how badly they’re misclassified is good for
reducing training error, but it can also be bad if you want stability or insensitivity to bad data.]

0.0 0.5 1.0 1.5 2.0

0
.0

0
.5

1
.0

1
.5

2
.0

x1

0.0 0.5 1.0 1.5 2.0

0
.0

0
.5

1
.0

1
.5

2
.0

x1

x
2

0.0 0.5 1.0 1.5 2.0

0
.0

0
.5

1
.0

1
.5

2
.0

x1

x
2

logregvsLDAuni.pdf [Logistic regression vs. LDA for a linearly separable data set with
a very narrow margin. Logistic regression (center) always succeeds in separating linearly
separable classes, because the cost function approaches zero for a correct linear separator.
In this example, LDA (right) misclassifies some of the training points.]

– More robust on some non-Gaussian distributions (e.g., dists. w/large skew)
– Naturally fits labels between 0 and 1 [usually probabilities]

[When you use logistic regression with added quadratic features, you get a quadric decision boundary, just
as you do with QDA. Based on what I’ve said here, do you think logistic regression with quadratic features
gives you exactly the same classifier as QDA?]

64 Jonathan Richard Shewchuk

ROC CURVES (for test sets)

ROC Curve

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

ROC.pdf

[This is a ROC curve. That stands for receiver operating characteristics, which is an awful name but we’re
stuck with it for historical reasons.
A ROC curve is a way to evaluate your classifier after it is trained.
It is made by running a classifier on the test set or validation set.
It shows the rate of false positives vs. true positives for a range of settings.
We assume there is a knob we can turn to trade off these two types of error. For our purposes, that knob is
the posterior probability threshold for Gaussian discriminant analysis or logistic regression.
However, neither axis of this plot is that knob.]

x-axis: “false positive rate = % of −ve classified as +ve”
y-axis: “true positive rate = % of +ve classified as +ve aka sensitivity”
“false negative rate”: vertical distance from curve to top [1− sensitivity]
“specificity”: horizontal distance from curve to right [1− false positive rate; “true negative rate”]
[You generate this curve by trying every probability threshold; for each threshold, measure the false positive
& true positive rates and plot a point.]

upper right corner: “always classify +ve (Pr ≥ 0)”
lower left corner: “always classify −ve (Pr > 1)”
diagonal: “random classifiers”
[A rough measure of a classifier’s effectiveness is the area under the curve. For a classifier that is always
correct, the area under the curve is one. For the random classifier, the area under the curve is 1/2, so you’d
better do better than that.]

[IMPORTANT: In practice, the trade-off between false negatives and false positives is usually negotiated by
choosing a point on this plot, based on real test data, and NOT by taking the choice of threshold that’s best
in theory.]

Statistical Justifications; the Bias-Variance Decomposition 65

12 Statistical Justifications; the Bias-Variance Decomposition

STATISTICAL JUSTIFICATIONS FOR REGRESSION

[So far, I’ve talked about regression as a way to fit curves to points. Recall that early in the semester I divided
machine learning into 4 levels: the application, the model, the optimization problem, and the optimization
algorithm. My last two lectures about regression were at the bottom two levels: optimization. The cost
functions that we optimize seem somewhat arbitrary. Today, let’s take a step up to the second level, the
model. I will describe some models, how they lead to those optimization problems, and how they contribute
to underfitting or overfitting.]

Typical model of reality:
– sample points come from unknown prob. distribution: Xi ∼ D
– y-values are sum of unknown, non-random fn + random noise:

∀Xi, yi = g(Xi) + ϵi, ϵi ∼ D′, D′ has mean zero

[We are positing that reality is described by a function g. We don’t know g, but g is not random; it represents
a consistent relationship between X and y that we can estimate. We add to g a random variable ϵ, which
represents measurement errors and all the other sources of statistical error when we measure real-world
phenomena. Notice that the noise is independent of X. That’s a pretty big assumption, and often it does not
apply in practice, but that’s all we’ll have time to deal with this semester. Also notice that this model leaves
out systematic errors, like when your measuring device adds one to every measurement, because we usually
can’t diagnose systematic errors from data alone.]

Goal of regression: find h that estimates g.
Ideal approach: choose h(x) = EY [Y |X = x]︸ ︷︷ ︸ = g(x) + E[ϵ] = g(x)

[If this expectation exists at all, it partly justifies our model of reality. We can retroactively define g to be
this expectation.]

Least-Squares Cost Function from Maximum Likelihood

Suppose ϵi ∼ N(0, σ2); then yi ∼ N(g(Xi), σ2)

Recall that log of normal PDF is

ln f (yi) = −
(yi − µi)2

2σ2 − constant ⇐ µi = g(Xi)

& log likelihood is

ℓ(g; X, y) = ln (f (y1) f (y2) · · · f (yn)) = ln f (y1) + . . . + ln f (yn) = −
1

2σ2

∑
(yi − g(Xi))2 − constant

Takeaway: Max likelihood on “parameter” g⇒ estimate g by least-squares regression

[We treat g as a “distribution parameter.” MLE tells us to choose a g that minimizes
∑

(yi − g(Xi))2.]

[So if the noise is normally distributed, maximum likelihood justifies using the least-squares cost function.]
[However, I’ve told you in previous lectures that least-squares is very sensitive to outliers. If the error is
truly normally distributed, that’s not a big deal, especially when you have a lot of sample points. But in
the real world, the distribution of outliers often isn’t normal. Outliers might come from wrongly measured
measurements, data entry errors, anomalous events, or just not having a normal distribution. When you have
a heavy-tailed distribution, for example, least-squares isn’t a good choice.]

66 Jonathan Richard Shewchuk

Empirical Risk

The risk for hypothesis h is expected loss R(h) = E[L] over all (X,Y) in some joint distribution.
Discriminative model: we don’t know X’s dist. D. How can we minimize risk?
[If we have a generative model, we can estimate the joint probability distribution for X and Y and derive the
expected loss. That’s what we did for Gaussian discriminant analysis. But today I’m assuming we don’t
have a generative model, so we don’t know those probabilities. Instead, we approximate the distribution in
a very crude way: we pretend that the sample points are the distribution.]

Empirical distribution: the discrete uniform distribution over the sample pts

Empirical risk: expected loss under empirical distribution

R̂(h) =
1
n

n∑
i=1

L(h(Xi), yi)

[The hat on the R indicates it’s only a cheap approximation of the true, unknown statistical risk we re-
ally want to minimize. Often, this is the best we can do. For many but not all distributions, the em-
pirical risk converges to the true risk in the limit as n → ∞. Choosing h that minimizes R̂ is called
empirical risk minimization.]

Takeaway: this is why we [usually] minimize the sum of loss fns.

Logistic Loss from Maximum Likelihood

What cost fn should we use for probabilities?

Actual probability pt Xi is in the class is yi; predicted prob. is h(Xi).

Imagine β duplicate copies of Xi: yi β are in the class, (1 − yi) β are not.
[The size of β isn’t very important, but imagine that yi β and (1 − yi) β are both integers for all i.]

[If we use maximum likelihood estimation to choose the hypothesis most likely to generate this sequence of
sample points and labels, we get the following likelihood.]

Likelihood is L(h; X, y) =
n∏

i=1

h(Xi)yi β(1 − h(Xi))(1−yi) β

Log likelihood is ℓ(h) = lnL(h)

= β
∑

i

yi ln h(Xi) + (1 − yi) ln(1 − h(Xi))

= −β
∑

logistic loss fn L(h(Xi), yi).

Takeaway: Max likelihood⇒ minimize
∑

logistic losses.
[So the principle of maximum likelihood explains where the weird logistic loss function comes from.]

Statistical Justifications; the Bias-Variance Decomposition 67

THE BIAS-VARIANCE DECOMPOSITION

There are 2 sources of error in a hypothesis h:
bias: error due to inability of hypothesis h to fit g perfectly

e.g., fitting quadratic g with a linear h
variance: error due to fitting random noise in data

e.g., we fit linear g with a linear h, yet h , g.

Model: Xi ∼ D, ϵi ∼ D′, yi = g(Xi) + ϵi [remember that D′ has mean zero]
fit hypothesis h to X, y

Now h is a random variable; i.e., its weights are random

Consider arbitrary pt z ∈ Rd (not necessarily a sample pt!) & γ = g(z) + ϵ, ϵ ∼ D′

[So z is arbitrary, whereas γ is random.]
Note: E[γ] = g(z); Var(γ) = Var(ϵ) [the mean comes from g, and the variance comes from ϵ]

Risk fn when loss = squared error:

R(h) = E[L(h(z), γ)]
↑ take expectation over possible training sets X, y & values of γ

[Stop and take a close look at this expectation. Remember that the hypothesis h is a random variable. We are
taking a mean over the probability distribution of hypotheses. That seems pretty weird if you’ve never seen
it before. But remember, the training data X and y come from a joint probability distribution. We use the
training data to choose weights, so the weights that define h also come from some probability distribution.
It might be hard to work out what that distribution is, but it exists. This “E[·]” is integrating the loss over all
possible values of the weights.]

= E[(h(z) − γ)2]

= E[h(z)2] + E[γ2] − 2 E[γ h(z)] [Observe that γ and h(z) are independent]

= Var(h(z)) + E[h(z)]2 + Var(γ) + E[γ]2 − 2E[γ] E[h(z)]

= (E[h(z)] − E[γ])2 + Var(h(z)) + Var(γ)

= (E[h(z)] − g(z))2︸ ︷︷ ︸
bias2 of method

+ Var(h(z))︸ ︷︷ ︸
variance of method

+ Var(ϵ)︸︷︷︸
irreducible error

[This is called the bias-variance decomposition of the risk function. Let’s look at an intuitive interpretation
of these three parts.]

68 Jonathan Richard Shewchuk

!"

Bias, Variance, Noise
!"#$

%#&"#'()

*+"$)

,

-./0"1$/23./)4#567)$/)#(89

bvn.pdf [In this example, we’re trying to fit a sine wave with lines, which obviously aren’t
going to be accurate. At left, we have generated 50 different hypotheses (lines). Each line
was generated from 20 random training points by least-squares linear regression. At upper
right, the red line is the expected hypothesis—an average over infinitely many hypotheses.
The black curve illustrates test points on the true function g. We see that most test points
have a large bias (difference between the black and red curves), because lines don’t fit
sine waves well. However, some of the test points happen to have a small bias—where
the sine wave crosses the red line. At center right, the variance is the expected squared
difference between a random black line and the red line (at a test point z). At lower right,
the irreducible error is the expected squared difference between a random test point and the
sine wave.]

This is pointwise version [of the bias-variance decomposition.]
Mean version: let z ∼ D be random variable; take mean over D of bias2, variance.

[So you can decompose one test point’s error into these three numbers, or you can decompose the error of
the hypothesis over its entire range into three numbers, which tells you roughly how big they’ll be on a large
test set.]

Statistical Justifications; the Bias-Variance Decomposition 69

[Now I will write down a list of consequences of what we’ve just learned.]

– Underfitting = too much bias
– Most overfitting caused by too much variance
– Training error reflects bias but not variance; test error reflects both

[which is why low training error can fool you when you’ve overfitted]
– For many distributions, variance→ 0 as n→ ∞
– If h can fit g exactly, for many distributions bias→ 0 as n→ ∞
– If h cannot fit g well, bias is large at “most” points
– Adding a good feature reduces bias; adding a bad feature rarely increases it
– Adding a feature usually increases variance [don’t add a feature unless it reduces bias more]
– Can’t reduce irreducible error [hence its name]
– Noise in test set affects only Var(ϵ);

noise in training set affects only bias & Var(h)
– We can’t precisely measure bias or variance of real-world data

[because we cannot know g exactly and our noise model might be wrong]
– But we can test learning algs by choosing g & making synthetic data

0 20 40 60 80 100

2
4

6
8

1
0

1
2

2 5 10 20

0
.0

0
.5

1
.0

1
.5

2
.0

2
.5

M
e
a
n
 S

q
u
a
re

d
 E

rr
o
r

2 5 10 20

0
.0

0
.5

1
.0

1
.5

2
.0

2
.5

splinefit.pdf, biasvarspline.pdf (ISL, Figures 2.9 and 2.12) [At left, a data set is fit with
splines having various degrees of freedom. The synthetic data is taken from the black curve
with added noise. At center, we plot training error (gray) and test error (red) as a function
of the number of degrees of freedom. At right, we plot the squared test error as a sum of
squared bias (blue) and variance (orange). As the number of degrees of freedom increases,
the training and test errors both decrease up to degree 6 because the bias decreases, but for
higher degrees the test error increases because the variance increases.]

70 Jonathan Richard Shewchuk

Example: Least-Squares Linear Reg.

For simplicity, no fictitious dimension.
[This implies that our linear regression function has to be zero at the origin.]

Model: g(z) = v⊤z (ground truth is linear)
[So we could fit g perfectly with a linear h if not for the noise in the training set.]
Let e be noise n-vector, ei ∼ N(0, σ2)
Training labels: y = Xv + e
[X & y are the inputs to linear regression. We don’t know v or e.]

Lin. reg. computes weights

w = X+y = X+(Xv + e) = v + X+e︸︷︷︸
noise in weights

[We want w = v, but the noise in y becomes noise in w.]

BIAS is E[h(z)] − g(z) = E[w⊤z] − v⊤z = z⊤E[w − v] = z⊤E[X+e] = z⊤E[X+]E[e] = 0

Warning: This does not mean h(z) − g(z) is always 0!
Sometimes +ve, sometimes −ve, mean over training sets is 0.
[Those deviations from the mean are captured in the variance.]

[When the bias is zero, a perfect fit is possible. But when a perfect fit is possible, not all learning methods
give you a bias of zero; here it’s a benefit of the squared error loss function. With a different noise or a
different loss function, we might have a nonzero bias even fitting a linear h to a linear g.]

VARIANCE is Var(h(z)) = Var(w⊤z) = Var(z⊤v + z⊤X+e) = Var(z⊤X+e)

[This is the dot product of a vector z⊤X+ with an isotropic, normally distributed vector e. The dot product
reduces it to a one-dimensional Gaussian along the direction z⊤X+, so this variance is just the variance of
the 1D Gaussian times the squared length of the vector z⊤X+.]

= σ2
∥∥∥z⊤X+

∥∥∥2
= σ2z⊤(X⊤X)−1X⊤X(X⊤X)−1z

= σ2z⊤(X⊤X)−1z

If we choose coordinate system so D has mean zero, then X⊤X → n Cov(D) as n→ ∞, so for z ∼ D,

Var(h(z)) ≈ σ2 d
n

[where d is the dimension—the number of features per sample point.]

[If anyone asks: With the eigendecomposition Cov(D) = VΛV⊤, we have E[z⊤Cov(D)−1z] = E[∥Λ−1/2V⊤z∥2] =∑d
i=1 E[(vi · z)2]/λi. But as z ∼ D, E[(vi · z)2] = Var[vi · z] = λi, so E[z⊤Cov(D)−1z] = d. Hence

E[z⊤(X⊤X)−1z] ≈ d/n.]

Takeaways: Bias can be zero when hypothesis function can fit the real one!
[This is a nice property of the squared error loss function.]

Variance portion of RSS (overfitting) decreases as 1/n (sample points),
increases as d (features)
or O(dp) if you use degree-p polynomials.

[I’ve used linear regression because it’s a relatively simple example. But the bias-variance trade-off applies
to many learning algorithms, including classification as well as regression. But for most learning algorithms,
the math gets a lot more complicated than this, if you can do it at all. Sometimes there are multiple competing
bias-variance models and no consensus on which is the right one.]

Shrinkage: Ridge Regression, Subset Selection, and Lasso 71

13 Shrinkage: Ridge Regression, Subset Selection, and Lasso

RIDGE REGRESSION aka Tikhonov Regularization

(1) + (A) + ℓ2 penalized mean loss (d).

Find w that minimizes ∥Xw − y∥2 + λ ∥w′∥2 = J(w)
where w′ is w with component α replaced by 0.
X has fictitious dimension but we DON’T penalize α.

Adds a regularization term, aka a penalty term, for shrinkage: to encourage small ∥w′∥. Why?
– Guarantees positive definite normal eq’ns; always unique solution.

[Standard least-squares linear regression yields singular normal equations when the sample points lie
on a common hyperplane in feature space.] E.g., when d > n.

ridgequad.png [The cost function J(w) with and without regularization.]

[At left, we see a quadratic form for a positive semidefinite cost function associated with least-squares
regression. This cost function has many minima, and the regression problem is said to be ill-posed.
By adding a small penalty term, we obtain a positive definite quadratic form (right), which has one
unique minimum. The term “regularization” implies that we are turning an ill-posed problem into a
well-posed problem.]
[That was the original motivation, but the next has become more important in machine learning . . .]

– Reduces overfitting by reducing variance. Why?
Imagine: 500x1 − 500x2 is best fit for well-separated points with yi ∈ [0, 1].

Small change in x ⇒ big change in y!
[Given that all the y values in the data are small and the x values are not, it’s a sure sign of overfitting
if tiny changes in x cause huge changes in y.]
So we penalize large weights.
[This use of regularization is closely related to the first one. When you have large variance and a lot
of overfitting, it implies that your problem is close to being ill-posed, even though technically it might
be well-posed.]

72 Jonathan Richard Shewchuk

ŵ

isocontours of ∥Xw − y∥2

isocontours of ∥w∥2

least-squares solution

ridge solution for
several values of λ

w2

w1

ridgeterms2.pdf (redrawing of ISL, Figure 6.7) [In this plot of weight space, for simplic-
ity, we’re not using a bias term α (we set it to zero). ŵ is the least-squares solution. The red
ellipses are isocontours of ∥Xw − y∥2. The blue circles are isocontours of ∥w∥2, centered at
the origin. The ridge regression solution lies where a red isocontour just touches a blue iso-
contour tangentially. As λ increases, the solution will occur at a more outer red isocontour
and a more inner blue isocontour. This helps to reduce overfitting.]

Setting ∇J = 0 gives normal eq’ns

(X⊤X + λI′) w = X⊤y

where I′ is identity matrix w/bottom right set to zero. [Don’t penalize the bias term α.]
[Don’t worry; X⊤X + λI′ is always positive definite for λ > 0, assuming X ends with a column of 1’s.]

Algorithm: Solve for w. Return h(z) = w⊤z.

Increasing λ ⇒ more regularization; smaller ∥w′∥
Recall [from the previous lecture] our data model y = Xv + e, where e is noise.
Variance of ridge regr. is Var(z⊤(X⊤X + λI′)−1X⊤e).
As λ→ ∞, variance→ 0, but bias increases.

M
e

a
n

 S
q

u
a

re
d

 E
rr

o
r

1e−01 1e+01 1e+03

0
1

0
2
0

3
0

4
0

5
0

6
0

λ

ridgebiasvar.pdf (ISL, Figure 6.5) [Plot of bias2 & variance as λ increases.]

[So, as usual for the bias-variance trade-off, the test error as a function of λ is a U-shaped curve. We find the
bottom by validation.]

λ is a hyperparameter; tune by (cross-)validation.

Ideally, features should be “normalized” to have same variance.
Alternative: use asymmetric penalty by replacing I′ w/other diagonal matrix. [For example, if you use
polynomial features, you could use different penalties for monomials of different degrees.]

Shrinkage: Ridge Regression, Subset Selection, and Lasso 73

Bayesian Justification for Ridge Reg.

Assign a prior probability on w′: w′ ∼ N(0, ς2). Apply MLE to maximize the posterior prob.
[This prior probability says that we think weights close to zero are more likely to be correct.]

Bayes’ Theorem: posterior f (w|X, y) =
f (y|X,w) × prior f (w′)

f (y|X)
=
L(w) f (w′)

f (y|X)
Maximize log posterior = lnL(w) + ln f (w′) − const

= −const ∥Xw − y∥2 − const ∥w′∥2 − const

⇒ Minimize ∥Xw − y∥2 + λ ∥w′∥2

[We are treating w and y as random variables, but X as a fixed constant—it’s not random.]
This method (using likelihood, but maximizing posterior) is called maximum a posteriori (MAP).
[A prior probability on the weights is another way to understand regularizing ill-posed problems.]

FEATURE SUBSET SELECTION

[Some of you may have noticed as early as Homework 1 that you can sometimes get better performance on
a spam classifier simply by dropping some useless features.]

All features increase variance, but not all features reduce bias.
Idea: Identify poorly predictive features, ignore them (weight zero).

Less overfitting, smaller test errors.
2nd motivation: Inference. Simpler models convey interpretable wisdom.

Useful in all classification & regression methods.
Sometimes it’s hard: Different features can partly encode same information.

Combinatorially hard to choose best feature subset.

Alg: Best subset selection. Try all 2d − 1 nonempty subsets of features. [Train one classifier per subset.]
Choose best classifier by (cross-)validation. Slow.

[Obviously, best subset selection isn’t feasible if we have a lot of features. But it gives us an “ideal”
algorithm to compare practical algorithms with. If d is large, there is no algorithm that’s guaranteed to find
the best subset and that runs in acceptable time. But heuristics often work well.]

Heuristic 1: Forward stepwise selection.
Start with null model (0 features); repeatedly add best feature until validation errors start increasing (due to
overfitting) instead of decreasing. At each outer iteration, inner loop tries every feature & chooses the best
by validation. Requires training O(d2) models instead of O(2d).
Not perfect: e.g., won’t find the best 2-feature model if neither of those

features yields the best 1-feature model. [That’s why it’s a heuristic.]

Heuristic 2: Backward stepwise selection.
Start with all d features; repeatedly remove feature whose removal gives best reduction in validation error.
Also trains O(d2) models.

[Forward stepwise is a better choice when you suspect only a few features will be good predictors; e.g.,
spam. Backward stepwise is better when most features are important. If you’re lucky, you’ll stop early.]

74 Jonathan Richard Shewchuk

LASSO (Robert Tibshirani, 1996)

Regression w/regularization: (1) + (A) + ℓ1 penalized mean loss (e).
“Least absolute shrinkage and selection operator”
[This is a regularized regression method similar to ridge regression, but it has the advantage that it often
naturally sets some of the weights to zero.]

Find w that minimizes ∥Xw − y∥2 + λ ∥w′∥1 where ∥w′∥1 =
d∑

i=1

|wi| (Don’t penalize α.)

Recall ridge regr.: isosurfaces of ∥w′∥2 are hyperspheres.
The isosurfaces of ∥w′∥1 are cross-polytopes.
The unit cross-polytope is the convex hull of all the positive & negative unit coordinate vectors.

∥w∥1 = 1

[Draw this figure by hand crosspolys.png]

[You get larger and smaller cross-polytope isosurfaces by scaling these.]

isocontours of ∥Xw − y∥2

isocontours of ∥w∥2

ŵ

isocontours of ∥w∥1

w2

w1

w2

w1

isocontours of ∥Xw − y∥2

ŵ

lassoridge2.pdf [Isocontours of the terms of the objective function for the Lasso appear at
left. Compare with the ridge regression isocontours at right.]

[The red ellipses are the isocontours of ∥Xw − y∥2, and the least-squares solution lies at their center. The
isocontours of ∥w′∥1 are diamonds centered at the origin (blue). The solution lies where a red isocontour just
touches a blue diamond. What’s interesting here is that in this example, the red isocontour touches just the
tip of the diamond. So the weight w1 gets set to zero. That’s what we want to happen to weights that don’t
have enough influence. This doesn’t always happen—for instance, the red isosurface could touch a side of
the diamond instead of a tip of the diamond.]

[When you go to higher dimensions, you might have several weights set to zero. For example, in 3D, if
the red isosurface touches a sharp vertex of the cross-polytope, two of the three weights get set to zero. If
it touches a sharp edge of the cross-polytope, one weight gets set to zero. If it touches a flat side of the
cross-polytope, no weight is zero.]

Shrinkage: Ridge Regression, Subset Selection, and Lasso 75

S
ta

n
d

a
rd

iz
e

d
 C

o
e

ff
ic

ie
n

ts

20 50 100 200 500 2000 5000

−
2
0
0

0
1
0
0

2
0
0

3
0

0
4
0
0

λ
lassoweights.pdf (ISL, Figure 6.6) [Weights as a function of λ.]

[This shows the weights for a typical linear regression problem with about 10 variables. You can see that as
lambda increases, more and more of the weights become zero. Only four of the weights are really useful for
prediction; they’re in color. Statisticians used to choose λ by looking at a chart like this and trying to eyeball
a spot where there aren’t too many predictors and the weights aren’t changing too fast. But nowadays they
prefer validation.]

Sometimes sets some weights to zero, especially for large λ.
Algs: subgradient descent, least-angle regression (LARS), forward stagewise

[Lasso can be reformulated as a quadratic program, but it’s a quadratic program with 2d constraints, because
a d-dimensional cross-polytope has 2d facets. In practice, special-purpose optimization methods have been
developed for Lasso. I’m not going to teach you one, but if you need one, look up the last two of these
algorithms. LARS is built into the R Programming Language for statistics.]

[As with ridge regression, you should probably normalize the features first before applying Lasso.]

76 Jonathan Richard Shewchuk

14 Decision Trees

DECISION TREES

Nonlinear method for classification and regression.

Uses tree with 2 node types:
– internal nodes test feature values (usually just one) & branch accordingly
– leaf nodes specify class h(x)

check
x3

x1

100

75

25

0

50

overcast

x2

sunny rain

Outlook (x1)

Humidity (x2) Wind (x3)

overcastsunny rain

yes

yes yesnono

> 75% > 20 ≤ 20≤ 75%

no

yes
yes

[Draw this by hand. dectree.pdf Deciding whether to go out for a picnic.]

– Cuts x-space into rectangular cells
– Works well with both categorical and quantitative features
– Interpretable result (inference)
– Decision boundary can be arbitrarily complicated

linear classifer

decision tree

treelinearcompare2.pdf (redrawing of ISL, Figure 8.7) [Comparison of linear classifiers
vs. decision trees on 2 examples.]

Decision Trees 77

Consider classification first. Greedy, top-down learning heuristic:
[This algorithm is more or less obvious, and has been rediscovered many times. It’s naturally recursive. I’ll
show how it works for classification first; later I’ll talk about how it works for regression.]

Let S ⊆ {1, 2, . . . , n} be set of sample point indices.
Top-level call: S = {1, 2, . . . , n}.

GrowTree(S)
if (yi = C for all i ∈ S and some class C) then {

return new leaf(C) [We say the leaves are pure]
} else {

choose best splitting feature j and splitting value β (*)
S l = {i ∈ S : Xi j < β} [Or you could use ≤ and >]
S r = {i ∈ S : Xi j ≥ β}

return new node(j, β, GrowTree(S l), GrowTree(S r))
}

(*) How to choose best split?
– Try all splits. [All features, and all splits within a feature.]
– For a set S , let J(S) be the cost of S .
– Choose the split that minimizes J(S l) + J(S r); or,

the split that minimizes weighted average |S l |J(S l)+|S r |J(S r)
|S l |+|S r |

.

[Here, I’m using the vertical brackets | · | to denote set cardinality.]

How to choose cost J(S)?
[I’m going to start by suggesting a mediocre cost function, so you can see why it’s mediocre.]

Idea 1 (bad): Label S with the class C that labels the most points in S .
J(S)← # of points in S not in class C.

J(S) = 10

5 D 5 D

J(S l) = 5 J(S r) = 5

x2

10 D 0 D

J(S r) = 0J(S l) = 10

x1

20 C 10 D

10 C 10 C

20 C 10 D

10 C 10 C

[Draw this by hand. badcost.pdf]

Problem: J(S l) + J(S r) = 10 for both splits, but left split is much better. Weighted avg prefers right split!

[There are many different splits that all have the same total cost. We want a cost function that better distin-
guishes between them.]

78 Jonathan Richard Shewchuk

Idea 2 (good): Measure the entropy. [An idea from information theory.]
Let Y be a random class variable, and suppose P(Y = C) = pC.
The surprise of Y being class C is − log2 pC. [Always nonnegative.]

– event w/prob. 1 gives us zero surprise.
– event w/prob. 0 gives us infinite surprise!

[In information theory, the surprise is equal to the expected number of bits of information we need to
transmit which events happened to a recipient who knows the probabilities of the events. Often this means
using fractional bits, which may sound crazy, but it makes sense when you’re compiling lots of events into
a single message; e.g., a sequence of biased coin flips.]

The entropy of an index set S is the average surprise

H(S) = −
∑

C

pC log2 pC, where pC =
|{i ∈ S : yi = C}|

|S |
.

[The proportion of points in S
that are in class C.]

If all points in S belong to same class? H(S) = −1 log2 1 = 0.
Half class C, half class D? H(S) = −0.5 log2 0.5 − 0.5 log2 0.5 = 1.
n points, all different classes? H(S) = − log2

1
n = log2 n.

[The entropy is the expected number of bits of information we need to transmit to identify the class of a
sample point in S chosen uniformly at random. It makes sense that it takes 1 bit to specify C or D when
each class is equally likely. And it makes sense that it takes log2 n bits to specify one of n classes when each
class is equally likely.]

0.0 0.2 0.4 0.6 0.8 1.0
p

0.2

0.4

0.6

0.8

1.0
H(p)

entropy.pdf [Plot of the entropy H(pC) when there are only two classes. The probability of
the second class is pD = 1− pC, so we can plot the entropy with just one dependent variable.
If you have > 2 classes, you would need a multidimensional chart to plot the entropy, but
the entropy is still strictly concave.]

Decision Trees 79

Weighted avg entropy after split is Hafter =
|S l|H(S l) + |S r |H(S r)

|S l| + |S r |
.

Choose split that maximizes information gain H(S)−Hafter. [Which is just the same as minimizing Hafter.]

10 C 1 D

H(S) = − 20
30 lg 20

30 −
10
30 lg 10

30 � 0.918

H(S l) = − 10
19 lg 10

19 −
9

19 lg 9
19 � 0.998 H(S r) = − 10

11 lg 10
11 −

1
11 lg 1

11 � 0.439

x3

20 C 10 D

10 C 9 D

Hafter = 0.793 info gain = 0.125
[Draw this by hand. infogain.pdf]

Info gain always positive except it is zero when one child is empty or
for all C, P(yi = C|i ∈ S l) = P(yi = C|i ∈ S r). [Which is the case for the second split we considered.]

[Recall the graph of the entropy.]

}

0.40.2 0.6 0.8
0

0.5

1

1 1

pCpC

50%

0%

H(S r)

entropy: strictly concaveH(pC) J(pC) = % misclassified: concave, not strict
H(S l)

J(S r)

J(S l)H(S)

J(S) = Jafter

0 0.40.2 0.6 0.8

Hafter

info gain

0

[Draw this by hand on entropy.pdf. concave.pdf]

[Suppose we pick two points on the entropy curve, then draw a line segment connecting them. Because the
entropy curve is strictly concave, the interior of the line segment is strictly below the curve. Any point on
that segment represents a weighted average of the two entropies for suitable weights. If you unite the two
sets into one parent set, the parent set’s value pC is the weighted average of the children’s pC’s. Therefore,
the point directly above that point on the curve represents the parent’s entropy. The information gain is
the vertical distance between them. So the information gain is positive unless the two child sets both have
exactly the same pC and lie at the same point on the curve.]

[On the other hand, for the graph on the right, plotting the % misclassified, if we draw a line segment
connecting two points on the curve, the segment might lie entirely on the curve. In that case, uniting the two
child sets into one, or splitting the parent set into two, changes neither the total misclassified sample points
nor the weighted average of the % misclassified. The bigger problem, though, is that many different splits
will get the same weighted average cost; this test doesn’t distinguish the quality of different splits well.]

80 Jonathan Richard Shewchuk

[By the way, the entropy is not the only function that works well. Many concave functions work fine,
including the simple polynomial p(1 − p).]

More on choosing a split:
– For binary feature xi: children are xi = 0 & xi = 1.
– If xi has 3+ discrete values: split depends on application.

[Sometimes it makes sense to use multiway splits; sometimes binary splits.]
– If xi is quantitative: sort xi values in S ; try splitting between each pair of unequal consecutive values.

[We can radix sort the points in linear time, and if n is huge we should.]
Clever bit: As you scan sorted list from left to right, you can update entropy in O(1) time per point!5

[This is important for obtaining a fast tree-building time.]
[Draw a row of C’s and X’s; show how we update the # of C’s and # of X’s in each of S l and S r as we
scan from left to right.]

1C

CXXCX

1X 2X1X

0C 2C

2X

1C 1C

2X 1X 3X 0X

1C 1C 1C

scan.pdf

Algs & running times:
– Classify test point: Walk down tree until leaf. Return its label.

Worst-case time is O(tree depth).
For binary features, that’s ≤ d. [Quantitative features may go deeper.]
Usually (not always) ≤ O(log n).

– Training: For binary features, try O(d) splits at each node.
For quantitative features, try O(n′d) splits; n′ = points in node
Either way ⇒ O(n′d) time at this node
[Quantitative features are asymptotically just as fast as binary features because of our clever way of
computing the entropy for each split.]
Each point participates in O(depth) nodes, costs O(d) time in each node.
[This is an amortized analysis: we are charging O(d depth) time to each sample point.]
Running time ≤ O(nd depth).
[As nd is the size of the design matrix X, and the depth is often logarithmic, this is a surprisingly
reasonable running time.]

5Let C be the number of class C sample points to the left of a potential split and c be the number to the right of the split. Let
D be the number of class not-C points to the left of the split and d be the number to the right of the split. Update C, c, D, and d
at each split (in O(1) time per split) as you move from left to right. At each potential split, calculate the entropy of the left set as
− C

C+D log2
C

C+D −
D

C+D log2
D

C+D and the entropy of the right set as − c
c+d log2

c
c+d −

d
c+d log2

d
c+d . Note: log 0 is undefined, but this

formula works if we use the convention 0 log 0 = 0.
It follows that the weighted average of the two entropies is − 1

n′

(
C log2

C
C+D + D log2

D
C+D + c log2

c
c+d + d log2

d
c+d

)
, where n′ =

C + D + c + d is the total number of sample points stored in this treenode. Choose the split that minimizes this weighted average.

More Decision Trees, Ensemble Learning, and Random Forests 81

15 More Decision Trees, Ensemble Learning, and Random Forests

DECISION TREE VARIATIONS

[Last lecture, I taught you the vanilla algorithms for building decision trees and using them to classify test
points. There are many variations on this basic algorithm; I’ll discuss a few now.]

Multivariate Splits

Find non-axis-aligned splits with other classification algs or by generating them randomly.

multivariate.pdf [An example where an ordinary decision tree needs many splits to ap-
proximate a diagonal linear decision boundary, but a single multivariate split takes care of
it.]

[Here you can use other classification algorithms such as SVMs, logistic regression, and Gaussian discrimi-
nant analysis. Decision trees permit these algorithms to find nonlinear decision boundaries by making them
hierarchical.]

May gain better classifier at cost of worse interpretability or speed.
[Standard decision trees are very fast because they check only one feature at each treenode. But if there are
hundreds of features, and you have to check all of them at every level of the tree to classify a point, it slows
down classification a lot. So it sometimes pays to consider methods like forward stepwise selection when
you’re learning so that when you classify, you only need to check a few features at each treenode.]
Can limit # of features per split: forward stepwise selection, Lasso.

82 Jonathan Richard Shewchuk

Decision Tree Regression

Creates a piecewise constant regression fn.

|

R1 R2 R3

R4 R5

X1 ≤ t1

X2 ≤ t2 X1 ≤ t3

X2 ≤ t4

t1

t2

t3

t4

R1

R2

R3

R4

R5

X1

X1

X2

X
2

regresstree.pdf, regresstreefn.pdf (ISL, Figure 8.3) [Decision tree regression.]

Leaf stores label µS =
1
|S |

∑
i∈S yi, the mean label for sample pts i ∈ S .

Cost J(S) = Var({yi : i ∈ S }) = 1
|S |

∑
i∈S (yi − µS)2.

[So if all the points in a node have the same y-value, then the cost is zero.]
[We choose the split that minimizes the weighted average of the variances of the children after the split.]

Stopping Early

[The basic version of the decision tree algorithm keeps subdividing treenodes until every leaf is pure. We
don’t have to do that; sometimes we prefer to stop subdividing treenodes earlier.]

Why?
– Limit tree depth (for speed)
– Limit tree size (big data sets)
– Pure tree may overfit
– Given noise or overlapping distributions, purity of leaves is counterproductive; better to estimate

posterior probs

[When you have overlapping class distributions, refining the tree down to one sample point per leaf is
absolutely guaranteed to overfit, giving you a classifier akin to the 1-nearest neighbor classifier. It’s better to
stop early, then classify each leaf node by taking a vote of its sample points; this gives you a classifier akin
to a k-nearest neighbor classifier. Alternatively, you can use the points to estimate a posterior probability
for each leaf, and return that. If there are many points in each leaf, the posterior probabilities might be
reasonably accurate.]

More Decision Trees, Ensemble Learning, and Random Forests 83

0
10

6
10

2
10

2
10

x2

x1

p(
Y
|X

)

13
20

4
20 2

201
20 p(

Y
|X

)

leaf2.pdf [In the decision tree at left, each leaf has multiple classes. Instead of returning
the majority class, each leaf could return a posterior probability histogram, as illustrated at
right.]

Leaves with multiple points return
– a majority vote or class posterior probs (classification) or
– an average (regression).

How to stop? Select stopping condition(s):
– Next split doesn’t reduce entropy/error enough (dangerous; pruning is better)
– Most of node’s points (e.g., > 95%) have same class [to deal with outliers & overlapping distribs]
– Node contains few sample points (e.g., < 10) [especially for big data]
– Cell’s edges are all tiny
– Depth too great [risky if there are still many points in the cell]
– Use validation to compare

[The last is the slowest but most effective way to know when to stop: use validation to decide whether
splitting the node lowers your validation error. But if your goal is to avoid overfitting, it’s generally even
more effective to grow the tree a little too large and then use validation to prune it back . . .]

Pruning

Grow tree too large; greedily remove each split whose removal improves validation performance.
More reliable than stopping early.

[We have to do validation once for each split that we’re considering removing. But you can do that pretty
cheaply. What you don’t do is reclassify every sample point from scratch. Instead, you keep track of which
points in the validation set end up at which leaf. When you are deciding whether to remove a split, you
just look at the validation points in the two leaves you’re thinking of removing, and see how they will be
reclassified and how that will change the error rate. You can compute this very quickly.]

[The reason why pruning often works better than stopping early is because often a split that doesn’t seem to
make much progress is followed by a split that makes a lot of progress. If you stop early, you’ll never find
out. Pruning is a simple idea, but it’s highly recommended when you have enough time to build and prune
the tree.]

84 Jonathan Richard Shewchuk

2 4 6 8 10

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Tree Size

M
e

a
n

 S
q

u
a

re
d

 E
rr

o
r

Training

Cross−Validation

Test

Years

H
it
s

1

117.5

238

1 4.5 24

R1

R3

R2

prunehitters.pdf, prunedhitters.pdf (ISL, Figures 8.5 & 8.2) [At left, a plot of decision tree
leaf nodes vs. errors for baseball hitter data. At right, the best decision tree has three leaves.
Players’ salaries: R1 = $165,174, R2 = $402,834, R3 = $845,346.]

[In this example, a 10-node decision tree was constructed to predict the salaries of baseball players, based
on their years in the league and average hits per season. Then the tree was pruned by validation. The best
decision tree on the validation data turned out to have just three leaves.]

ENSEMBLE LEARNING

Decision trees are fast, simple, interpretable, easy to explain,
invariant under scaling/translation, robust to irrelevant features.

But not the best at prediction. [Compared to previous methods we’ve seen.]
High variance. [Though we can achieve very low bias.]

[For example, suppose we take a training data set, split it into two halves, and train two decision trees, one
on each half of the data. It’s not uncommon for the two trees to turn out very different. In particular, if the
two trees pick different features for the very first split at the root of the tree, then it’s quite common for the
trees to be completely different. So decision trees tend to have high variance.]

[So let’s think about how to fix this. As an analogy, imagine that you are generating random numbers
from some distribution. If you generate just one number, it might have high variance. But if you generate
n random numbers and take their average, then the variance of that average is n times smaller. So you might
ask yourself, can we reduce the variance of decision trees by taking an average answer of a bunch of decision
trees? Yes we can.]

More Decision Trees, Ensemble Learning, and Random Forests 85

wisdom.jpg, penelope.jpg [James Surowiecki’s book “The Wisdom of Crowds” and Pene-
lope the cow. Surowiecki tells us this story . . .]

[A 1906 county fair in Plymouth, England had a contest to guess the weight of an ox. A scientist named
Francis Galton was there, and he did an experiment. He calculated the median of everyone’s guesses. The
median guess was 1,207 pounds, and the true weight was 1,198 pounds, so the error was less than 1%. Even
the cattle experts present didn’t estimate it that accurately.]
[National Public Radio repeated the experiment in 2015 with a cow named Penelope whose photo they pub-
lished online. They got 17,000 guesses, and the average guess was 1,287 pounds. Penelope’s actual weight
was 1,355 pounds, so the crowd got it to within 5 percent.]
[The main idea is that sometimes the average opinion of a bunch of idiots is better than the opinion of one
expert. And so it is with learning algorithms. We call a learning algorithm a weak learner if it does better
than guessing randomly. And we combine a bunch of weak learners to get a strong one.]

We can take average of output of
– different learning algs
– same learning alg on many training sets [if we have tons of data]
– bagging: same learning alg on many random subsamples of one training set
– random forests: randomized decision trees on random subsamples

[These last two are the most common ways to use averaging, because usually we don’t have enough training
data to use fresh data for every learner.]

[Averaging is not specific to decision trees; it can work with many different learning algorithms. But it
works particularly well with decision trees.]

Regression algs: take median or mean output
Classification algs: take majority vote OR average posterior probs

[Apology to readers: I show some videos in this lecture, which cannot be included in this report.]

[Show averageaxis.mov] [Here’s a simple classifier that takes an average of “stumps,” trees of depth 1.
Observe how good the posterior probabilities look.]
[Show averageaxistree.mov] [Here’s a 4-class classifier with depth-2 trees.]

86 Jonathan Richard Shewchuk

[The Netflix Prize was an open competition for the best collaborative filtering algorithm to predict user
ratings for films, based on previous ratings. It ran for three years and ended in 2009. The winners used
an extreme ensemble method that took an average of many different learning algorithms. In fact, a couple
of top teams combined into one team so they could combine their methods. They said, “Let’s average our
models and split the money,” and that’s what happened.]

Use learners with low bias (e.g., deep decision trees).
High variance & some overfitting are okay. Averaging reduces the variance!
[Each learner may overfit, but each overfits in its own unique way.]
Averaging sometimes reduces bias & increases flexibility a bit, but not reliably;

e.g., creating nonlinear decision boundary from linear classifiers.
Hyperparameter settings usually different than 1 learner.
[Because averaging learners reduces their variance. But averaging rarely reduces bias as much as it reduces
variance, so you want to get the bias nice and small before you average.]
of trees is another hyperparameter.

Bagging = Bootstrap AGGregatING (Leo Breiman, 1994)

[Leo Breiman was a statistics professor right here at Berkeley. He did his best work after he retired in 1993.
The bagging algorithm was published the following year, and then he went on to co-invent random forests
as well. Unfortunately, he died in 2005.]

breiman.gif [Leo Breiman]

[Bagging is a randomized method for creating many different learners from the same data set. It works well
with many different learning algorithms. One exception seems to be k-nearest neighbors; bagging mildly
degrades it.]
Given n-point training sample, generate random subsample of size n′ by sampling with replacement. Some
points chosen multiple times; some not chosen.

More Decision Trees, Ensemble Learning, and Random Forests 87

1 3 4 6 8 9
↙ ↘

6 3 6 1 1 9 8 8 4 9 1 8

If n′ = n, ∼ 63.2% are chosen. [On average; this fraction varies randomly.]
Build learner. Points chosen j times have greater weight:
[If a point is chosen j times, we want to treat it the same way we would treat j different points all bunched
up infinitesimally close together.]

– Decision trees: j-time point has j × weight in entropy.
– SVMs: j-time point incurs j × penalty to violate margin.
– Regression: j-time point incurs j × loss.

Repeat until T learners.
Metalearner takes test point, feeds it into all T learners, returns average/majority output.

Random Forests

Random sampling isn’t random enough!
[With bagging, often the decision trees look very similar. Why is that?]
One really strong predictor→ same feature split at top of every tree.
[For example, if you’re building decision trees to identify spam, the first split might always be “viagra.”
Random sampling might not change that. If the trees are very similar, then taking their average doesn’t
reduce the variance much.]

Idea: At each treenode, take random sample of m features (out of d).
Choose best split from m features.
[We’re not allowed to split on the other d − m features!]
Different random sample for each treenode.
m ≈

√
d works well for classification; m ≈ d/3 for regression.

[So if you have a 100-dimensional feature space, you randomly choose 10 features and pick the one
of those 10 that gives the best split. But m is a hyperparameter, and you might get better results by
tuning it for your particular application. These values of m are good starting guesses.]
Smaller m→ more randomness, less tree correlation, more bias

[One reason this works is if there’s a really strong predictor, only a fraction of the trees can choose that pre-
dictor as the first split. That fraction is m/d. So the split tends to “decorrelate” the trees. And that means
that when you take the average of the trees, your average will have less variance than a single tree.]
[You have to be careful, though, because you don’t want to dumb down the trees too much in your quest for
decorrelation. Averaging works best when you have very strong learners that are also diverse. But it’s hard
to create a lot of learners that are very different yet all very smart. The Netflix Prize winners did it, but it
was a huge amount of work.]

Sometimes test error drops even at 100s or 1,000s of decision trees!
Disadvantages: slow; loses interpretability/inference.
[But the compensation is it’s more accurate than a single decision tree.]

[I will end by showing you examples of a very non-standard method for random forests that works magic in
certain difficult circumstances.]
Idea: generate s random multivariate splits (oblique lines, quadrics); choose best split.
[You have to be a bit clever about how you generate random decision boundaries; I’m not going to discuss
that. I’ll just show lots of examples.]

88 Jonathan Richard Shewchuk

[Show treesidesdeep.mov] [Lots of good-enough conic random decision trees.]
[Show averageline.mov]
[Show averageconic.mov]
[Show square.mov] [Depth 2; look how good the posterior probabilities look.]
[Show squaresmall.mov] [Depth 2; see the uncertainty away from the center.]
[Show spiral2.mov] [Doesn’t look like a decision tree at all, does it?]
[Show overlapdepth14.mov] [Overlapping classes. This example overfits!]
[Show overlapdepth5.mov] [Better fit.]

500.pdf [Random forest classifiers for 4-class spiral data. Each forest takes the average of
400 trees. The top row uses trees of depth 4. The bottom row uses trees of depth 12. From
left to right, we have axis-aligned splits, splits with lines with arbitrary rotations, and splits
with conic sections. Each split is chosen to be the best of 500 random choices.]

randomness.pdf [Random forest classifiers for the same data. Each forest takes the average
of 400 trees. In these examples, all the splits are axis-aligned. The top row uses trees of
depth 4. The bottom row uses trees of depth 12. From left to right, we choose each split from
1, 5, or 50 random choices. The more choices, the less bias and the better the classifier.]

The Kernel Trick 89

16 The Kernel Trick

KERNELS

Recall: with d input features, degree-p polynomials blow up to O(dp) features.
[When d is large, this gets computationally intractable really fast.
As I said in Lecture 4, if you have 100 features per feature vector and you want to use degree-4 decision
functions, then each lifted feature vector has a length of roughly 4 million.]
Today, magically, we use those features without computing them!

Observation: In many learning algs,
– the weights can be written as a linear combo of sample points, &
– we can use inner products of Φ(x)’s only ⇒ don’t need to compute Φ(x)!

Suppose w = X⊤a =
n∑

i=1

aiXi for some a ∈ Rn.

Substitute this identity into alg. and optimize n dual weights a (aka dual parameters) instead of d + 1 (or dp)
primal weights w.

Kernel Ridge Regression

Center X and y so their means are zero: Xi ← Xi − µX , yi ← yi − µy, Xi,d+1 = 1 [don’t center the 1’s!]
This lets us replace I′ with I in normal equations:

(X⊤X + λI)w = X⊤y

[To dualize ridge regression, we need the weights to be a linear combination of the sample points. Unfortu-
nately, that only happens if we penalize the bias term wd+1 = α, as these normal equations do. Fortunately,
when we center X and y, the “expected” value of the bias term is zero. The actual bias won’t usually be
exactly zero, but it will often be close enough that we won’t do much harm by penalizing the bias term.]

Suppose a is a solution to

(XX⊤ + λI)a = y.

Then X⊤y = X⊤XX⊤a + λX⊤a = (X⊤X + λI)X⊤a.
Therefore, w = X⊤a is a solution to the normal equations, and w is a linear combo of sample points!

a is a dual solution; solves the dual form of ridge regression:

Find a that minimizes ∥XX⊤a − y∥2 + λ∥X⊤a∥2

[We obtain this dual form by substituting w = X⊤a into the original ridge regression cost function.]

Training: Solve (XX⊤ + λI)a = y for a.
Testing: Regression fn is

h(z) = w⊤z = a⊤Xz =
n∑

i=1

ai (X⊤i z) ⇐ weighted sum of inner products

90 Jonathan Richard Shewchuk

Let k(x, z) = x⊤z be kernel fn.
[Later, we’ll replace x and z with Φ(x) and Φ(z), and that’s where the magic will happen.]

Let K = XX⊤ be n × n kernel matrix. Note Ki j = k(Xi, X j).

K is singular if n > d + 1. [And sometimes even if it’s not.]
In that case, probably no solution if λ = 0. [Then we must choose a positive λ. But that’s okay.]

Dual ridge reg. alg:

∀i, j, Ki j ← k(Xi, X j) ⇐ O(n2d) time
Solve (K + λI) a = y for a ⇐ O(n3) time
for each test pt z

h(z)←
∑n

i=1 ai k(Xi, z) ⇐ O(nd) time

Does not use Xi directly! Only k. [This will become important soon.]

[Important: dual ridge regression produces the same predictions as primal ridge regression (with a penalized
bias term)! The running time changes, but the primal and dual algorithms compute the same result.]

Dual: solve n × n linear system, O(n3 + n2d) time
Primal: ” d × d ” ” , O(d3 + d2n) time
We prefer dual when d > n. [Moreover, if we add polynomial terms as new features, the d in the primal
running time increases, but we will see that the d in the kernelized dual running time does not increase.]

The Kernel Trick (aka Kernelization)

[Here’s the magic part. We will see that we can compute a polynomial kernel that involves many monomial
terms without actually computing those terms.]

The polynomial kernel of degree p is k(x, z) = (x⊤z + 1)p

Theorem: (x⊤z + 1)p = Φ(x)⊤Φ(z) where Φ(x) contains every monomial in x of degree 0 . . . p.

Example for d = 2, p = 2:

(x⊤z + 1)2 = x2
1z2

1 + x2
2z2

2 + 2x1z1x2z2 + 2x1z1 + 2x2z2 + 1

= [x2
1 x2

2

√
2x1x2

√
2x1

√
2x2 1] [z2

1 z2
2

√
2z1z2

√
2z1

√
2z2 1]⊤

= Φ(x)⊤Φ(z) [This is how we’re defining Φ.]

[Notice the factors of
√

2. If you try a higher polynomial degree p, you’ll see a wider variety of these
constants. We have no control of the constants that appear in Φ(x), but they don’t matter excessively much,
because the primal weights w will scale themselves to compensate. Even though we won’t be directly
computing the primal weights . . . they still implicitly exist.]

Key win: compute Φ(x)⊤Φ(z) in O(d) time instead of O(dp), even though Φ(x) has length O(dp).

Kernel ridge regression replaces Xi with Φ(Xi):

Let k(x, z) = Φ(x)⊤Φ(z) But don’t compute Φ(x) or Φ(z); compute k(x, z) = (x⊤z + 1)p !

[I think what we’ve done here is pretty mind-blowing: we can now do polynomial regression with an expo-
nentially long, high-order polynomial in less time than it would take even to write out the final polynomial.
The running time is sublinear, actually much smaller than linear, in the length of the Φ vectors.]

The Kernel Trick 91

Kernel Perceptrons

Featurized perceptron alg:

w← y1Φ(X1) [starting point is arbitrary, but can’t be zero]
while some yiΦ(Xi) · w < 0

w← w + ϵ yiΦ(Xi)
for each test pt z

h(z)← w · Φ(z)

Let Φ(X) be n × D matrix with rows Φ(Xi)⊤, D = length of Φ(·), K = Φ(X)Φ(X)⊤

Dualize with w = Φ(X)⊤a. Then the code “ai ← ai + ϵ yi” has same effect as “w← w + ϵ yiΦ(Xi)”
[So the dual weight ai records what multiple of sample point i the perceptron algorithm has added to w.]
Φ(Xi) · w = (Φ(X)w)i = (Φ(X)Φ(X)⊤a)i = (Ka)i

Dual perceptron alg:

a← [y1 0 . . . 0]⊤ [starting point is arbitrary, but can’t be zero]
∀i, j, Ki j ← k(Xi, X j) ⇐ O(n2d) time (kernel trick)
while some yi (Ka)i < 0

ai ← ai + ϵ yi ⇐ O(1) time; update Ka in O(n) time
for each test pt z

h(z)←
∑n

j=1 a j k(X j, z) ⇐ O(nd) time [kernel trick]

[A big deal is that the running times depend on the original dimension d, not on the length D of Φ(·)!]
OR we can compute w = Φ(X)⊤a once in O(nD) time & evaluate test pts in O(D) time/pt
[. . . which is a win if the numbers of training points and test points both exceed D/d.]

Kernel Logistic Regression

[The stochastic gradient descent step for logistic regression is just a small modification of the step for
perceptrons. But recall that we’re no longer looking for misclassified sample points. Instead, we apply the
gradient descent rule to sample points in a stochastic, random order—or, alternatively, to all the points at
once. Also recall that our starting point is zero.]

Stochastic gradient descent step:

ai ← ai + ϵ (yi − s((Ka)i)) [where s is the logistic function]

[Just like with perceptrons, every time you update one dual weight ai, you can update Ka in O(n) time so
you don’t have to compute Ka from scratch on the next iteration. If you prefer batch gradient descent . . .]

Batch gradient descent step:

a← a + ϵ (y − s(Ka)) ⇐ applying s component-wise to vector Ka

For each test pt z:

h(z)← s

 n∑
j=1

a j k(X j, z)

[If you’re using logistic regression as a classifier and you don’t care about the posterior probabilities, you
can skip the logistic function and just compute the summation, like in the perceptron algorithm.]

92 Jonathan Richard Shewchuk

The Gaussian Kernel

[Mind-blowing as the polynomial kernel is, I think our next trick is even more mind-blowing. Since we can
now do fast computations in spaces with exponentially large dimensions, why don’t we go all the way and
generate feature vectors in an infinite-dimensional space?]

Gaussian kernel, aka radial basis fn kernel: there exists a Φ(x) such that

k(x, z) = exp
(
−
∥x − z∥2

2σ2

)
[This kernel takes O(d) time to compute.]

[In case you’re curious, here’s the feature vector that gives you this kernel, for the case where you have only
one input feature per sample point.]

e.g., for d = 1,

Φ(x) = exp
(
−

x2

2σ2

) [
1,

x

σ
√

1!
,

x2

σ2
√

2!
,

x3

σ3
√

3!
, . . .

]⊤
[This is an infinite vector, and Φ(x) ·Φ(z) is a series that converges to k(x, z). Nobody actually uses this value
of Φ(x) directly, or even cares about it; they just use the kernel function k(·, ·).]
[At this point, it’s best not to think of points in a high-dimensional space. It’s no longer a useful intuition.
Instead, think of the kernel k as a measure of how similar or close together two points are to each other.]

Key observation: hypothesis h(z) =
∑n

j=1 a j k(X j, z) is a linear combo of Gaussians centered at sample pts.
[The dual weights are the coefficients of the linear combination.]
[The Gaussians are a basis for the hypothesis.]

gausskernel.pdf [A hypothesis h that is a linear combination of Gaussians centered at four
sample points, two with positive weights and two with negative weights. If you use ridge
regression with a Gaussian kernel, your “linear” regression will look something like this.]

The Kernel Trick 93

Very popular in practice! Why?
– Gives very smooth h [In fact, h is infinitely differentiable; it’s C∞-continuous.]
– Behaves somewhat like k-nearest neighbors, but smoother
– Oscillates less than polynomials (depending on σ)
– k(x, z) interpreted as a similarity measure. Maximum when z = x; goes to 0 as distance increases.
– Sample points “vote” for value at z, but closer points get weightier vote.

[The “standard” kernel x · z assigns more weight to sample point vectors that point in roughly the same
direction as z. By contrast, the Gaussian kernel assigns more weight to sample points near z.]

Choose σ by (cross-)validation.
σ trades off bias vs. variance:

larger σ → wider Gaussians & smoother h → more bias & less variance

.

.

o

o

oo
o

o

o

o

o

o

o

o

o

o
o

o

o o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o
o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o
o

o

o

o

o

o

o

o

o

o

o
o

o

oo

o

o

o

oo

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o
o

o

o

o

oo

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o oo
o

o

o

o
oo o

o

o

o

o

o

o

o

oo

o

o

o
o

oo
o

o

o

oo
o

o

o

o

o

o

o

o

o
o

o

o

o

o

o

o

o
o

o
oo

o

o

o

o

o

o

oo

o
o

o
o

o

o

o

o

o

o

o

o

o

o

o

•

••

•

•

•
•

•

•

•
•

•

•

•
•

•

•

•

•

••

•

•

•

•

•

•

•

•

•

•

Training Error: 0.160

Test Error: 0.218

Bayes Error: 0.210

gausskernelsvm.pdf (ESL, Figure 12.3) [The decision boundary (solid black) of a soft-
margin SVM with a Gaussian kernel. Observe that in this example, it comes reasonably
close to the Bayes optimal decision boundary (dashed purple). The dashed black curves are
the boundaries of the margin. The small black disks are the support vectors that lie on the
margin boundary.]

[By the way, there are many other kernels that, like the Gaussian kernel, are defined directly as kernel
functions without worrying about Φ. But not every function can be a kernel function. A function is qualified
only if it always generates a positive semidefinite kernel matrix, for every sample. There is an elaborate
theory about how to construct valid kernel functions. However, you probably won’t need it. The polynomial
and Gaussian kernels are the two most popular by far.]

94 Jonathan Richard Shewchuk

17 Neural Networks

NEURAL NETWORKS

Can do both classification & regression.

[They tie together several ideas from the course: perceptrons, logistic regression, linear regression, ensem-
bles of learners, and stochastic gradient descent. They also tie in the idea of lifting sample points to a
higher-dimensional feature space, but with a new twist: neural nets can learn features themselves.]

[I want to begin by reminding you of the story I told you at the beginning of the semester, about Frank
Rosenblatt’s invention of perceptrons in 1957. Remember that he held a press conference where he predicted
that perceptrons would be “the embryo of an electronic computer that [the Navy] expects will be able to
walk, talk, see, write, reproduce itself and be conscious of its existence.”]

[Perceptron research continued until something monumental happened in 1969. Marvin Minsky, one of the
founding fathers of AI, and Seymour Papert published a book called “Perceptrons.” Sounds promising?
Well, part of the book was devoted to things perceptrons can’t do. And one of those things is XOR.]

0 1
0

0
1

1

x1

x2

XOR
0
1

[Think of the four outputs here as sample points in two-dimensional space. Two of them are in class 1, and
two of them are in class 0. We want to find a linear classifier that separates the 1’s from the 0’s. Can we do
it? No.]

[So Minsky and Papert were basically saying, “Frank. You’re telling us this machine is going to be conscious
of its own existence but it can’t do XOR?”]

[The book had a devastating effect on the field. After its publication, almost no research was done on neural
net-like ideas for a decade, a time we now call the “AI Winter.” Shortly after the book was published, Frank
Rosenblatt died.]

[One thing I don’t understand is why the book was so fatal when there are several almost obvious ways to
get around the XOR problem. Here’s the easiest.]

If you add one new quadratic feature, x1x2, XOR is linearly separable in 3D.

0

0 1

1

[Draw this by hand. xorcube.pdf]

[Now we can find a plane that cuts through the cube obliquely and separates the 0’s from the 1’s.]

Neural Networks 95

[However, there’s an even more powerful way to do XOR. The idea is to design linear classifiers whose
output is the input to other linear classifiers. That way, you should be able to emulate arbitrary logic circuits.
Suppose I put together some linear decision functions like this.]

z
linear combo

linear combo

linear combo

x1

x2 [Draw this by hand. lincombo.pdf]

[If I interpret the output as true if z is greater than one-half or false if z is less than one-half, can I do XOR
with this?]

A linear combo of a linear combo is a linear combo . . . only works for linearly separable points.

[We need one more idea to make neural nets. We need to add some sort of nonlinearity between the linear
combinations. Let’s call these boxes that compute linear combinations “neurons.” If a neuron sends the
linear combination it computes through some nonlinear function before sending it on to other neurons, then
the neurons can act somewhat like logic gates. The nonlinearity could be as simple as clamping the output
so it can’t go below zero. And that’s what people usually use in practice these days.]

[However, the traditional choice has been to use the logistic function. The logistic function can’t go below
zero or above one, which is nice because it can’t ever get huge and oversaturate the other neurons it’s sending
information to. The logistic function is also smooth, which means it has well-defined gradients and Hessians
we can use for optimization. And we know that the logistic is often a good model for posterior probabilities.]

[With logistic functions between the linear combinations, here’s a two-level perceptron that computes the
XOR function.]

s(20v + 20w − 30)

w

NAND

OR

AND

x1

x2

x1 ⊕ x2

s(30 − 20x1 − 20x2)

s(20x1 + 20x2 − 10)

v

[Draw this by hand. xorgates.pdf]

[A natural question is: can an algorithm learn a function like this?]

96 Jonathan Richard Shewchuk

Network with 1 Hidden Layer

Input layer: x1, . . . , xd ; xd+1 = 1
Hidden units: h1, . . . , hm ; hm+1 = 1
Output layer: z1, . . . , zk

Layer 1 weights: m × (d + 1) matrix V V⊤i is row i
Layer 2 weights: k × (m + 1) matrix W W⊤i is row i

[Draw this by hand. 1hiddenlayer.pdf]

Recall [logistic function] s(γ) = 1
1+e−γ . Other nonlinear fns can be used.

For vector v, s(v) =

s(v1)
s(v2)
...

 , s1(v) =

s(v1)
s(v2)
...

1

 [We apply s to a vector component-wise.]

h = s1(V x) . . . that is, hi = s(V⊤i x)

z = s(Wh) = s(Ws1(V x))

[Neural networks often have more than one output. This allows us to build multiple classifiers that share
hidden units. One of the interesting advantages of neural nets is that if you train multiple classifiers simul-
taneously, sometimes some of them come out better because they can take advantage of particularly useful
hidden units that first emerged to support one of the other classifiers.]

[We can add more hidden layers, and for image recognition tasks it’s common to have 8 to 200 hidden
layers. There are many variations you can experiment with—for instance, you can have connections that go
forward more than one layer.]

Neural Networks 97

Training

Usually stochastic or batch gradient descent.

Pick loss fn L(z, y) e.g., L(z, y) = ∥z − y∥2

↑ ↑

predictions true labels (could be vectors)

Cost fn is J(V,W) = 1
n
∑n

i=1 L(z(Xi),Yi)

[I’m using a capital Y here because now Y is a matrix with one row for each sample point and one column for
each output unit of the neural net. Sometimes there is just one output unit, but many neural net applications
have more.]
[Now we want to find the weight matrices V and W that minimize J.]

Usually there are many local minima!

[The cost function for a neural net is, generally, not even close to convex. For that reason, it’s possible to
wind up in a bad minimum. We’ll talk later about some clever ways to coax neural nets into better minima.]

[Now let me ask you this. Suppose we start by setting all the weights to zero, and then we do gradient
descent on the weights. What will go wrong?]

[This neural network has a symmetry: there’s really no difference between one hidden unit and any other
hidden unit. The gradient descent algorithm has no way to break the symmetry between hidden units. You
can get stuck in a situation where all the weights out of an input unit have the same value, and all the weights
into an output unit have the same value, and they have no way to become different from each other. To avoid
this problem, and in the hopes of finding a better local minimum, we start with random weights.]

Let w be a vector containing all the weights in V & W. Batch gradient descent:

w← vector of random weights
repeat

w← w − ϵ ∇J(w)

[We’ve just rewritten all the weights as a vector for notational convenience. When you actually write the
code, for the sake of speed, you should probably operate directly on the weight matrices V and W.]

[It’s important to make sure the random weights aren’t too big, because if a unit’s output gets too close to
zero or one, it can get “stuck,” meaning that a modest change in the input values causes barely any change
in the output value. Stuck units tend to stay stuck because in that operating range, the gradient s′(·) of the
logistic function is close to zero.]

[Instead of batch gradient descent, we can use stochastic gradient descent, which means we use the gradient
of one sample point’s loss function at each step. Typically, we shuffle the points in a random order, or just
pick one randomly at each step.]

[The hard part of this algorithm is computing the gradient. If you simply derive one derivative for each
weight, you’ll find that for a network with many layers of hidden units, it takes time linear in the number of
edges in the neural network to compute a derivative for one weight. Multiply that by the number of weights.
We’re going to spend the rest of this lecture learning to improve the running time to linear in the number of
edges.]

Naive gradient computation: O(edges2) time
Backpropagation: O(edges) time

98 Jonathan Richard Shewchuk

Computing Gradients for Arithmetic Expressions

[Let’s see what it takes to compute the gradient of an arithmetic expression. It turns into repeated applica-
tions of the chain rule from calculus.]

d

c

feb

a

1

1

d

c

2e

f = e2

∂d
∂a = 1 ∂d

∂b = 1

d = a + b e = cd
∂ f
∂e = 2e

= 2e ∂ f
∂ f

∂n
∂z

=
∂ f
∂e
∂e
∂d

∂ f
∂z =

∂ f
∂n

∂ f
∂a

∂ f
∂ f = 1

= d ∂ f
∂e

=
∂ f
∂e
∂e
∂c

=
∂ f
∂d
∂d
∂a

=
∂ f
∂d

∂ f
∂d

∂ f
∂e =

∂ f
∂ f
∂ f
∂e

= c ∂ f
∂e

=
∂ f
∂d

=
∂ f
∂d
∂d
∂b

∂ f
∂c

∂ f
∂b

∂e
∂c = d ∂e

∂d = c

e2×

computed during forward pass

+

computed during backward pass after forward pass
“backpropagation”

where z is an input to n.

Goal: compute ∇ f =

∂ f
∂a
∂ f
∂b
∂ f
∂c

Each value z gives partial derivative of the form

[Draw this by hand. gradients.pdf Draw the black diagram first. Then the goal (upper
right). Then the green and red expressions, from left to right, leaving out the green arrows.
Then the green arrows, starting at the right side of the page and moving left. Lastly, write
the text at the bottom. (Use the same procedure for the next two figures.)]

Neural Networks 99

[What if a unit’s output goes to more than one unit? Then we need to understand a more complicated version
of the chain rule. Let’s try it with an expression from least-squares linear regression.]

w1

w2

w3

+X21
∂L
∂z2

= X12
∂L
∂z1

+ ∂L
∂z2

∂z2
∂w1

= ∂L
∂z1

∂z1
∂w2
+ ∂L
∂z2

∂z2
∂w2

= ∂L
∂z1

∂z1
∂w3
+ ∂L
∂z2

∂z2
∂w3

= X11
∂L
∂z1

+X22
∂L
∂z2

= ∂L
∂z1
+ ∂L
∂z2

∂L
∂w1

∂L
∂w2

∂L
∂w3

∂L
∂z1
= 2(z1 − y1)

∂L
∂z2
= 2(z2 − y2)

= ∂L
∂z1

∂z1
∂w1

Loss

X11w1 + X12w2 + w3

X21w1 + X22w2 + w3

z1

z2

∥z − y∥2

[Draw this by hand. gradientsmulti.pdf]

[Here we’re using a standard rule of multivariate calculus:]

∂

∂τ
L(z1(τ), z2(τ)) =

∂L
∂z1

∂z1

∂τ
+
∂L
∂z2

∂z2

∂τ
= ∇zL ·

∂

∂τ
z

[Observe that we’re doing dynamic programming here. We’re computing the solutions of subproblems, then
using each solution to compute the solutions of several bigger problems.]

100 Jonathan Richard Shewchuk

The Backpropagation Alg.

[Backpropagation is a dynamic programming algorithm for computing the gradients we need to do neural
net stochastic gradient descent in time linear in the number of weights.]

V⊤i is row i of weight matrix V [and likewise for rows of W]

Recall s′(γ) = s(γ) (1 − s(γ))

hi = s(Vi · x), so ∇Vi hi = s′(Vi · x) x = hi (1 − hi) x
z j = s(W j · h), so ∇W j z j = s′(W j · h) h = z j (1 − z j) h

∇h z j = z j (1 − z j) W j

[Here is the arithmetic expression for the same neural network I drew for you three illustrations ago. It looks
very different when you depict it like this, but don’t be fooled; it’s exactly the same network I started with.
But now we treat the weights V and W as the inputs, rather than the point x.]

V

W

h

= ∂L
∂z j
∇W j z j

= ∂L
∂hi
∇Vi hi =

∑k
j=1
∂L
∂z j
∇h z j

= ∂L
∂z j

z j (1 − z j) h

= ∂L
∂hi

hi (1 − hi) x =
∑

j z j (1 − z j) ∂L∂z j
W j

∇W j L

∇Vi L ∇h L

s(Wh)

Compute ∇V L, ∇W L one row at a time.

∥z − y∥2
Lz

s(V x)

∇z L = 2(z − y)

[Draw this by hand. backpropalg.pdf]

Neurobiology; Variations on Neural Networks 101

18 Neurobiology; Variations on Neural Networks

NEUROBIOLOGY

[The field of artificial intelligence started with some wrong premises. The early AI researchers attacked
problems like chess and theorem proving, because they thought those exemplified the essence of intelligence.
They didn’t pay much attention at first to problems like vision and speech understanding. Any four-year-old
can do those things, and so researchers underestimated their difficulty.]
[Today, we know better. Computers can effortlessly beat four-year-olds at chess, but they still can’t play
with toys well. We’ve come to realize that rule-based symbol manipulation is not the primary defining mark
of intelligence. Even rats do computations that we’re hard pressed to match with our computers. We’ve also
come to realize that these are different classes of problems that require very different styles of computation.
Brains and computers have very different strengths and weaknesses, which reflect their different computing
styles.]

[Neural networks are partly inspired by the workings of actual brains. Let’s take a look at a few things we
know about biological neurons, and contrast them with both neural nets and traditional computation.]

– CPUs: largely sequential, nanosecond gates, fragile if gate fails
superior for arithmetic, logical rules, perfect key-based memory

– Brains: very parallel, millisecond neurons, fault-tolerant

[Neurons are continually dying. You’ve probably lost a few since this lecture started. But you probably
didn’t notice. And that’s interesting, because it points out that our memories are stored in our brains
in a diffuse representation. There is no one neuron whose death will make you forget that 2 + 2 = 4.
Artificial neural nets often share that resilience. Brains and neural nets seem to superpose memories
on top of each other, all stored together in the same weights, sort of like a hologram.]
[In the 1920’s, the psychologist Karl Lashley conducted experiments to identify where in the brain
memories are stored. He trained rats to run a maze, and then made lesions in different parts of the
cerebral cortex, trying to erase the memory trace. Lashley failed; his rats could still find their way
through the maze, no matter where he put lesions. He concluded that memories are not stored in
any one area of the brain, but are distributed throughout it. Neural networks, properly trained, can
duplicate this property.]

superior for vision, speech, associative memory

[By “associative memory,” I mean noticing connections between things. One thing our brains are very
good at is retrieving a pattern if we specify only a portion of the pattern.]

[It’s impressive that even though a neuron needs a few milliseconds to transmit information to the next
neurons downstream, we can perform very complex tasks like interpreting a visual scene in a tenth of a
second. This is possible because neurons run in parallel, but also because of their computation style.]

[Neural nets try to emulate the parallel, associative thinking style of brains, and they are the best techniques
we have for many fuzzy problems, including some problems in vision and speech. Not coincidentally, neural
nets are also inferior at many traditional computer tasks such as multiplying 10-digit numbers or compiling
source code.]

102 Jonathan Richard Shewchuk

neurons.pdf

– Neuron: A cell in brain/nervous system for thinking/communication
– Action potential or spike: An electrochemical impulse fired by a neuron to communicate w/other

neurons
– Axon: The limb(s) along which the action potential propagates; “output”

[Most axons branch out eventually, sometimes profusely near their ends.]
[It turns out that squids have a very large axon they use for fast propulsion by expelling jets of water.
The mathematics of action potentials was first characterized in these squid axons, and that work won
a Nobel Prize in Physiology in 1963.]

– Dendrite: Smaller limb by which neuron receives info; “input”
– Synapse: Connection from one neuron’s axon to another’s dendrite

[Some synapses connect axons to muscles or glands.]
– Neurotransmitter: Chemical released by axon terminal to stimulate dendrite

[When an action potential reaches an axon terminal, it causes tiny containers of neurotransmitter, called
vesicles, to empty their contents into the space where the axon terminal meets another neuron’s dendrite.
That space is called the synaptic cleft. The neurotransmitters bind to receptors on the dendrite and influence
the next neuron’s body voltage. This sounds incredibly slow, but it all happens in 1 to 5 milliseconds.]

You have about 1011 neurons, each with about 104 synapses.
[]

Neurobiology; Variations on Neural Networks 103

Analogies: [between artificial neural networks and brains]
– Output of unit↔ firing rate of neuron

[An action potential is “all or nothing”—all action potentials have the same shape and size. The output
of a neuron is not signified by voltage like the output of a transistor. The output of a neuron is the
frequency at which it fires. Some neurons can fire at nearly 1,000 times a second, which you might
think of as a strong “1” output. Conversely, some types of neurons can go for minutes without firing.
But some types of neurons never stop firing, and for those you might interpret a firing rate of 10 times
per second as a “0”.]

– Weight of connection↔ synapse strength
– Positive weight↔ excitatory neurotransmitter (e.g., glutamine)
– Negative weight↔ inhibitory neurotransmitter (e.g., GABA, glycine) [Gamma aminobutyric acid.]

[A typical neuron is either excitatory at all its axon terminals, or inhibitory at all its terminals. It can’t
switch from one to the other. Artificial neural nets have an advantage here.]

– Linear combo of inputs↔ summation
[A neuron fires when the sum of its inputs, integrated over time, reaches a high enough voltage.
However, the neuron body voltage also decays slowly with time, so if the action potentials are coming
in slowly enough, the neuron might not fire at all.]

– Logistic/sigmoid fn↔ firing rate saturation
[A neuron can’t fire more than 1,000 times a second, nor less than zero times a second. This limits its
ability to overpower downstream neurons. We accomplish the same thing with the sigmoid function.]

– Weight change/learning↔ synaptic plasticity
[Donald] Hebb’s rule (1949): “Cells that fire together, wire together.”
[This doesn’t mean that the cells have to fire at exactly the same time. But if one cell’s firing tends to
make another cell fire more often, their excitatory synaptic connection tends to grow stronger. There’s
a reverse rule for inhibitory connections. And there are ways for neurons that aren’t even connected
to grow connections.]
[There are simple computer learning algorithms based on Hebb’s rule. They can work, but they’re
generally not nearly as fast or effective as backpropagation.]

[Backpropagation is one part of artificial neural networks for which the analogy is doubtful. There have been
some proposals that the brain might do something vaguely like backpropagation, but it seems tenuous.]

104 Jonathan Richard Shewchuk

[The brain is very modular.]

brain.png

[(The following items are all spoken, not written . . .)

• The part of our brain we think of as most characteristically human is the cerebral cortex, the seat of
self-awareness, language, and abstract thinking.

But the brain has a lot of other parts that take the load off the cortex.

• Our brain stem regulates functions like heartbeat, breathing, and sleep.

• Our cerebellum governs fine coordination of motor skills. When we talk about “muscle memory,”
much of that is in the cerebellum, and it saves us from having to consciously think about how to walk
or talk or brush our teeth, so the cortex can focus on where to walk and what to say.

• Our limbic system is the center of emotion and motivation, and as such, it makes a lot of the big
decisions. I sometimes think that 90% of the job of our cerebral cortex is to rationalize decisions that
have already been made by the limbic system. []

• Our visual cortex (in the occipital lobe) performs a lot of processing on the input from your eyes to
change it into a more useful form. Neuroscientists and computer scientists are particularly interested
in the visual cortex for several reasons. Vision is an important problem for computers. The visual
cortex is one of the easier parts of the brain to study in lab animals. The visual cortex is largely a
feedforward network with few neurons going backward, so it’s easier for us to train computers to
behave like the visual cortex.]

Neurobiology; Variations on Neural Networks 105

[Although the brain has lots of specialized modules, one thing that’s interesting about the frontal lobe is that
it seems to be made of general-purpose neural tissue that looks more or less the same everywhere, at least
before it’s trained. If you experience damage to part of the frontal lobe early enough in life, while your brain
is still growing, the functions will just relocate to healthy parts of the frontal lobe, and you’ll probably never
notice the difference.]

[As computer scientists, our primary motivation for studying neurology is to try to get clues about how we
can get computers to do tasks that humans are good at. But neurologists and psychologists have also been
part of the study of neural nets from the very beginning. Their motivations are scientific: they’re curious
how humans think, and how we can do the things we do.]

NEURAL NET VARIATIONS

[I want to show you a few basic variations on the standard neural network I showed you last class, and how
some of these variations change backpropagation.]

Regression: usually linear output unit(s)—omit sigmoid fn. [Unless you’re regressing probabilities.]
[If you make that change, the gradient changes too, and you have to change the derivation of backprop. The
derivation gets simpler, so I’ll leave it as an exercise.]

Classification: to choose from k ≥ 3 classes, use softmax fn. [We deploy k separate output units. E.g., in the
MNIST digit recognition problem, we would have k = 10 softmax output units, one for each digit class.]
Let t = Wh be k-vector of linear combos in final layer.

Softmax output is z j(t) =
et j∑k
i=1 eti

.
∂z j

∂t j
= z j × (1 − z j),

∂z j

∂ti
= −z j zi, j , i.

Each z j ∈ (0, 1); their sum is 1.
[Interpret z j as the probability of the input belonging to class j.]
[If you have only 2 classes, just use one sigmoid output; it’s equivalent to 2-way softmax.]

The Vanishing Gradient Problem

Problem: When unit output s is close to 0 or 1 for most training points, s′ = s(1− s) ≈ 0, so gradient descent
changes s very slowly. Unit is “stuck.” Slow training.

-4 -2 0 2 4
x

0.2

0.4

0.6

0.8

1.0
s(x)

logistic.pdf [Draw flat spots, “linear” region, & maximum curvature points (at s(λ) � 0.21
and s(λ) � 0.79) of the sigmoid function. Ideally, we would stay away from the flat spots.]

106 Jonathan Richard Shewchuk

[The more layers your network has, the more problematic this problem becomes. Most of the early attempts
to train deep, many-layered neural nets failed.]

Mitigation: [None of these are complete cures.]

(1) For unit with fan-in η, initialize each incoming edge to
random weight with mean zero, std. dev. 1/

√
η.

[The bigger the fan-in of a unit, the easier it is to saturate it. So we choose smaller random initial
weights for units with bigger fan-in.]

(2) Set labels to 0.9 & 0.1 instead of 1 & 0.
[Recall that the sigmoid function can never be 0 or 1; it can only come close. If your labels are 1
& 0, you are pushing the output units into the flat spots! The numbers 0.1 and 0.9 are reasonable
because the sigmoid function achieves its greatest curvature when its output is near 0.21 or 0.79. But
experiment to find the best values.]
[Option (2) helps to avoid stuck output units, but not stuck hidden units. So . . .]

(3) Modify backprop to add small constant (typically ∼ 0.1) to s′.
[This hacks the gradient so a unit can’t get stuck. We’re not doing steepest descent any more, because
we’re not using the real gradient. But often we’re finding a better descent direction that will get us to
a minimum faster. This hack originates with Scott Fahlman’s Quickprop algorithm.]

(4) Cross-entropy loss fn instead of squared error.

For k-class softmax output, cross-entropy is L(z, y) = −
∑k

i=1 yi ln zi.
↑ true labels
↑ prediction

}
k-vectors

Strongly recommended: choose labels so
∑k

i=1 yi = 1.
[Typically, people choose one label to be 1 and the others to be 0. But by idea (2), we might prefer
0.9, 0.05, 0.05, for instance. From here on, we will assume that the target labels sum to 1.]

Derivatives for k-class softmax backprop: [correct only if
∑k

i=1 yi = 1]

∂L
∂z j

= −
y j

z j

∇Wi L =

 k∑
j=1

∂L
∂z j

∂z j

∂ti

∇Wi ti =

−yi

zi
zi +

∑
j

y j

z j
z jzi

 h = (zi − yi) h

∇W L = (z − y) h⊤

∇hL =

k∑
j=1

∂L
∂z j

k∑
i=1

∂z j

∂ti
∇hti =

k∑
j=1

−
y j

z j

z jW j −

k∑
i=1

z jziWi

 = W⊤z −
∑

j

y jW j = W⊤(z − y)

[Notice that the denominator of ∂L/∂z j cancels out the numerator z j in the softmax derivatives. This
saves the unit from getting stuck when the softmax derivatives are small. It is related to the fact
that the logistic loss goes to infinity as the predicted value z j approaches zero or one. The vanishing
gradient of the sigmoid is compensated for by the huge gradient of the logistic loss.]

For [scalar] sigmoid output, L(z, y) = −y ln z − (1 − y) ln(1 − z) (aka logistic loss) [z, y scalar]

For (multiple) sigmoid outputs, we also have ∇W L = (z − y) h⊤ and ∇hL = W⊤(z − y). [z, y vector]

Neurobiology; Variations on Neural Networks 107

[Like option (2), cross-entropy loss helps to avoid stuck output units, but not stuck hidden units.]

[Cross-entropy losses are only for sigmoid and softmax outputs. By contrast, for regression we typi-
cally use linear outputs, which don’t saturate, so the squared error loss is better for them.]

(5) Replace sigmoids with ReLUs: rectified linear units.
ramp fn aka hinge fn: r(γ) = max{0, γ}

r′(γ) =
{

1 γ ≥ 0
0 γ < 0

γ

r(γ)

[The derivative is not defined at zero, but we just pretend it is.]

Popular for many-layered networks with large training sets.
[One nice thing about ramp functions is that they and their gradients are very fast to compute. Com-
puters compute exponentials slowly. Even though ReLUs are linear in each half of their range, they’re
still nonlinear enough to easily compute functions like XOR.]
[Obviously, the gradient is sometimes zero, so you might wonder if ReLUs can get stuck too. Fortu-
nately, it’s rare for a ReLU’s gradient to be zero for all the training data; it’s usually zero for just some
sample points. But yes, ReLUs sometimes get stuck too; just not as often as sigmoids.]
[The output of a ReLU can be arbitrarily large, creating the danger that it might overwhelm units
downstream. This is called the “exploding gradient problem,” and it is not a big problem in shallow
networks, but it becomes a big problem in deep or recurrent networks.]

[Note that option (5) makes options (2)–(4) irrelevant.]

[Now I will show you how to perform backpropagation for a softmax output, the cross-entropy loss function,
and ℓ2 regularization—which helps to reduce overfitting, just like in ridge regression. Observe that because
of the simplifications we made by combining derivatives, we don’t compute ∇zL explicitly, but we still have
to backpropagate the value of z itself.]

V

W

h

−
∑k

i yi ln zi

+2λW

+2λVi

L

+λ (∥V∥2F + ∥W∥
2
F)

ℓ2 regularization (optional)

z

∇W L = (z − y)h⊤

∇h L = W⊤(z − y)
s(V x)

= ∂L
∂hi

hi (1 − hi) x

= ∂L
∂hi
∇Vi hi

z j =
eW j ·h∑k
i eWi ·h

∇Vi L

[Draw this by hand. backpropsoft.pdf]

108 Jonathan Richard Shewchuk

19 Better Neural Network Training; Convolutional Neural Networks

[I’m going to talk about a bunch of heuristics that make gradient descent faster or prevent it from overfitting.
I suggest you implement vanilla stochastic backpropagation first, and experiment with these heuristics only
after you get that working.]

Heuristics for Faster Training

[A big disadvantage of neural nets is that they take a long, long time to train compared to other classification
methods we’ve studied. Here are some ways to speed them up. Unfortunately, you usually have to experi-
ment with techniques and hyperparameters to find which ones will help with your particular application.]

– Fix vanishing gradient problem. [As described in the previous lecture.]

– Stochastic gradient descent: faster than batch on large, redundant data sets.
[Whereas batch gradient descent walks downhill on one cost function, stochastic descent takes a very
short step downhill on one point’s loss function and then another short step on another point’s loss
function. The cost function is the sum of the loss functions over all the sample points, so one batch step
behaves similarly to n stochastic steps and takes roughly the same amount of time. But if you have
many different examples of the digit “9”, they contain much redundant information, and stochastic
gradient descent learns the redundant information more quickly. Conversely, if the data set is so small
that it encodes little redundant information, batch gradient descent is typically faster.]

10

2

0

y

1

1.4 1.2 1 0.8 0.6 0.4 0.2 0 0.2 0.4 0.6 0.8 1 1.2 1.4

1.4

1.2

1

0.8

0.6

0.4

0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

batchvsstoch.pdf (LeCun et al., “Efficient BackProp”) [Left: a perceptron with only three
weights, and its 2D training data. Center: batch gradient descent makes only a little progress
each epoch. (Epochs alternate between red and blue. Note that the bias term ω2 is not
plotted.) Right: stochastic descent decreases the error much faster than batch descent.]

One epoch presents every training point once. Training usually takes many epochs, but if sample is
huge [and carries lots of redundant information] it can take less than one.

Better Neural Network Training; Convolutional Neural Networks 109

– Normalizing the data.
– Center each feature so mean is zero.
– Then scale each feature so variance ≈ 1.

[The centering step seems to make it easier for hidden units to get into a good operating region
of the sigmoid or ReLU. The scaling step makes the objective function better conditioned, so
gradient descent converges faster. The scaling step also makes ℓ2-regularization treat the features
more equally.]

normalize.jpg [A 2D example of data normalization.]

-4 -2 2 4
x1

-4

-2

2

4

6

x2

illcondition.pdf [Skewed data often leads to an objective function with an ill-conditioned
(highly eccentric) Hessian. Gradient descent in these functions can be painfully slow, as
this figure shows. Normalizing helps by reducing the eccentricity. Whitening reduces the
eccentricity even more, but it’s more expensive. Another thing that helps with elongated
troughs like this is momentum, which we’ll discuss shortly. It eventually gets us moving
fast along the long axis.]

110 Jonathan Richard Shewchuk

– “Centering” the hidden units helps too.

Replace sigmoids with tanh γ =
eγ − e−γ

eγ + e−γ
= 2 s(2γ) − 1.

[This function ranges from −1 to 1 instead of from 0 to 1.]
[If you use tanh units, don’t forget that you also need to change backprop to replace s′ with the
derivative of tanh, (1 − tanh2 γ). Also, good output target values change to roughly 0.8 and −0.8.]

– Different learning rate for each layer of weights.
Earlier layers have smaller gradients, need larger learning rate.

curvaturelayers.pdf [In this illustration, the inputs are at the bottom, and the outputs at the
top. The derivatives tend to be smaller at the earlier layers.]

– Emphasizing schemes.
[Neural networks learn the most redundant examples quickly, and the most rare examples slowly. So
we try to emphasize the uncommon examples.]

– Present examples from rare classes more often, or w/bigger ϵ.
– Same for misclassified examples.

[Be forewarned that emphasizing schemes can backfire if you have really bad outliers.]

– Second-order optimization.
[Unfortunately, Newton’s method is completely impractical, because the Hessian is too large and
expensive to compute. There have been a lot of attempts to incorporate curvature information into
neural net learning in cheaper ways, but none of them are popular yet.]

– Nonlinear conjugate gradient: works well for small nets + small data + regression.
Batch descent only! → Too slow with redundant data.

– Stochastic Levenberg Marquardt: approximates a diagonal Hessian.
[The authors claim convergence is typically three times faster than well-tuned stochastic gradient
descent. The algorithm is complicated.]

– Acceleration schemes: RMSprop, Adam, AMSGrad.
[These are quite popular. Look them up online if you’re curious.]

Better Neural Network Training; Convolutional Neural Networks 111

– Momentum. Gradient descent changes “velocity” ∆w slowly.

∆w← −ϵ ∇J(w)
repeat

w← w + ∆w
∆w← −ϵ ∇J(w) + β∆w

Good for both batch & stochastic. Choose hyperparameter β < 1.
[The hyperparameter β specifies how much momentum persists from iteration to iteration.]
[I’ve seen conflicting advice on β. Some researchers set it to 0.9; some set it close to zero. Geoff
Hinton suggests starting at 0.5 and slowly increasing it to 0.9 or higher as the gradients get small.]
[If β is large, you should usually choose ϵ small to compensate, but you might still use a large ϵ in the
first line so the initial velocity is reasonable.]
[A problem with momentum is that once it gets close to a good minimum, it overshoots the minimum,
then oscillates around it. But it often gets us close to a good minimum sooner, even if the last bit of
accuracy comes more slowly.]

Heuristics to Avoid Overfitting

– Number of hidden units.
[Unfortunately, the relationship between overfitting and the number of units per hidden layer is com-
plicated. If there’s too few, you can’t learn well, of course. But empirically we often see a phenomenon
called “double descent.” As the number of units per hidden layer increases, we see the usual U-shaped
curve of test error as the bias reduces and the variance increases. But when there are enough weights
that the training error reaches zero, we sometimes see a second descent where the test error starts to
decrease again! This effect seems to be related to properties of gradient descent, and it might not
appear if you use acceleration methods like Adam or second-order methods.]

– Ensemble of neural nets. Bagging + random initial weights.
[We saw how well ensemble learning works for decision trees. It works well for neural nets too.
The combination of bagging and random initial weights helps ensure that each neural net comes out
differently. Obviously, ensembles of neural nets are slow.]

– ℓ2 regularization, aka weight decay.
Add λ ∥w∥2 to the cost/loss fn, where w is vector of all weights.
[w includes all the weights in matrices V and W, rewritten as a vector.]
[We do this for the same reason we do it in ridge regression: penalizing large weights reduces overfit-
ting by reducing the variance of the method.]
[With a neural network, it’s not clear whether penalizing the bias terms is bad or good. If you penalize
the bias terms, regularization has the effect of drawing each ReLU or sigmoid unit closer to the center
of its operating region. I would suggest to try both ways and use validation to decide whether you
should penalize the bias terms or not.]

Effect: ∆wi = −ϵ
∂J
∂wi

has extra term −2ϵλwi

Weight wi decays by factor 1 − 2ϵλ if not reinforced by training.

112 Jonathan Richard Shewchuk

Neural Network - 10 Units, No Weight Decay

.

.

o

o

oo
o

o

o

o

o

o

o

o

o

o
o

o

o o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o
o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o
o

o

o

o

o

o

o

o

o

o

o
o

o

oo

o

o

o

oo

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o
o

o

o

o

oo

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o oo
o

o

o

o
oo o

o

o

o

o

o

o

o

oo

o

o

o
o

oo
o

o

o

oo
o

o

o

o

o

o

o

o

o
o

o

o

o

o

o

o

o
o

o
oo

o

o

o

o

o

o

oo

o
o

o
o

o

o

o

o

o

o

o

o

o

o

o

Training Error: 0.100

Test Error: 0.259

Bayes Error: 0.210

Neural Network - 10 Units, Weight Decay=0.02

.

Neural Network - 10 Units, Weight Decay=0.02

.

.

o

o

oo
o

o

o

o

o

o

o

o

o

o
o

o

o o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o
o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o
o

o

o

o

o

o

o

o

o

o

o
o

o

oo

o

o

o

oo

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o
o

o

o

o

oo

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o oo
o

o

o

o
oo o

o

o

o

o

o

o

o

oo

o

o

o
o

oo
o

o

o

oo
o

o

o

o

o

o

o

o

o
o

o

o

o

o

o

o

o
o

o
oo

o

o

o

o

o

o

oo

o
o

o
o

o

o

o

o

o

o

o

o

o

o

o

Training Error: 0.160

Test Error: 0.223

Bayes Error: 0.210

weightdecayoff.pdf, weightdecayon.pdf (ESL, Figure 11.4) Write “10 hidden units+ soft-
max + cross-entropy loss”. [Examples of 2D classification without (left) and with (right)
weight decay. Observe that the second example better approximates the Bayes optimal
boundary (dashed purple curve).]

– Dropout emulates an ensemble in one network.

dropout.pdf

[During training, we temporarily disable a random subset of the units, along with all the edges in
and out of those units. It seems to work well to disable each hidden unit with probability 0.5, and to
disable input units with a smaller probability. We do stochastic gradient descent and we frequently
change which random subset of units is disabled. The authors claim that their method gives even
better generalization than ℓ2 regularization. It gives some of the advantages of an ensemble, but it’s
faster to train.]

[Recall Karl Lashley’s rat experiments, where he tried to make rats forget how to run a maze by
introducing lesions in their cerebral cortexes, and it didn’t work. He concluded that the knowledge
is distributed throughout their brains, not localized in one place. Dropout is a way to strengthen this
effect in neural networks.]

Better Neural Network Training; Convolutional Neural Networks 113

CONVOLUTIONAL NEURAL NETWORKS (ConvNets; CNNs)

[Convolutional neural nets have driven a big resurgence of interest in neural nets in the last decade. Often
you’ll hear the buzzword deep learning, which refers to neural nets with many layers. All the best image
recognition networks are deep and convolutional. In 2018, the Association for Computing Machinery gave
the Alan M. Turing Award to Geoff Hinton, Yann LeCun, and Yoshua Bengio for their work on deep neural
networks.]

Vision: inputs are large images. 200 × 200 image = 40,000 pixels.
If we connect them all to 40,000 hidden units→ 1.6 billion connections.
Neural nets are often overparametrized: too many weights, too little data.

[As a rule of thumb, if you have hugely many weights, you want a huge amount of data to train them.
A bigger problem with having billions of weights is that the network becomes very slow to train or even to
use.]

[Researchers have addressed these problems by taking inspiration from the neurology of the visual system.
Remember that early in the semester, I told you that you can get better performance on the handwriting
recognition task by using edge detectors. Edge detectors have two interesting properties. First, each edge
detector looks at just one small part of the image. Second, the edge detection computation is the same no
matter which part of the image you apply it to. So let’s apply these two properties to neural net design.]

ConvNet ideas:

(1) Local connectivity: A hidden unit (in early layer) connects only to a small patch of units in previous
layer.

[This improves the overparametrization problem, and speeds up both training and classification con-
siderably.]

(2) Shared weights: Groups of hidden units share same set of weights, called a mask aka filter aka kernel.
[No relationship to the kernels of Lecture 16.] We learn several masks.
[Each mask operates on every patch of image.]
Masks × patches = hidden units in first hidden layer.
If one mask learns to detect edges, every patch has an edge detector.
[Because the mask that detects edges is applied to every patch.]
ConvNets exploit repeated structure in images, audio.
Convolution: the same linear transformation applied to different patches of the input by shifting.

[Shared weights improve the overparametrization problem, because shared weights means fewer
weights. It’s a kind of regularization.]

[But shared weights have another big advantage. Suppose that gradient descent starts to develop an
edge detector. That edge detector is being trained on every part of every image, not just on one spot.
And that’s good, because edges appear at different locations in different images. The location no
longer matters; the edge detector can learn from edges in every part of the image.]

[In a neural net, you can think of hidden units as features that we learn, as opposed to features that you
code up yourself. Convolutional neural nets take them to the next level by learning features from multiple
patches simultaneously and then applying those features everywhere, not just in the patches where they were
originally learned.]

[By the way, although local connectivity is inspired by the human visual system, shared weights obviously
don’t happen in biology.]

114 Jonathan Richard Shewchuk

[Show slides on computing in the visual cortex and ConvNets, available from the CS 189 web page at
https://people.eecs.berkeley.edu/∼jrs/189/lec/cnn.pdf . Sorry, readers, there are too many images to include
here. The narration is below.]

[Neurologists can stick needles into individual neurons in animal brains. After a few hours the neuron dies,
but until then they can record its action potentials. In this way, biologists quickly learned how some of the
neurons in the retina, called retinal ganglion cells, respond to light. They have interesting receptive fields,
illustrated in the slides, which show that each ganglion cell receives excitatory stimulation from receptors in
a small patch of the retina but inhibitory stimulation from other receptors around it.]

[The signals from these cells propagate to the V1 visual cortex in the occipital lobe at the back of your
skull. The V1 cells proved harder to understand. David Hubel and Torsten Wiesel of the Johns Hopkins
University put probes into the V1 visual cortex of cats, but they had a very hard time getting any neurons to
fire there. However, a lucky accident unlocked the secret and ultimately won them the 1981 Nobel Prize in
Physiology.]

[Show video HubelWiesel.mp4, taken from YouTube: https://www.youtube.com/watch?v=IOHayh06LJ4]

[The glass slide happened to be at the particular orientation the neuron was sensitive to. The neuron doesn’t
respond to other orientations; just that one. So they were pretty lucky to catch that.]

[The simple cells act as line detectors and/or edge detectors by taking a linear combination of inputs from
retinal ganglion cells.]

[The complex cells act as location-independent line detectors by taking inputs from many simple cells,
which are location dependent.]

[Later researchers showed that local connectivity runs through the V1 cortex by projecting certain images
onto the retina and using radioactive tracers in the cortex to mark which neurons had been firing. Those
images show that the neural mapping from the retina to V1 is retinatopic, i.e., locality preserving. This is a
big part of the inspiration for convolutional neural networks!]

[Unfortunately, as we go deeper into the visual system, layers V2 and V3 and so on, we know less and less
about what processing the visual cortex does.]

LeNet5.png Architecture of LeNet5.

Better Neural Network Training; Convolutional Neural Networks 115

[ConvNets were first popularized by the success of Yann LeCun’s “LeNet 5” handwritten digit recognition
software. LeNet 5 has six hidden layers! Hidden layers 1 and 3 are convolutional layers in which groups of
units share weights. Layers 2 and 4 are pooling layers that make the image smaller. These are just hardcoded
max-functions with no weights and nothing to train. Layers 5 and 6 are just regular layers of hidden units
with no shared weights. A great deal of experimentation went into figuring out the number of layers and
their sizes. At its peak, LeNet 5 was responsible for reading the zip codes on 10% of US Mail. Another
Yann LeCun system was deployed in ATMs and check reading machines and was reading 10 to 20% of all
the checks in the US by the late 90’s. LeCun is one of the Turing Award winners I told you about earlier.]

[Show Yann LeCun’s video LeNet5.mov, illustrating LeNet 5.]

[When ConvNets were first applied to image analysis, researchers found that some of the learned masks are
edge detectors or line detectors, similar to the ones that Hubel and Wiesel discovered! This created a lot
of excitement in both the computer learning community and the neuroscience community. The fact that a
neural net can naturally learn the same features as the mammalian visual cortex is impressive.]

[I told you two lectures ago that neural net research was popular in the 60’s, but the 1969 book Perceptrons
killed interest in them throughout the 70’s. They came back in the 80’s, but interest was partly killed off a
second time in the 00’s by . . . guess what? By support vector machines. SVMs work well for a lot of tasks,
they’re much faster to train, and they more or less have only one hyperparameter, whereas neural nets take a
lot of work to tune.]

[Neural nets are now in their third wave of popularity. The single biggest factor in bringing them back is
probably big data. Thanks to the internet, we now have absolutely huge collections of images to train neural
nets with, and researchers have discovered that neural nets often give better performance than competing
algorithms when you have huge amounts of data to train them with. In particular, convolutional neural nets
are now learning better features than hand-tuned features. That’s a recent change.]

[One event that brought attention back to neural nets was the ImageNet Image Classification Challenge in
2012. The winner of that competition was a neural net, and it won by a huge margin, about 10%. It’s called
AlexNet, and it’s surprisingly similarly to LeNet 5, in terms of how its layers are structured. However, there
are some new innovations that led to their prize-winning performance, in addition to the fact that the training
set had 1.4 million images: they used ReLUs, dropout, and GPUs for training.]

Figure 2: An illustration of the architecture of our CNN, explicitly showing the delineation of responsibilities
between the two GPUs. One GPU runs the layer-parts at the top of the figure while the other runs the layer-parts
at the bottom. The GPUs communicate only at certain layers. The network’s input is 150,528-dimensional, and
the number of neurons in the network’s remaining layers is given by 253,440–186,624–64,896–64,896–43,264–
4096–4096–1000.

neurons in a kernel map). The second convolutional layer takes as input the (response-normalized
and pooled) output of the first convolutional layer and filters it with 256 kernels of size 5 ⇥ 5 ⇥ 48.
The third, fourth, and fifth convolutional layers are connected to one another without any intervening
pooling or normalization layers. The third convolutional layer has 384 kernels of size 3 ⇥ 3 ⇥
256 connected to the (normalized, pooled) outputs of the second convolutional layer. The fourth
convolutional layer has 384 kernels of size 3 ⇥ 3 ⇥ 192 , and the fifth convolutional layer has 256
kernels of size 3 ⇥ 3 ⇥ 192. The fully-connected layers have 4096 neurons each.

4 Reducing Overfitting

Our neural network architecture has 60 million parameters. Although the 1000 classes of ILSVRC
make each training example impose 10 bits of constraint on the mapping from image to label, this
turns out to be insufficient to learn so many parameters without considerable overfitting. Below, we
describe the two primary ways in which we combat overfitting.

4.1 Data Augmentation

The easiest and most common method to reduce overfitting on image data is to artificially enlarge
the dataset using label-preserving transformations (e.g., [25, 4, 5]). We employ two distinct forms
of data augmentation, both of which allow transformed images to be produced from the original
images with very little computation, so the transformed images do not need to be stored on disk.
In our implementation, the transformed images are generated in Python code on the CPU while the
GPU is training on the previous batch of images. So these data augmentation schemes are, in effect,
computationally free.

The first form of data augmentation consists of generating image translations and horizontal reflec-
tions. We do this by extracting random 224⇥ 224 patches (and their horizontal reflections) from the
256⇥256 images and training our network on these extracted patches4. This increases the size of our
training set by a factor of 2048, though the resulting training examples are, of course, highly inter-
dependent. Without this scheme, our network suffers from substantial overfitting, which would have
forced us to use much smaller networks. At test time, the network makes a prediction by extracting
five 224 ⇥ 224 patches (the four corner patches and the center patch) as well as their horizontal
reflections (hence ten patches in all), and averaging the predictions made by the network’s softmax
layer on the ten patches.

The second form of data augmentation consists of altering the intensities of the RGB channels in
training images. Specifically, we perform PCA on the set of RGB pixel values throughout the
ImageNet training set. To each training image, we add multiples of the found principal components,

4This is the reason why the input images in Figure 2 are 224 ⇥ 224 ⇥ 3-dimensional.

5

alexnet.pdf Architecture of AlexNet.

[If you want to learn more about deep neural networks, there’s a whole undergraduate class at Berkeley just
on that topic: CS 182.]

116 Jonathan Richard Shewchuk

20 Unsupervised Learning and Principal Components Analysis

UNSUPERVISED LEARNING

We have sample points, but no labels!
No classes, no y-values, nothing to predict.
Goal: Discover structure in the data.

Examples:
– Clustering: partition data into groups of similar/nearby points.
– Dimensionality reduction: data often lies near a low-dimensional subspace (or manifold) in feature

space; matrices have low-rank approximations.
[Whereas clustering is about grouping similar sample points, dimensionality reduction is more about
identifying a continuous variation from sample point to sample point.]

– Density estimation: fit a continuous distribution to discrete data.
[When we use maximum likelihood estimation to fit Gaussians to sample points, that’s density esti-
mation, but we can also fit functions more complicated than Gaussians.]

PRINCIPAL COMPONENTS ANALYSIS (PCA) (Karl Pearson, 1901)

Goal: Given sample points in Rd, find k directions that capture most of the variation. (Dimensionality
reduction.)

First principal component

S
e
c
o
n
d
 p

ri
n
c
ip

a
l
c
o
m

p
o
n
e
n
t

−1.0 −0.5 0.0 0.5 1.0

−
1
.0

−
0
.5

0
.0

0
.5

1
.0

3dpca.pdf [Example of 3D points projected to 2D by PCA.]

Unsupervised Learning and Principal Components Analysis 117

Introduction

Principal Components Analysis

Laurens van der Maaten and Geo↵rey Hinton, JMLR 2008 (MCLab)t-SNE October 30, 2014 4 / 33

pcadigits.pdf [The (high-dimensional) MNIST digits projected to 2D (from 784D). Two
dimensions aren’t enough to fully separate the digits, but observe that the digits 0 (red) and
1 (orange) are well on their way to being separated.]

Why?
– Reducing # of dimensions makes some computations cheaper, e.g., regression.
– Remove irrelevant dimensions to reduce overfitting in learning algs.

Like subset selection, but the “features” aren’t axis-aligned;
they’re linear combos of input features.

– Find a small basis for representing variations in complex things, e.g., faces, genes.

[Sometimes PCA is used as a preprocess before regression or classification for the first two reasons.]

Let X be n × d design matrix. [No fictitious dimension.]
From now on, assume X is centered: µX = meani Xi = 0.
[We center the data in the usual way: by computing the sample mean, then subtracting the mean from each
sample point.]

[Let’s start by seeing what happens if we pick just one principal direction.]
Let w be a unit vector.
The orthogonal projection of point x onto vector w is x̃ = (x · w) w
If w not unit, x̃ = x·w

∥w∥2 w

x

x̃
w

[The idea is that we’re going to pick the best direction w, then project all the data down onto w so we can
analyze it in a one-dimensional space. Of course, we lose a lot of information when we project down from
d dimensions to just one. So, suppose we pick several directions. Those directions span a subspace, and we
want to project points orthogonally onto the subspace. This is easy if the directions are orthogonal to each
other.]

118 Jonathan Richard Shewchuk

Given orthonormal directions v1, . . . , vk, x̃ =
∑k

i=1(x · vi) vi.
[The word “orthonormal” means they’re all mutually orthogonal and all have length 1.]

v1
x̃

x

v2

Often we want just the k principal coordinates x · vi in principal component space.
[Often we don’t actually want the projected point in Rd.]

X⊤X is square, symmetric, positive semidefinite, d × d matrix. [As it’s symmetric, its eigenvalues are real.]
Let 0 ≤ λ1 ≤ λ2 ≤ . . . ≤ λd be its eigenvalues. [sorted]
Let v1, v2, . . . , vd be corresponding orthogonal unit eigenvectors. These are the principal components.
[. . . and the most important principal components will be the ones with the greatest eigenvalues. I will show
you this in three different ways.]

PCA derivation 1: Fit a Gaussian to data with maximum likelihood estimation.
Choose k Gaussian axes of greatest variance.

gaussfitpca.png [A Gaussian fitted to sample points.]

Recall that MLE estimates a covariance matrix Σ̂ = 1
n X⊤X. [Presuming X is centered.]

PCA Alg:
– Center X.
– Optional: Normalize X. Units of measurement different?

– Yes: Normalize.
[Bad for principal components to depend on arbitrary choice of scaling.]

– No: Usually don’t.
[If several features have the same unit of measurement, but some of them have smaller variance
than others, that difference is usually meaningful.]

– Compute unit eigenvectors/values of X⊤X.

Unsupervised Learning and Principal Components Analysis 119

– Choose k. (Optional: based on the eigenvalue sizes.)
– For the best k-dimensional subspace, pick eigenvectors vd−k+1, . . . , vd.
– Compute the k principal coordinates x · vi of each training/test point.

[When we do this projection, we have two choices: we can project the original, un-centered training
data OR we can project the centered training data. But if we do the latter, we have to translate the test
data by the same vector we used to translate the training data when we centered it.]

First Principal Component

S
e

c
o

n
d

 P
ri

n
c
ip

a
l
C

o
m

p
o

n
e

n
t

* *

*

*

*

**

*
*

*

*

*

*

**
*

* *

* *

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*
**

*

*

* *

*

*

*

*

*

*

*

*

−
0

.5
0

.0
0

.5

Murder

Assault

UrbanPop

Rape

Scaled

−
3

−
2

−
1

0
1

2
3

−
1

0
0

−
5

0
0

5
0

1
0

0
1

5
0

First Principal Component

S
e

c
o

n
d

 P
ri

n
c
ip

a
l
C

o
m

p
o

n
e

n
t

* *

*

*

*
**

* *
*

*

*

*
** *

* ** *

*
**

*

*
*

*
*

*

*

*
*

*
*

*
* **

*

**
*

**

*

*
*

*

*
*

−3 −2 −1 0 1 2 3

−0.5 0.0 0.5

−100 −50 0 50 100 150

−0.5 0.0 0.5 1.0

−
0

.5
0

.0
0

.5
1

.0

Murder Assau

UrbanPop

Rape

Unscaled

normalize.pdf (ISL, Figure 10.3) [Projection of 4D data onto a 2D subspace. Each point
represents one metropolitan area. Normalized data at left; unnormalized data at right. The
arrows show the four original axes projected on the two principal components. When the
data are not normalized, rare occurrences like murder have little influence on the principal
directions. Which is better? It depends on whether you think that low-frequency events like
murder and rape should have a disproportionate influence.]

% of variability =

d∑
i=d−k+1

λi

d∑
i=1

λi

variance.pdf [Plot of # of eigenvectors vs. percentage of sample variance captured for a
17D data set. In this example, just 3 eigenvectors capture 70% of the variance.]

[If you are using PCA as a preprocess for a supervised learning algorithm, there’s a more effective way to
choose k: (cross-)validation.]

120 Jonathan Richard Shewchuk

PCA derivation 2: Find direction w that maximizes sample variance of projected data.
[In other words, when we project the data down, we don’t want it all to bunch up; we want to keep it as
spread out as possible.]

project.jpg [Points projected on a line. We wish to choose the orientation of the green line
to maximize the sample variance of the blue points.]

Find w that maximizes Var({X̃1, X̃2, . . . , X̃n}) =
1
n

n∑
i=1

(
Xi ·

w
∥w∥

)2

=
1
n
∥Xw∥2

∥w∥2
=

1
n

w⊤X⊤Xw
w⊤w︸ ︷︷ ︸

Rayleigh quotient of X⊤X and w

[This fraction is a well-known construction called the Rayleigh quotient. When you see it, you should smell
eigenvectors nearby. How do we maximize this?]
If w is an eigenvector vi of X⊤X, Ray. quo. = λi

→ of all eigenvectors, vd achieves maximum variance λd/n.
One can show vd beats every other vector too.
[Because every vector w is a linear combination of eigenvectors, and so its Rayleigh quotient will be a
convex combination of eigenvalues. It’s easy to prove this, but I don’t have the time. For the proof, look up
“Rayleigh quotient” in Wikipedia.]
[So the top eigenvector gives us the best direction. But we typically want k directions. After we’ve picked
one direction, then we have to pick a second direction that’s orthogonal to the best direction. But subject to
that constraint, we again pick the direction that maximizes the sample variance.]
What if we constrain w to be orthogonal to vd? Then vd−1 is optimal.
[And if we need a third direction orthogonal to vd and vd−1, the optimal choice is vd−2. And so on.]

Unsupervised Learning and Principal Components Analysis 121

PCA derivation 3: Find direction w that minimizes mean squared projection distance.

PCAanimation.gif [This is an animated GIF; unfortunately, the animation doesn’t work in
the PDF lecture notes. Find the direction of the black line for which the sum of squares of
the lengths of the red lines is smallest.]

[You can think of this as a sort of least-squares linear regression, with one subtle but important change. In-
stead of measuring the error in a fixed vertical direction, we’re measuring the error in a direction orthogonal
to the principal component direction we choose.]

projlsq.png, projpca.png [Least-squares linear regression vs. PCA. In linear regression,
the projection direction is always vertical; whereas in PCA, the projection direction is or-
thogonal to the projection hyperplane. In both methods, however, we minimize the sum of
the squares of the projection distances.]

Find w that minimizes
n∑

i=1

∥∥∥Xi − X̃i
∥∥∥2
=

n∑
i=1

∥∥∥∥∥Xi −
Xi · w
∥w∥2

w
∥∥∥∥∥2
=

n∑
i=1

∥Xi∥
2 −

(
Xi ·

w
∥w∥

)2
= constant − n (variance from derivation 2).

Minimizing mean squared projection distance = maximizing variance.
[From this point, we carry on with the same reasoning as derivation 2.]

122 Jonathan Richard Shewchuk

europegenetics.pdf (Lao et al., Current Biology, 2008.) [Illustration of the first two prin-
cipal components of the single nucleotide polymorphism (SNP) matrix for the genes of
various Europeans. The design matrix has 2,541 people from these locations in Europe
(right), and 309,790 SNPs per person. Each SNP is binary, so think of it as 309,790 dimen-
sions of zero or one. The output (left) shows spots on the first two principal components
where there was a high density of projected people from a particular national type. What’s
amazing about this is how closely the projected genotypes resemble the geography of Eu-
rope.]

Eigenfaces

X contains n images of faces, d pixels each.
[If we have a 200 × 200 image of a face, we represent it as a vector of length 40,000, the same way we
represent the MNIST digit data.]
Face recognition: Given a query face, compare it to all training faces; find nearest neighbor in Rd.
[This works best if you have several training photos of each person you want to recognize, with different
lighting and different facial expressions.]
Problem: Each query takes Θ(nd) time.
Solution: Run PCA on faces. Reduce to much smaller dimension d′.

Now nearest neighbors takes O(nd′) time.
[Possibly even less. We’ll talk about speeding up nearest-neighbor search at the end of the
semester. If the dimension is small enough, you can sometimes do better than linear time.]

[If you have 500 stored faces with 40,000 pixels each, and you reduce them to 40 principal components,
then each query face requires you to read 20,000 stored principal coordinates instead of 20 million pixels.]

Unsupervised Learning and Principal Components Analysis 123

facerecaverage.jpg, facereceigen0.jpg, facereceigen119.jpg, facereceigen.jpg [Images of
the the eigenfaces. The “average face” is the mean used to center the data.]

eigenfaceproject.pdf [Images of a face (left) projected onto the first 4 and 50 eigenvectors, with
the average face added back. These last image is blurry but good enough for face recognition.]

124 Jonathan Richard Shewchuk

For best results, equalize the intensity distributions first.

facerecequalize.jpg [Image equalization.]

[Eigenfaces are not perfect. They encode both face shape and lighting. Ideally, we would have some
way to factor out lighting and analyze face shape only, but that’s harder. Some people say that the first 3
eigenfaces are usually all about lighting, and you sometimes get better facial recognition by dropping the
first 3 eigenfaces.]

[Optional: Show Blanz–Vetter face morphing video (morphmod.mpg).]

[Blanz and Vetter use PCA in a more sophisticated way for 3D face modeling. They take 3D scans of
people’s faces and find correspondences between peoples’ faces and an idealized model. For instance, they
identify the tip of your nose, the corners of your mouth, and other facial features, which is something the
original eigenface work did not do. Instead of feeding an array of pixels into PCA, they feed the 3D locations
of various points on your face into PCA. This works more reliably.]

The Singular Value Decomposition; Clustering 125

21 The Singular Value Decomposition; Clustering

The Singular Value Decomposition (SVD) [and its Application to PCA]

Problems: Computing X⊤X takes Θ(nd2) time.
X⊤X is poorly conditioned→ numerically inaccurate eigenvectors.
[The SVD improves both these problems.]

[Earlier this semester, we talked about the eigendecomposition of a square, symmetric matrix. Unfortu-
nately, nonsymmetric matrices don’t eigendecompose nearly as nicely, and non-square matrices don’t have
eigenvectors at all. Happily, there is a similar decomposition that works for all matrices, even if they’re not
symmetric and not square.]

Fact: Every X has a singular value decomposition X = UDV⊤. If n ≥ d, it has the form

V⊤

n × d n × d

d × d d × d

orthonormal ui’s are left singular vectors of X
U⊤U = I

diagonal

u1

ud

δ1

δd0

0

vd

orthonormal vi’s are
right singular vectors of X

V⊤V = I

=
∑d

i=1 δiuiv⊤i︸︷︷︸
δ2
. . .

rank 1
v1 outer product

matrix

X

=

= U D

[Draw this by hand; write summation at the right last. svd.pdf]

Diagonal entries δ1, . . . , δd of D are nonnegative singular values of X.

[Some of the singular values might be zero. By convention, they are never negative. The number of nonzero
singular values is equal to the rank of X. If X is a centered design matrix for sample points that all lie on a
line, there is only one nonzero singular value. If the centered sample points span a subspace of dimension r,
there are r nonzero singular values and rank X = r.]

[If n < d, an SVD still exists, but now U is square and V is not.]

Fact: vi is an eigenvector of X⊤X w/eigenvalue δ2i .
Proof: X⊤X = VDU⊤UDV⊤ = VD2V⊤

which is an eigendecomposition of X⊤X.

[The columns of V are the eigenvectors of X⊤X, which are the principal components we need for PCA. The
SVD also tells us their eigenvalues, which are the squares of the singular values. By the way, that’s related
to why the SVD is more numerically stable: the ratios between singular values are smaller than the ratios
between eigenvalues. If n < d, V will omit some of the eigenvectors that have eigenvalue zero, but those are
useless for PCA.]

126 Jonathan Richard Shewchuk

Fact: We can find the k greatest singular values & corresponding vectors in O(ndk) time.
[So we can save time by computing some of the singular vectors without computing all of them.]
[There are approximate, randomized algorithms that are even faster, producing an approximate
SVD in O(nd log k) time. These are starting to become popular in algorithms for very big data.]
[https://code.google.com/archive/p/redsvd/]

Important: Row i of UD gives the principal coordinates of sample point Xi (i.e., ∀i,∀ j, Xi · v j = δ jUi j).
[So we don’t need to explicitly compute the inner products Xi · v j; the SVD has already done it for us.]
[Proof: XV = UDV⊤V = UD, so (XV)i j = (UD)i j.]

CLUSTERING

Partition data into clusters so points in a cluster are more similar than across clusters.
Why?

– Discovery: Find songs similar to songs you like; determine market segments
– Hierarchy: Find good taxonomy of species from genes
– Quantization: Compress a data set by reducing choices
– Graph partitioning: Image segmentation; find groups in social networks

Barry Zito

60 65 70 75 80 85 90

!
1

5
0

!
1

0
0

 !
5

0

 0

5
0

 1
0

0
 1

5
0

!150
!100

 !50
 0

 50
 100

 150

Start Speed

S
id

e
 S

p
in

B
a

c
k
 S

p
in

!

!

!

!

!
!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!!

!

!

!

!

!

!

!

!

!

!

!

! !

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!
!

!

!

!
!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!
!

!

! !

!

!

!

!
!

!

!

!

!

!!

!

!
!

!

!

!

!

!
!

!
!!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!
!

!

!

!

!

!

!

!

!

!

!

!

!
!

!

! !

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

! !
!!

!

!

!

!

!

!

!

!

!
!

!

!
!

!
!

!

! !

!

!

!
!

!

!

!

!

!

!

! !

!

!

!

!

!

!

!
!

!

! !

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!
!

!

!

!

!

!

!

!

!

!

!

!

!
!

!

!

!

!

!
!!

!

!

!!

!

!
!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!!!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!!

!

!

!

!

!

!

!

! !

!!

!

!

!

!

!

!

!

!

!

!

!

!

!
!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!
!

!

!

!!

!

!

!

!

!

!
!

!

!

!

!

!

!

!

!
!

!

!

!

!

!

!

!

!

!

!

!

!

!
!

!

!

!

!

!

!

!

!

!

!!

!

!

!

!

!

!

!

!

!

! !

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!
!

!

!

!

!

! !

!

!

!

!

!

!

!

!

!

!

!!

!

!

!

!

!

!

!

!

!
!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!
!

!

!

!

!

!

!

!

!

!

!

!
!

!

!
!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!
!

!

!

!

!

!

!

!

!

!

!

!

!

!

!
!

!

!

!
!
!

!

!

!

!

!

!

!

!

!

!

!

!!

!! !
!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!
!

!

!

!

!

!

!!

!

!

!

!

!

! !

!

! !

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!
!

!

!

!

!

!

!

!

!

! !

!

!

!

!

!

!

!

!

!

!
!

! !

!

!

!

!

!

!

!

!

!

!

!

!
!

!

!

!

!

!

!

!

!
!

!

!

!

!

!

!

!

!

!
!

!

!

!

!

!

!

!

!

!

!

!

!!

!
!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

! !
!

!

!

!

!
!

!

!
!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!
!

!
!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!
!

!

!

!

!

!

!

!

!

!

!

!

! !

!

!

!

!

!

!

!

!

!

!!
!

!

!

!

!

!

!

!

!
!

!

!

!

!

!

!

!
!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

! !

!

!

!

!

!!
!

!

!

!

!

!

!

!

!

!

!

!

!!

!

!
!

!

! !

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!
!

!

!

!
!

! !

!

!

!

!

!

!

!

!

!
!

!

!

! !

!

!

!

!

!

!

!
! !

!

!

!

!

!
!

!

!
!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!
!

!

!

!

!

!!

!

!

!

!!

!

!

!

!

!

!

!
!

! !

!

!

!!

!

!

!

!
!

!
!

!

!

!

!

!
!

!

!

!

!

!

!

!

!

! !

!

!

!

!

!

!

!

!

!

!

!

!

!

! !

!

!

!

!

!

!

!

!

!

!

!

!
!

!

!

!

!

!

!

!

!

!

!

!

!

!!

!

!
!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

! !

!

!

!

!

!

!!

!

!

!

!

!

!

!

!
!

!

!

!

!

!

!

!

!

!

!

!

!

!

!
!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!
!

!

!

!

!

!

!

!

!

! !

!

!

!

!

!

!

!

!

!

!

!

!!

!

!

!

!

!

!

!

!

!

!
!

!

!

!
!

!

!

!!

!
!

!

!

!

!

!

!

!

!
!

!

!

!

!

!

!

!

! !

!

!

!

!

!

!

!

!

!

!

!

!

!

!!

!

!

!

!

!

!

! !

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!
!

!

!

!

!

!

!

!!

! !

!

!
! !

!

!

!

!

!

!

!

!

!

!

!!

!

!! !

!

!

!

!!

!

! !

!

!

!

!!

!

!

!

!

!

!

!

!
!
!

!

!

!!

!

!

!

!

!

!

!

!

!

!

!

!
!

!

!

!

!

!

!

!
!

!

!

!

!

!

!

!

!

! !!

!

!

!

!

!

!

!

!

!

!
!
!

!

!

!

!

!
!

!

!

!

!

!

!

!

!

!

!

!

!!

!
!

!

!

!

!

!

!

!

!

!

!

!

!

!

! !

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!
!

!

!
!

!
!

!

!

!

!!

!

!

!
!
!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

! !

!

!!

!

!

!
!

!

!

!!
!

!

!

!

!

! !

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!
!

!

!

!

!

!
!

!

!

!
!

!

!

!

!

!

!

!

!

!
!

!

!

!

!

!
!

!

!

!

!

!

!

!

!

!

!

!

!

!

!
!

!

!

!

! !

!

!

!

!

!

!

!

!

!

!

!
!

!

!

!

!

!

!

!

!

! !

!

!

!
!

!

!

!

!

!
!

!

!

!
!

!

!!

!

!

!

!

!

!

!

!

!

!

!
!

!

!

!

!

!

!

!

!

!

!

!

!

!

!
!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!
!

!

!

!

!

!

!

!

!

!

!

!

!

!
!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

! !

!

!!

!!

!

!

!

!

!
!

!

!

!

! !

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!
!

!

!

!

!

!

!

!

!
!

!

!

!

!

!

!
!

!

!

!

!

!

!
!

! !

!

!

!

!

!

!

!

!

!

!

!

!

!

! !

!

!

!

!

!

!

!
!

!

!

!

!

!
!

!!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!
!

!

!

!

! !

!

!

!
!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!
!

! !

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

! !

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!
!

!

!

!

!

!

!

!

!

!

!

!

!

!
!!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!
!

!

!

!

!

! !

!

!

!

!

!

!

!

!

!

!

!!

!

!

!
!

!

!

!

!

!

!

!

!

!

!

!

! !

!

!

!

!

!
!

!

!

!

!

!

!

!!

!

!
!

!

!

!

!

!

!

!

!

!

!

!
!

!

!
!

!

!

!

!

!

!

!

!

!

!

!

!

!
!

!

!

!

!

!

!

!
!

!

!

!

!

!

!

!
!

!

!

!

!

!

!
!

!!

!

!

!

!

!

!

!

!

!

!

!

!

!

!
!

!

!

!

!

!

!

! !

!
!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

! !

!

!

!

!

!

!

!

!
! !
!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!
!

!

!!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!
!

!
!

!

!

!

! !

!
!

!
!

!

!

!

!

!

!

!

!
!

!

!
!

!

!

!

!

!

!

!

!
!

!

!

!

!

!!

!

! !

!

!

!

!

!!

!

!

!

!

!

!

!

!

!!

!

!

!

!

!

!

!

!!
!

!
!

! !

!

!

!

!

!

!

!

!

!

!

!

!

!
!

!

!

!!

!

!

!

!

!
!

!

!

!

!

!

!

!

!

!

!!

!
!

!

!

!

! !

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

! !

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!
!

!

!
!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!
!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!
!

!

!

!

!

!

!
!

!

!

!

!

!

!

!
!

!

!

!

!!

!
!

!

!

!

!

!

!
!

!

!

!

!

!

!

!

!

!

!

!

!

!
!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!
!

!

!

!

!

!

!

!

!

!

! !

!

!

!

!

!

!

!

!

!

!

!

!
!

!

!

!!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!
!

!

!

!

!

!

!

!

!

!

!

!

!

!
!

!

!

!

!

!

!

!

!!

!

!

!

!

!

!

!

!

!

!

!
!

!

!

!

!

!

! !

!

!

!

!

!
!

!

!

!

!

!

!!

!

!

!

!

!

!

!

!

!

!
!

!

!

! !!

!

!
!

!

!

!

!
!

!

!

!

!

!

!

!

!

!!

!

!

!

!

!

!

!

!

!

!

!

!
!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!!

!

!

!

!

!

!
!

!

!

!

!

!!

!

!

!

!!

!

!

!

!

!

!

!

!!

!

!

!

!!
!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!
!

!

!

!

!

!

!

!
!

!

!

!

! !

!

!

!

!

!

!

!

!!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!!

!

!

!
!

!

!

!

!

!

!

!

!

!

!

!
!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!
!

!

!

!

!

!

!
!

!

!

!!

!
!

!

!

!

!

!

!
!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!
!

!

!

!

!

!!

!

!

!

!

!

!!

!

!
!

!

!!
!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

! !

!

!

!
!

!

!

!

!

!

!

!

!

!

!

!!

!

!

!!

!

!

!

!!

!

!

!

!
!

!

!
!

!

!
!

!

!

!

! !

!

!

!

!

!

!

! !

!

!

!

!

!

!

!

!

! !

!

!

!

!

!

!
!

!

!

!

!

!

!

!

!

!

!

!

!

!
!

!

!

!

!

!

!

!

!

!
!

!

!

!

!

!

!

!
!

!

!
!

!

!
!

!

!

!

!
!

!

!

!

!

!

!
!

!

!

!
!

!

!

!

!
!

!

!

!

!
!

!

!

!

!

!

!

!

!
!

!

!
!

!

!

!

!

!

! !

!

!

!

!

!
!

!
!

!

!
!

!!

!

!

!
!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!!
!

!
!

!

!

!

!

!
!

!

!
!

!

!

!

!

!

!

!

!

!

!

!

!

!

!
!

!

!

!

!

!

!

!

!

!

!

!

!
!

!

!

!

!

!

!
!

!!

!

!

!

!

!

!

!

! !

!

!

!

!

!

!

!

!

!

!
!

!

!

!

!

!

!

!
!

!
!

! !

!

! !

!

!

!

!

!
!

!

!

!

!
!

!
!

!

!

!

!

!

!

!

!

!

!

!
!

!

!

!
!

!

!

!

! !

! !

!

!
!

!

!

!

!

!

!

!

!

!

! !
!

!!

!

!

!

!

!

!

!

!

!

!

!!
!

!

!

!

!

!
!

!
!

!!

!

!

!

!

!

!

!!

!

!

! !

!

!

!
!

!

!

!

!
!

!

!

!

!

!
!

!

!

!

!

!
!

!!
!

!

!

!
!

!

!

!

!

!

!
!

!

!

!

!
!

!

!

!

!

!

!

!
!

!

!

!

!!

!

!

!

!

!

!

!

! !
!

!

!

!

!

!

!

!

!

!

!
!

!

!

!

!

!

!

!

!

!

!

!

!

! !

!!

!

!

!

!

!

!

!
!

!

!

!

!

!

!

!

!

!!
!

!

!
!

!

!

!

!

!

!

!

!
!

!

!

!

!
!

!

!

!

!

!

!

!!

!

!

!

!

!

!

!

!

!

!

!

!

!

!!

!
!

!

!

!!

!

!

!

! !

!

!

!

!

!

!

!

!

!

!

!

!

! !

!
!

!

!

!

!

!
!

!

!

!

!

!

!

!

!

!
!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!! !

!

!

!

!
!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!
!!

!

!

!

!

!

!

!
!

!!

!

!

!

!

!

!

!

!
!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

! !

!
!

!

!
!

!

!

!!

!

!

!

! !

4-Seam Fastball 2-Seam Fastball Changeup Slider Curveball
Black Red Green Blue Light Blue

zito.pdf (from a talk by Michael Pane) [k-means clusters that classify Barry Zito’s base-
ball pitches. Here we discover that there really are distinct classes of baseball pitches.]

The Singular Value Decomposition; Clustering 127

k-Means Clustering aka Lloyd’s Algorithm (Stuart Lloyd, 1957)

Goal: Partition n points into k disjoint clusters.
Assign each input point Xi a cluster label yi ∈ [1, k].
Cluster i’s mean is µi =

1
ni

∑
y j=i X j, given ni points in cluster i.

Find y that minimizes
k∑

i=1

∑
y j=i

∥∥∥X j − µi
∥∥∥2 [Sum of the squared distances from points to

their cluster means.]

NP-hard. Solvable in O(nkn) time. [Try every partition.]

k-means heuristic: Alternate between
(1) y j’s are fixed; update µi’s
(2) µi’s are fixed; update y j’s

Halt when step (2) changes no assignments.

[So, we have an assignment of points to clusters. We compute the cluster means. Then we reconsider the
assignment. A point might change clusters if some other’s cluster’s mean is closer than its own cluster’s
mean. Then repeat.]

Step (1): One can show (calculus) the optimal µi is the mean of the points in cluster i.
[This is easy calculus, so I leave it as a short exercise.]

Step (2): The optimal y assigns each point X j to the closest center µi.
[If there’s a tie, and one of the choices is for X j to stay in the
same cluster as the previous iteration, always take that choice.]

[. . . so both steps minimize the cost function, but they don’t optimize all the variables at once.]

2means.png [An example of 2-means. Odd-numbered steps reassign the data points.
Even-numbered steps compute new means.]

128 Jonathan Richard Shewchuk

4meansanimation.gif [This is an animated GIF of 4-means with many points. Unfortu-
nately, the animation doesn’t work in the PDF lecture notes.]

Both steps decrease objective fn unless they change nothing.
[Therefore, the algorithm never returns to a previous assignment.]
Hence alg. must terminate. [As there are only finitely many assignments.]
[This argument says that Lloyd’s algorithm never loops forever. But it doesn’t say anything optimistic about
the running time, because we might see O(kn) different assignments before we halt. In theory, one can
actually construct point sets in the plane that take an exponential number of iterations, but those don’t come
up in practice.]
Usually very fast in practice. Finds a local minimum, often not global.
[. . . which is not surprising, as this problem is NP-hard.]

4meansbad.png [An example where 4-means clustering fails.]

Getting started:
– Forgy method: choose k random sample points to be initial µi’s; go to (2).
– Random partition: randomly assign each sample point to a cluster; go to (1).
– k-means++: like Forgy, but biased distribution. [Each center is chosen with a preference for points

far from previous centers.]

[k-means++ is a little more work, but it works well in practice and theory. Forgy seems to be better than
random partition, but Wikipedia mentions some variants of k-means for which random partition is better.]

The Singular Value Decomposition; Clustering 129

For best results, run k-means multiple times with random starts.

320.9 235.8 235.8

235.8 235.8 310.9

kmeans6times.pdf (ISL, Figure 10.7) [Clusters found by running 3-means 6 times on the
same sample points, each time starting with a different random partition. The algorithm
finds three different local minima.]

[Why did we choose that particular objective function to minimize? Partly because it is equivalent to mini-
mizing the following function.]

Equivalent objective fn: the within-cluster variation

Find y that minimizes
k∑

i=1

1
ni

∑
y j=i

∑
ym=i

∥∥∥X j − Xm
∥∥∥2

[At the minimizer, this objective function is equal to twice the previous one. It’s a worthwhile exercise to
show that—it’s harder than it looks. The nice thing about this expression is that it doesn’t include the means;
it’s a function purely of the input points and the clusters we assign them to. So it’s more convincing.]

Normalize the data? [before applying k-means]
Same advice as for PCA. Sometimes yes, sometimes no.
[If some features are much larger than others, they will tend to dominate the Euclidean distance. So if you
have features in different units of measurement, you probably should normalize them. If you have features
in the same unit of measurement, you usually shouldn’t, but it depends on context.]

130 Jonathan Richard Shewchuk

k-Medoids Clustering

Generalizes k-means beyond Euclidean distance. [Means aren’t optimal for other distance metrics.]
Specify a distance fn d(x, y) between points x, y, aka dissimilarity.
Can be arbitrary; ideally satisfies triangle inequality d(x, y) ≤ d(x, z) + d(z, y).
[Sometimes people use the ℓ1 norm or the ℓ∞ norm. Sometimes people specify a matrix of pairwise distances
between the input points.]
[Suppose you have a database that tells you how many of each product each customer bought. You’d like
to cluster together customers who buy similar products for market analysis. But if you cluster customers by
Euclidean distance, you’ll get a big cluster of all the customers who have only ever bought one thing. So
Euclidean distance is not a good measure of dissimilarity. Instead, it makes more sense to treat each customer
as a vector and measure the angle between two customers. If there’s a large angle between customers, they’re
dissimilar.]
Replace mean with medoid, the sample point that minimizes total distance to other points in same cluster.
[So the medoid of a cluster is always one of the input points.]

[One difficulty with k-means is that you have to choose the number k of clusters before you start, and there
isn’t any reliable way to guess how many clusters will best fit the data. The next method, hierarchical
clustering, has the advantage in that respect. By the way, there is a whole Wikipedia article on “Determining
the number of clusters in a data set.”]

Hierarchical Clustering

Creates a tree; every subtree is a cluster.
[So some clusters contain smaller clusters.]

Bottom-up, aka agglomerative clustering:
start with each point a cluster; repeatedly fuse pairs.

Top-down, aka divisive clustering:
start with all pts in one cluster; repeatedly split it.

[When the input is a point set, agglomerative clustering is used much more in practice than divisive cluster-
ing. But when the input is a graph, it’s the other way around: divisive clustering is more common.]

We need a distance fn for clusters A, B:

complete linkage: d(A, B) = max{d(w, x) : w ∈ A, x ∈ B}
single linkage: d(A, B) = min{d(w, x) : w ∈ A, x ∈ B}
average linkage: d(A, B) = 1

|A| |B|
∑

w∈A
∑

x∈B d(w, x)
centroid linkage: d(A, B) = d(µA, µB) where µS is mean of S
[The first three of these linkages work for any distance function, even if the input is just a matrix of distances
between all pairs of points. The centroid linkage only really makes sense if we’re using the Euclidean
distance. But there’s a variation of the centroid linkage that uses the medoids instead of the means, and
medoids are defined for any distance function. Moreover, medoids are more robust to outliers than means.]

Greedy agglomerative alg.:
Repeatedly fuse the two clusters that minimize d(A, B)
Naively takes O(n3) time.

The Singular Value Decomposition; Clustering 131

[But for complete and single linkage, there are more sophisticated algorithms called CLINK and SLINK,
which run in O(n2) time. A package called ELKI has publicly available implementations.]

Dendrogram: Illustration of the cluster hierarchy (tree) in which the vertical axis encodes all the linkage
distances.

0
2

4
6

8
1

0

0
2

4
6

8
1

0

0
2

4
6

8
1

0

dendrogram.pdf (ISL, Figure 10.9) [Example of a dendrogram cut into 1, 2, or 3 clusters.]

Cut dendrogram into clusters by horizontal line according to your choice of # of clusters OR intercluster
distance.

[It’s important to be aware that the horizontal axis of a dendrogram has no meaning. You could swap some
treenode’s left subtree and right subtree and it would still be the same dendrogram. It doesn’t mean anything
that two leaves happen to be next to each other.]

132 Jonathan Richard Shewchuk

Average Linkage Complete Linkage Single Linkage

linkages.pdf (ISL, Figure 10.12) [Comparison of average, complete (max), and single
(min) linkages. Observe that the complete linkage gives the best-balanced dendrogram,
whereas the single linkage gives a very unbalanced dendrogram that is sensitive to outliers
(especially near the top of the dendrogram).]

[Probably the worst of these is the single linkage, because it’s very sensitive to outliers. Notice that if you
cut this example into three clusters, two of them have only one sample point. It also tends to give you a very
unbalanced tree.]

[The complete linkage tends to be the best balanced, because when a cluster gets large, the furthest point in
the cluster is always far away. So large clusters are more resistant to growth than small ones. If balanced
clusters are your goal, this is your best choice.]

[In most applications you probably want the average or complete linkage.]

Warning: centroid linkage can cause inversions where a parent cluster is fused at a lower height than its
children.

[So statisticians don’t like it, but nevertheless, centroid linkage is popular in genomics.]

[As a final note, all the clustering algorithms we’ve studied so far are unstable, in the sense that deleting a
few input points can sometimes give you very different results. But these unstable heuristics are still the most
commonly used clustering algorithms. And it’s not clear to me whether a truly stable clustering algorithm
is even possible.]

High Dimensions; Random Projection; the Pseudoinverse 133

22 High Dimensions; Random Projection; the Pseudoinverse

THE GEOMETRY OF HIGH-DIMENSIONAL SPACES

[High-dimensional geometry sometimes acts in ways that are completely counterintuitive, defying our intu-
itions from low-dimensional geometry.]

Consider a random point p ∼ N(0, I) ∈ Rd.
What is the distribution of its length?

[Looking at the one-dimensional normal distribu-
tion, you would expect it to be very common that
the length is close to zero, a bit less common that
the length is close to 1 or −1, and not rare for the
length to be close to 2 or −2. But in high dimen-
sions, that intuition is completely wrong.]

-3 -2 -1 1 2 3
x

0.1

0.2

0.3

0.4

f (x)

normal.pdf [A one-dimensional normal distribution.]

[If the dimension is very high, the vast majority of the random points are at approximately the same distance
from the mean. So they lie in a thin shell. Why? To answer that, let’s study the square of the distance. By
Pythagoras’ Theorem, the squared distance from p to the mean is]

∥p∥2 = p2
1 + p2

2 + . . . + p2
d

[Each component pi is sampled independently from a univariate normal distribution with mean zero and
variance one. The square of a component, p2

i , is said to come from a chi-squared distribution.]

pi ∼ N(0, 1), p2
i ∼ χ

2(1), E[p2
i] = 1, Var(p2

i) = 2

[Recall that when you add d independent, identically distributed random numbers, you scale their mean and
variance by d, and the standard deviation is the square root of the variance.]

E[∥p∥2] = d E[p2
1] = d

Var(∥p∥2) = d Var(p2
1) = 2d

SD(∥p∥2) =
√

2d

For large d, ∥p∥ is concentrated in a thin shell around radius
√

d with a thickness proportional to 4√2d.
[The mean value of ∥p∥ isn’t exactly

√
d, but it is close, because the mean of ∥p∥2 is d and the standard

deviation is much, much smaller. Likewise, the standard deviation of ∥p∥ isn’t exactly 4√2d, but it’s close.]

[So if d is about a million, imagine a million-dimensional egg whose radius is about 1,000, and the thickness
of the shell is about 67, which is about 10 times the standard deviation. The vast majority of random points
are in the eggshell. Not inside the egg; actually in the shell itself. It is counterintuitive that random vectors
sampled from a high-dimensional normal distribution almost all have almost the same length.]

[There is a statistical principle hiding here. Suppose you want to estimate the mean of a distribution—
in this case, the chi-squared distribution. The standard way to do that is to sample very many numbers
from the distribution and take their mean. The more numbers you sample, the more accurate your estimate
is—that is, the smaller the standard deviation of your sample mean is. When we sample a vector from a
million-dimensional normal distribution and compute its length, that’s exactly what we’re doing!]

134 Jonathan Richard Shewchuk

What about a uniform distribution? Consider concentric spheres of radii r & r − ϵ.

[Draw this by hand concentric.png] [Concentric balls. In high dimensions, almost every
point chosen uniformly at random in the outer ball lies outside the inner ball.]

Volume of outer ball ∝ rd

Volume of inner ball ∝ (r − ϵ)d

Ratio of inner ball volume to outer =

(r − ϵ)d

rd =

(
1 −
ϵ

r

)d
≈ exp

(
−
ϵd
r

)
which is small for large d.

E.g., if
ϵ

r
= 0.1 & d = 100, inner ball has 0.9100 = 0.0027% of volume.

Random points from uniform distribution in ball: nearly all are in thin outer shell.
” ” ” Gaussian ” : nearly all are in some thin shell.

Lessons:
– In high dimensions, sometimes the nearest neighbor and 1,000th-nearest neighbor don’t differ much!
– k-means clustering and nearest neighbor classifiers are less effective for large d.

Angles between Random Vectors

What is the angle θ between a random p ∼ N(0, I) ∈ Rd and an arbitrary q ∈ Rd?

Without loss of generality, set q = [1 0 0 . . . 0]⊤.
[The value of q doesn’t matter, because the direction that p points in is uniformly distributed over all possible
directions. By a formula we learned early this semester, the angle between p and q is θ, where . . .]

cos θ =
p · q
∥p∥ ∥q∥

=
p1

∥p∥

E[cos θ] = 0; SD(cos θ) ≈
1
√

d

If d is large, cos θ is almost always very close to zero; θ is almost always very close to 90◦!

[In high-dimensional spaces, two random vectors are almost always very close to orthogonal. To put it
another way, an arbitrary vector is almost orthogonal to the vast majority of all the other vectors!]

[A former CS 189/289A head TA, Marc Khoury, has a nice short essay entitled “Counterintuitive Properties
of High Dimensional Space”, which you can read at
https://marckhoury.github.io/blog/counterintuitive-properties-of-high-dimensional-space]

High Dimensions; Random Projection; the Pseudoinverse 135

RANDOM PROJECTION

An alternative to PCA as preprocess for clustering, classification, regression.
Approximately preserves distances between points!

[We project onto a random subspace instead of the PCA subspace, but sometimes it preserves distances
better than PCA. It works best when you project a very high-dimensional space to a medium-dimensional
space. Because it roughly preserves the distances, algorithms like k-means clustering and nearest neighbor
classifiers will give similar results to what they would give in high dimensions, but they run much faster.]

Pick a small ϵ, a small δ, and a random subspace S ⊂ Rd of dimension k, where k =
⌈

2 ln(1/δ)
ϵ2/2 − ϵ3/3

⌉
.

For any pt q, let q̂ be orthogonal projection of q onto S , multiplied by
√

d
k .

[The multiplication by
√

d/k helps preserve the distances between points after you project.]

Johnson–Lindenstrauss Lemma (modified):
For any two pts q,w ∈ Rd, (1 − ϵ) ∥q − w∥2 ≤ ∥q̂ − ŵ∥2 ≤ (1 + ϵ) ∥q − w∥2 with probability ≥ 1 − 2δ.
Typical values: ϵ ∈ [0.02, 0.5], δ ∈ [1/n3, 0.05]. [You choose ϵ and δ according to your needs.]

[With these ranges, the squared distance between two points after projecting might change by 2% to 50%.
In practice, you can experiment with k to find the best speed-accuracy tradeoff. If you want all inter-sample-
point distances to be accurate, you should set δ smaller than 1/n2, so you need a subspace of dimension
Θ(log n). Reducing δ doesn’t cost much (because of the logarithm), but reducing ϵ costs more. You can
bring 1,000,000 sample points down to a 10,000-dimensional space with at most a 6% error in the distances.]
[What is remarkable about this result is that the dimension d of the input points doesn’t matter!]

JL Experiments

Data: 20-newsgroups, from 100.000 features to 1.000 (1%)

MATLAB implementation: 1/sqrt(k).*randn(k,N)%*%X.

100000to1000.pdf [Comparison of inter-point distances before and after projecting points
in 100,000-dimensional space down to 1,000 dimensions.]

[Why does this work? A random projection of q − w is like taking a random vector and selecting k compo-
nents. The mean of the squares of those k components approximates the mean for the whole population.]

[How do you get a uniformly distributed random projection direction? You can choose each component
from a univariate Gaussian distribution, then normalize the vector to unit length. How do you get a random
subspace? You can choose k random directions, then use Gram–Schmidt orthogonalization to make them
mutually orthonormal. Interestingly, Indyk and Motwani show that if you skip the expensive normalization
and Gram–Schmidt steps, random projection still works almost as well, because random vectors in a high-
dimensional space are nearly equal in length and nearly orthogonal to each other with high probability.]

136 Jonathan Richard Shewchuk

THE PSEUDOINVERSE AND THE SVD

[We’re done with unsupervised learning. For the rest of the semester, we go back to supervised learning.]

[The singular value decomposition can give us insight into the pseudoinverse and its use in least-squares
linear regression. If you attended Discussion Section 6, you worked through an explanation of this, but now
that I’ve introduced the SVD in Lecture 21, I’d like to summarize it.]

[Let’s understand the psuedoinverse of a diagonal matrix first, then the pseudoinverse of a matrix in general.]

Let D be a diagonal n × d matrix. [Not necesarily square!]
Find its pseudoinverse D+ by transposing D and replacing every nonzero entry with its reciprocal.

E.g., D =

2 0 0
0 0 0
0 0 1/3
0 0 0

 , D+ =

 1/2 0 0 0
0 0 0 0
0 0 3 0

 , DD+ =

1 0 0 0
0 0 0 0
0 0 1 0
0 0 0 0

 , D+D =

 1 0 0
0 0 0
0 0 1

 .
[If D were a square matrix with no zeros on the diagonal, then D+ would be the inverse of D, and DD+ and
D+D would be the identity matrix. In general, DD+ and D+D are always diagonal matrices with 0’s and 1’s
only.]

Observe that DD+D = D and D+DD+ = D+. If D is square, D2D+ = D.
[Because the 0’s and 1’s in DD+ line up with the 0’s and nonzeros in D and D+. This is as close to an
“inverse” as a rank-deficient matrix can get. Now let’s consider the pseudoinverse of an arbitrary matrix.]

Let X be any n × d matrix. Let X = UDV⊤ be its SVD. Recall that rank D = rank X.
The Moore–Penrose pseudoinverse of X is X+ = VD+U⊤.
Observe:

(1) XX+ = UDV⊤VD+U⊤ = U(DD+)U⊤ is symmetric & positive semidefinite.
[Observe that this is an eigendecomposition of XX+, and all the eigenvalues are 1 or 0.]

(2) X+X = VD+U⊤UDV⊤ = V(D+D)V⊤ is symmetric & PSD too.
(3) All have the same rank: D, D+, DD+, D+D, X, X+, XX+, X+X.
(4) If X has rank n, then XX+ = In×n and X+ is a right inverse.
(5) If X has rank d, then X+X = Id×d and X+ is a left inverse.
(6) XX+X = X. Proof: XX+X = U(DD+)U⊤UDV⊤ = U(DD+D)V⊤ = UDV⊤ = X.
(7) X+XX+ = X+. [The proof is symmetric to the previous one.]

[Now, we can show that the pseudoinverse always gives a good solution in least-squares linear regression,
even when X⊤X is singular.]

Theorem: A solution to the normal equations X⊤Xw = X⊤y is w = X+y.

Proof: X⊤Xw = X⊤XX+y = VDU⊤U(DD+)U⊤y = V(D2D+)U⊤y = VDU⊤y = X⊤y.

If the normal eq’ns have multiple solutions, w = X+y is the least-norm solution; i.e., it minimizes ∥w∥ among
all solutions. [If you attended Discussion Section 6, you might have proven this yourself.]

[This way of solving the normal equations is very helpful when X⊤X is singular because n < d or the
sample points lie on a subspace of the feature space. But observe that if X has a very small singular value,
the reciprocal of that singular value will be very large and have a very large effect on w; but when that
singular value is exactly zero, it has no effect on w! So when we have a really tiny singular value, should we
pretend it is zero? Ridge regression implements this policy to some degree; review Discussion Worksheet 8
for details.]

Learning Theory 137

23 Learning Theory

LEARNING THEORY: WHAT IS GENERALIZATION?

[One thing humans do well is generalize. When you were a young child, you only had to see a few examples
of cows before you learned to recognize cows, including cows you had never seen before. You didn’t have
to see every cow. You didn’t even have to see log n of the cows.]

[Learning theory tries to explain how machine learning algorithms generalize, so they can classify data
they’ve never seen before. It also tries to derive mathematically how much training data we need to general-
ize well. Learning theory starts with the observation that if we want to generalize, we must constrain what
hypotheses we allow our learner to consider.]

A range space (aka set system) is a pair (P,H), where
P is set of all possible test/training points (can be infinite)
H is hypothesis class, a set of hypotheses (aka ranges, aka classifiers):

each hypothesis is a subset h ⊆ P that specifies which points h predicts are in class C.
[So each hypothesis h is a 2-class classifier, and H is a set of sets of points.]

Examples:
1. Power set classifier: P is a set of k numbers; H is the power set of P, containing all 2k subsets of P.

e.g., P = {1, 2},H = {∅, {1}, {2}, {1, 2}}
2. Linear classifier: P = Rd; H is the set of all halfspaces; each halfspace has the form {x : w · x ≥ −α}.

[In this example, both P and H are infinite. In particular, H contains every possible halfspace—that
is, every possible linear classifier in d dimensions.]

[The power set classifier sounds very powerful, because it can learn every possible hypothesis. But the
reality is that it can’t generalize at all. Imagine we have three training points and three test points in a row.]

C C N? ? ?

[The power set classifier can classify these three test points any way you like. Unfortunately, that means it
has learned nothing about the test points from the training points. By contrast, the linear classifier can learn
only two hypotheses that fit this training data. The leftmost test point must be classified class C, and the
rightmost test point must be classified class Not-C. Only the test point in the middle can swing either way.
So the linear classifier has a big advantage: it can generalize from a few training points. That’s also a big
disadvantage if the data isn’t close to linearly separable, but that’s another story.]

[Now we will investigate how well the training error predicts the test error, and how that differs for these
two classifiers.]

Suppose all training pts & test pts are drawn independently from same prob. distribution D defined on
domain P. [D also determines each point’s label. Classes C and Not-C may have overlapping distributions.]

Let h ∈ H be a hypothesis [a classifier]. h predicts a pt x is in class C if x ∈ h.
The risk aka generalization error R(h) of h is the probability that h misclassifies a random pt x drawn
fromD—i.e., the prob. that x ∈ C but x < h or vice versa.
[Risk is almost the same as the test error. To be precise, the risk is the average test error for test points
drawn randomly from D. For a particular test set, sometimes the test error is higher, sometimes lower, but
on average it is R(h). If you had an infinite amount of test data, the risk and the test error would be the same.]

138 Jonathan Richard Shewchuk

Let X ⊆ P be a set of n training pts drawn fromD
The empirical risk aka training error R̂(h) is % of X misclassified by h.
[This matches the definition of empirical risk I gave you in Lecture 12, if you use the 0-1 loss function.]

h misclassifies each training pt w/prob. R(h), so total misclassified has a binomial distribution.
As n→ ∞, R̂(h) better approximates R(h).

5 10 15 20

0.05

0.10

0.15

0.20

100 200 300 400 500

0.01

0.02

0.03

0.04

binom20.pdf, binom500.pdf [Consider a hypothesis whose risk of misclassification is
25%. Plotted are distributions of the number of misclassified training points for 20 points
and 500 points, respectively. For 20 points, the training error is not a reliable estimate of
the risk: the hypothesis might get “lucky” with misleadingly low training error.]

[If we had infinite training data, this distribution would become infinitely narrow and the training error
would always be equal to the risk. But we can’t have infinite training data. So, how well does the training
error approximate the risk?]

Hoeffding’s inequality tells us prob. of bad estimate:

Pr(|R̂(h) − R(h)| > ϵ) ≤ 2e−2ϵ2n.

[Hoeffding’s inequality is a standard result about how likely it is that a number drawn from a binomial
distribution will be far from its mean. If n is big enough, then it’s very unlikely.]

0 50 100 150 200 250 300
points

0.2

0.4

0.6

0.8

1.0
bad estimate probability

hoeffding.pdf [Hoeffding’s bound for the unambitious ϵ = 0.1. It takes at least 200 training
points to have high confidence of attaining that error bound.]

[One reason this matters is because we will try to choose the best hypothesis. If the training error is a bad
estimate of the test error, we might choose a hypothesis we think is good but really isn’t. So we are happy
to see that the likelihood of that decays exponentially in the amount of training data.]

Learning Theory 139

Idea for learning alg: choose ĥ ∈ H that minimizes R̂(ĥ)! Empirical risk minimization.
[None of the classification algorithms we’ve studied actually do this, but only because it’s computationally
infeasible to pick the best hypothesis. Support vector machines can find a linear classifier with zero training
error when the training data is linearly separable. But when it isn’t, SVMs try to find a linear classifier with
low training error, but they don’t generally find the one with minimum training error. That’s NP-hard.]
[Nevertheless, for the sake of understanding learning theory, we’re going to pretend that we have the com-
putational power to try every hypothesis and pick the one with the lowest training error.]

Problem: if too many hypotheses, some h with high R(h) will get lucky and have very low R̂(h)!

[This brings us to a central idea of learning theory. You might think that the ideal learning algorithm would
have the largest class of hypotheses, so it could find the perfect one to fit the data. But the reality is that you
can have so many hypotheses that some of them just get lucky and score far lower training error than their
actual risk. That’s another way to understand what “overfitting” is.]
[More precisely, the problem isn’t too many hypotheses. Usually we have infinitely many hypotheses, and
that’s okay. The problem is too many dichotomies.]

Dichotomies

A dichotomy of X is X ∩ h, where h ∈ H.
[A dichotomy picks out the training points that h predicts are in class C. Think of each dichotomy as a
function assigning each training point to class C or class Not-C.]

CC N C C NCC N CC N

[Draw this by hand. dichotomies.pdf] [Three examples of dichotomies for three points in
a hypothesis class of linear classifiers, and one example (right) that is not a dichotomy.]

[For n training points, there could be up to 2n dichotomies. The more dichotomies there are, the more likely
it is that one of them will get lucky and have misleadingly low empirical risk.]

Extreme case: if H allows all 2n possible dichotomies, R̂(ĥ) = 0 even if every h ∈ H has high risk.
[If our hypothesis class permits all 2n possible assignments of the n training points to classes, then one of
them will have zero training error. But that’s true even if all of the hypotheses are terrible and have a large
risk. Because the hypothesis class imposes no structure, we overfit the training points.]

Given Π dichotomies, Pr(at least one dichotomy has |R̂ − R| > ϵ) ≤ δ, where δ = 2Π e−2ϵ2n.
[Let’s fix a value of δ and solve for ϵ.] Hence with prob. ≥ 1 − δ, for every h ∈ H,

|R̂(h) − R(h)| ≤ ϵ =

√
1
2n

ln
2Π
δ
.

[This tells us that the smaller we make Π, the number of possible dichotomies, and the larger we make n,
the number of training points, the more accurately the training error will approximate how well the classifier
performs on test data.]

smaller Π or larger n⇒ training error probably closer to true risk (& test error).

140 Jonathan Richard Shewchuk

[Smaller Πmeans we’re less likely to overfit. We have less variance, but more bias. This doesn’t necessarily
mean the risk will be small. If our hypothesis class H doesn’t fit the data well, both the training error and
the test error will be large. In an ideal world, we want a hypothesis class that fits the data well, yet doesn’t
produce many dichotomies.]

Let h∗ ∈ H minimize R(h∗); “best” classifier.
[Remember we picked the classifier ĥ that minimizes the empirical risk. We really want the classifier h∗ that
minimizes the actual risk, but we can’t know what h∗ is. But if Π is small and n is large, the hypothesis ĥ
we have chosen is probably nearly as good as h∗.]

With prob. ≥ 1 − δ, our chosen ĥ has nearly optimal risk:

R(ĥ) ≤ R̂(ĥ) + ϵ ≤ R̂(h∗) + ϵ ≤ R(h∗) + 2ϵ, ϵ =

√
1
2n

ln
2Π
δ
.

[This is excellent news! It means that with enough training data and a limit on the number of dichotomies,
empirical risk minimization usually chooses a classifier close to the best one in the hypothesis class.]

Choose a δ and an ϵ.
The sample complexity is the # of training pts needed to achieve this ϵ with prob. ≥ 1 − δ:

n =
1

2ϵ2
ln

2Π
δ
.

[If Π is small, we won’t need too many training points to choose a good classifier. Unfortunately, if Π = 2n

we lose, because this inequality says that n has to be bigger than n. So the power set classifier can’t learn
much or generalize at all. We need to severely reduce Π, the number of possible dichotomies. One way to
do that is to use a linear classifier.]

The Shatter Function & Linear Classifiers

[How many ways can you divide n points into two classes with a hyperplane?]

of dichotomies: ΠH(X) = |{X ∩ h : h ∈ H}| ∈ [1, 2n] where n = |X|

shatter function: ΠH(n) = max
|X|=n,X⊆P

ΠH(X) [The most dichotomies of any point set of size n]

Example: Linear classifiers in plane. H = set of all halfplanes. ΠH(3) = 8:

N C C

NN C CCCC C

C

[Draw this by hand. shatter.pdf] [Linear classifiers can induce all eight dichotomies of
these three points. The other four dichotomies are the complements of these four.]

Learning Theory 141

ΠH(4) = 14:
[Instead of showing you all 14 dichotomies, let me show you dichotomies that halfplanes cannot learn,
which illustrate why no four points have 16 dichotomies.]

CC C

N

N

C

N

C C

NC C

[Draw this by hand. unshatter.pdf] [Examples of dichotomies of four points in the plane
that no linear classifier can induce.]

[This isn’t a proof that 14 is the maximum, because we have to show that 15 is not possible for any four
points in the plane. The standard proof uses a famous result called Radon’s Theorem.]

Fact: for all range spaces, either ΠH(n) is polynomial in n, or ΠH(n) = 2n ∀n ≥ 0.

[This is a surprising fact with deep implications. Imagine that you have n points, some of them training
points and some of them test points. Either a range space permits every possible dichotomy of the points,
and the training points don’t help you classify the test points at all; or the range space permits only a
polynomial subset of the 2n possible dichotomies, so once you have labeled the training points, you have
usually cut down the number of ways you can classify the test points dramatically. No shatter function ever
occupies the no-man’s-land between polynomial and 2n.]

[For linear classifiers, we know exactly how many dichotomies there can be.]

Cover’s Theorem [1965]: linear classifiers in Rd allow up to ΠH(n) = 2
d∑

i=0

(
n − 1

i

)
dichotomies of n pts.

For n ≤ d + 1, ΠH(n) = 2n.
For n ≥ d + 1, ΠH(n) ≤ 2

(
e(n−1)

d

)d
[Observe that this is polynomial in n! With exponent d.]

and the sample complexity needed to achieve R(ĥ) ≤ R̂(ĥ) + ϵ ≤ R(h∗) + 2ϵ with prob. ≥ 1 − δ is

n =
1

2ϵ2

(
d ln

n − 1
d
+ d + ln

4
δ

)
. [Observe that the logarithm turned the exponent d into a factor!]

Corollary: linear classifiers need only n ∈ Θ(d) training pts
for training error to accurately predict risk or test error.

[In a d-dimensional feature space, we need more than d training points to train an accurate linear classifier.
But it’s reassuring to know that the number we need is linear in d. By contrast, if we have a classifier that
permits all 2n possible dichotomies however large n is, then no amount of training data will guarantee that
the training error of the hypothesis we choose approximates the true risk.]

[The constant hidden in that big-Θ notation can be quite large. For example, if you choose ϵ = 0.1 and
δ = 0.1, then setting n = 550 d will always suffice. (For very large d, n = 342 d will do.) If you want a lot of
confidence that you’ve chosen one of the best hypotheses, you have to pay for it with a large sample size.]

[This sample complexity applies even if you add polynomial features or other features, but you have to count
the extra features in d. So the number of training points you need increases with the number of polynomial
terms.]

142 Jonathan Richard Shewchuk

VC Dimension

The Vapnik–Chervonenkis dimension of (P,H) is

VC(H) = max{n : ΠH(n) = 2n}. ⇐ Can be∞.

Say that H shatters a set X of n pts if ΠH(X) = 2n.
VC(H) is size of largest X that H can shatter.
[This means that X is a point set for which all 2n dichotomies are possible.]

[I told you earlier that if the shatter function isn’t 2n for all n, then it’s a polynomial in n. The VC dimension
is motivated by an observation that sometimes makes it easy to bound that polynomial.]

Theorem: ΠH(n) ≤
VC(H)∑

i=0

(
n
i

)
. Hence for n ≥ VC(H), ΠH(n) ≤

(
en

VC(H)

)VC(H)

.

[So the VC dimension is an upper bound on the exponent of the polynomial. This theorem is useful because
often we can find an easy upper bound on the VC dimension. You just need to show that for some number
n, no set of n points can have all 2n dichotomies.]

Corollary: O(VC(H)) training pts suffice for accuracy. [Again, the hidden constant is big.]

[If the VC dimension is finite, it tells us how the sample complexity grows with the number of features. If
the VC dimension is infinite, no amount of training data will make the classifier generalize well.]

Example: Linear classifiers in plane.
Recall ΠH(3) = 8: there exist 3 pts shattered by halfplanes.
But ΠH(4) = 14: no 4 pts are shattered.
Hence:

– VC(H) = 3 [The VC dimension of halfplanes is 3.]
– ΠH(n) ≤ e3

27 n3 [The shatter function is polynomial.]
– O(1) sample complexity.

[The VC dimension doesn’t always give us the tightest bound. In this example, the VC dimension promises
that the number of ways halfplanes can classify the points is at worst cubic in n; but in reality, it’s quadratic
in n. In general, linear classifiers in d dimensions have VC dimension d + 1, which is one dimension looser
than the exponent Thomas Cover proved. That’s not a big deal, though, as the sample complexity and the
accuracy bound are both based on the logarithm of the shatter function. So if we get the exponent wrong, it
only changes a constant in the sample complexity.]

[The important thing is simply to show that there is some polynomial bound on the shatter function at all.
VC dimension is not the only way to do that, but often it’s the easiest.]

[The main point you should take from this lecture is that if you want to have generalization, you need to
limit the expressiveness of your hypothesis class so that you limit the number of possible dichotomies of a
point set. This may or may not increase the bias, but if you don’t limit the number of dichotomies at all, the
overfitting could be very bad. If you limit the hypothesis class, your artificial child will only need to look at
O(d) cows to learn the concept of cows. If you don’t, your artificial child will need to look at every cow in
the world, and every non-cow too.]

Boosting; Nearest Neighbor Classification 143

24 Boosting; Nearest Neighbor Classification

ADABOOST (Yoav Freund and Robert Schapire, 1997)

AdaBoost (“adaptive boosting”) is an ensemble method for classification (or regression) that
– trains multiple learners on weighted sample points [like bagging];
– uses different weights for each learner;
– increases weights of misclassified training points;
– gives bigger votes to more accurate learners.

Input: n × d design matrix X, vector of labels y ∈ Rn with yi = ±1.

Ideas:
– Train T classifiers G1, . . . ,GT . [“T” stands for “trees”]
– Weight for training point Xi in Gt grows according to how many of G1, . . . ,Gt−1 misclassified it.

[Moreover, if Xi is misclassified by very accurate learners, its weight grows even more.]
[And, the weight shrinks every time Xi is correctly classified.]

– Train Gt to try harder to correctly classify training pts with larger weights.
– Metalearner is a linear combination of learners. For test point z, M(z) =

∑T
t=1 βtGt(z).

Each Gt is ±1, but M is continuous. Return sign of M(z).

[In the previous lecture on ensemble methods, I talked briefly about how to assign different weights to
training points. It varies for different learning algorithms. For example, in regression we usually modify
the risk function by multiplying each point’s loss function by its weight. In a soft-margin support vector
machine, we modify the objective function by multiplying each point’s slack by its weight.]
[Boosting works with most learning algorithms, but it was originally developed for decision trees, and
boosted decision trees are very popular and successful. To weight points in decision trees, we use a weighted
entropy where instead of computing the proportion of points in each class, we compute the proportion of
weight in each class.]

In iteration T , what classifier GT and coefficient βT should we choose? Pick a loss fn L(prediction, label).
Find GT & βT that minimize

Risk =
1
n

n∑
i=1

L(M(Xi), yi), M(Xi) =
T∑

t=1

βtGt(Xi).

AdaBoost metalearner uses exponential loss function

L(ρ, ℓ) = e−ρℓ =
{

e−ρ ℓ = +1
eρ ℓ = −1

[This loss function is for the metalearner only. We will discover later that the ideal cost function for each
individual learner Gt is just the total weight of the misclassified points. In practice, our individual learners
are often classification algorithms like decision trees that don’t explictly try to minimize any loss function
at all. Even when the practice doesn’t match the theory, boosting still usually works quite well.]
Important: label ℓ is binary, Gt is binary, but ρ = M(Xi) is continuous!

[The exponential loss function has the advantage that it pushes hard against badly misclassified points.
That’s one reason why it’s usually better than the squared error loss function for classification in a meta-
learner. It’s similar to why in neural networks we often prefer the cross-entropy loss function to the squared
error.]

144 Jonathan Richard Shewchuk

n · Risk =

n∑
i=1

L(M(Xi), yi) =
n∑

i=1

e−yi M(Xi)

=

n∑
i=1

exp

−yi

T∑
t=1

βtGt(Xi)

 = n∑
i=1

T∏
t=1

e−βtyiGt(Xi) ⇐
yiGt(Xi) = ±1
−1→ Gt misclassifies Xi

=

n∑
i=1

w(T)
i e−βT yiGT (Xi), where w(T)

i =

T−1∏
t=1

e−βtyiGt(Xi)

= e−βT
∑

yi=GT (Xi)

w(T)
i + eβT

∑
yi,GT (Xi)

w(T)
i [correctly classified and misclassified]

= e−βT

n∑
i=1

w(T)
i + (eβT − e−βT)

∑
yi,GT (Xi)

w(T)
i .

What GT minimizes the risk? The learner that minimizes the sum of w(T)
i over all misclassified pts Xi!

[This is interesting. By manipulating the formula for the risk, we’ve discovered what weight we should
assign to each training point. To minimize the risk, we should find the classifier that minimizes the sum of
the weights w(T)

i , as specified above, over the misclassified points. It’s a complicated function, but we can
compute it. A useful observation is that each learner’s weights are related to the previous learner’s weights:]

Recursive definition of weights:

w(T+1)
i = w(T)

i e−βT yiGT (Xi) =

 w(T)
i e−βT yi = GT (Xi),

w(T)
i eβT yi , GT (Xi).

[This recursive formulation is a nice benefit of choosing the exponential loss function. Notice that a weight
shrinks if the point was classified correctly by learner T , and grows if the point was misclassified.]
[Now, you might wonder if we should just pick a learner that classifies all the training points correctly. But
that’s not always possible. If we’re using a linear classifier on data that’s not linearly separable, some points
must be classified wrongly. Moreover, it’s NP-hard to find the optimal linear classifier, so in practice GT

will be an approximate best learner, not the true minimizer of training error. But that’s okay.]
[You might ask, if we use decision trees, can’t we get zero training error? Usually we can. But interestingly,
boosting is usually used with short, imperfect decision trees instead of tall, pure decision trees, for reasons
I’ll explain later.]
[Now, let’s derive the optimal value of βT .]

To choose βT , set d
dβT

Risk = 0:

0 = −e−βT

n∑
i=1

w(T)
i + (eβT + e−βT)

∑
yi,GT (Xi)

w(T)
i ; [now divide both sides by the first term]

0 = −1 + (e2βT + 1) errT , where errT =

∑
yi,GT (Xi) w(T)

i∑n
i=1 w(T)

i

; ⇐ GT ’s weighted error rate

βT =
1
2

ln
(
1 − errT

errT

)
.

[So now we have derived the optimal metalearner!]

Boosting; Nearest Neighbor Classification 145

– If errT = 0, βT = ∞. [So a perfect learner gets an infinite vote.]
– If errT = 1/2, βT = 0. [So a learner with 50% weighted training error gets no vote at all.]

[More accurate learners get bigger votes in the metalearner. Interestingly, a learner with training error worse
than 50% gets a negative vote. A learner with 60% error is just as useful as a learner with 40% error; the
metalearner just reverses the signs of its votes.]

[Now we can state the AdaBoost algorithm.]

AdaBoost alg:
1. Initialize weights wi ←

1
n ,∀i ∈ [1, n].

2. for t ← 1 to T
a. Train Gt with weights wi.

b. Compute weighted error rate err←
∑

misclassified wi∑
all wi

; coefficient βt ←
1
2

ln
(
1 − err

err

)
.

c. Reweight pts: wi ← wi ·

{
eβt , Gt misclassifies Xi

e−βt , otherwise
= wi ·

√

1−err
err ,√
err

1−err .

3. return metalearner h(z) = sign

 T∑
t=1

βtGt(z)

.

boost.pdf [At left, all the training points have equal weight. After choosing a first linear
classifier, we increase the weights of the misclassified points and decrease the weights of the
correctly classified points (center). We train a second classifier with these weighted points,
then again adjust the weights of the points according to whether they are misclassified by
the second classifier.]

Why boost decision trees? [As opposed to other learning algorithms?] Why short trees?
– Fast. [We’re training many learners, and running many learners at classification time too. Short

decision trees that only look at a few features are very fast at both training and testing.]
– No hyperparameter search needed. [Unlike SVMs, neural nets, etc.] [UC Berkeley’s Leo Breiman

called AdaBoost with decision trees “the best off-the-shelf classifier in the world.”]
– Easy to make a tree beat 45% training error [or other threshold] consistently.
– Easy bias-variance control. Boosting can overfit. AdaBoost trees are short to reduce overfitting.

[As you train more learners, the AdaBoost bias decreases. The AdaBoost variance is more compli-
cated: it often decreases at first, because successive trees focus on different features, but often it later
increases. Sometimes boosting overfits after many iterations, and sometimes it doesn’t; it’s hard to
predict when it will and when it won’t.]

146 Jonathan Richard Shewchuk

– AdaBoost + short trees is a form of subset selection.
[Features that don’t improve the metalearner’s predictive power enough aren’t used at all. This helps
reduce overfitting and running time, especially if there are a lot of irrelevant features.]

– Linear decision boundaries don’t boost well.
[It takes a lot of boosting to make linear classifiers model really nonlinear decision boundaries well, so
SVMs aren’t a great choice. Methods with nonlinear decision boundaries benefit more from boosting,
because they allow boosting to reduce the bias faster. Sometimes you’ll see examples where people
do AdaBoost with depth-one decision trees with just one decision each. But that’s not ideal, because
depth-one decision trees are linear. Even depth-two decision trees boost substantially better.]

More about AdaBoost:
– Posterior prob. can be approximated: P(Y = 1|x) ≈ 1/(1 + e−2M(x)).
– Exponential loss is vulnerable to outliers; for corrupted data, use other loss.

[Loss functions have been derived for dealing with outliers. Unfortunately, they have more compli-
cated weight computations.]

– If every learner beats error µ for µ < 50%, metalearner training error will eventually be zero. [You
will prove this in Homework 7.]

– [The AdaBoost paper and its authors, Freund and Schapire, won the 2003 Gödel Prize, a prize for
outstanding papers in theoretical computer science.]

0 100 200 300 400

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Boosting Iterations

T
ra

in
in

g
E

rr
or

Misclassification Rate

Exponential Loss

0 100 200 300 400

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

Boosting Iterations

T
es

t E
rr

or

Single Stump

244 Node Tree

trainboost.pdf, testboost.pdf (ESL, Figures 10.2, 10.3) [Training and testing errors for
AdaBoost with stumps, depth-one decision trees that make only one decision each. At
left, observe that the training error eventually drops to zero, and even after that the average
loss (which is continuous, not binary) continues to decay exponentially. At right, the test
error drops to 5.8% after 400 iterations, even though each learner has an error rate of about
46%. AdaBoost with more than 25 stumps outperforms a single 244-node decision tree. In
this example no overfitting is observed, but there are other datasets for which overfitting is
a problem.]

Boosting; Nearest Neighbor Classification 147

NEAREST NEIGHBOR CLASSIFICATION

[I saved the simplest classifier for the end of the semester.]

Idea: Given query point q, find the k training pts nearest q.
Distance metric of your choice.
Regression: Return average label of the k pts.
Classification: Return class with the most votes from the k pts OR

return histogram of class probabilities.

[The histogram of class probabilities tries to estimate the posterior probabilities of the classes. Obviously,
the histogram has limited precision. If k = 3, then the only probabilities you’ll ever return are 0, 1/3, 2/3,
or 1. You can improve the precision by making k larger, but you might underfit. The histogram works best
when you have a huge amount of data.]

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o
o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o
o

o

o

o o
o

o

o o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o
o

o

o
o

oo

o

o
o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o
o

o

oo

o

o

o

o

o

o

o

oo

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o
o o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o
o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

KNN: K=10

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o
o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o
o

o

o

o o

o

o

o o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o
o

o

o

o

oo

o

o
o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o
o

oo

o

o

o

o

o

o

o

oo

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o
o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

KNN: K=1

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o
o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o
o

o

o

o o

o

o

o o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o
o

o

o

o

oo

o

o
o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o
o

oo

o

o

o

o

o

o

o

oo

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o
o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

KNN: K=100

allnn.pdf (ISL, Figures 2.15, 2.16) [Examples of 1-NN, 10-NN, and 100-NN. A larger k
smooths out the boundary. In this example, the 1-NN classifier is badly overfitting the
data, and the 100-NN classifier is badly underfitting. The 10-NN classifier does well: it’s
reasonably close to the Bayes decision boundary (purple). Generally, the ideal k depends
on how dense your data is. As your data gets denser, the best k increases.]

[There are theorems showing that if you have a lot of data, nearest neighbors can work quite well.]

Theorem (Cover & Hart, 1967):
As n→ ∞, the 1-NN error rate is < 2B − B2 where B = Bayes risk.

if only 2 classes, ≤ 2B − 2B2

[There are a few technical requirements of this theorem. The most important is that the training points and
the test points all have to be drawn independently from the same probability distribution—just like in our
last lecture, on learning theory. Here, we are using the 0-1 loss to define the Bayes risk; so the Bayes risk is
the smallest possible error rate over that distribution. The theorem applies to any separable metric space, so
it’s not just for the Euclidean metric.]
[By the way, this Cover is the same Thomas Cover who proved Cover’s Theorem from the last lecture. He
was a professor in Electrical Engineering and Statistics at Stanford until his death in 2012, and these are the
first and third journal articles he published.]

Theorem (Fix & Hodges, 1951):
As n→ ∞, k → ∞, k/n→ 0, k-NN error rate converges to B. [Which means Bayes optimal.]

148 Jonathan Richard Shewchuk

25 Nearest Neighbor Algorithms: Voronoi Diagrams and k-d Trees

NEAREST NEIGHBOR ALGORITHMS

Exhaustive k-NN Alg.

Given query point q:
– Scan through all n sample pts, computing (squared) distances to q.
– Maintain a max-heap with the k shortest distances seen so far.

[Whenever you encounter a sample point closer to q than the point at the top of the heap, you remove
the heap-top point and insert the better point. Obviously you don’t need a heap if k = 1 or even 5, but
if k = 101 a heap will substantially speed up keeping track of the kth-shortest distance.]

Time to train classifier: 0 [This is the only O(0)-time algorithm we’ll learn this semester.]
Query time: O(nd + n log k)

expected O(nd + k log n log k) if random pt order
[It’s a cute theoretical observation that you can slightly improve the expected running time by randomizing
the point order so that only expected O(k log n) heap operations occur. But in practice I can’t recommend it;
you’ll probably lose more from cache misses than you’ll gain from fewer heap operations.]

Can we preprocess training pts to obtain sublinear query time?

2–5 dimensions: Voronoi diagrams
Medium dim (up to ∼ 30): k-d trees
Large dim: exhaustive k-NN, but can use PCA or random projection

locality sensitive hashing [still researchy, not widely adopted]

Voronoi Diagrams

Let X be a point set. The Voronoi cell of w ∈ X is
Vor w = {p ∈ Rd : ∥p − w∥ ≤ ∥p − v∥ ∀v ∈ X}
[A Voronoi cell is always a convex polyhedron or polytope.]
The Voronoi diagram of X is the set of X’s Voronoi cells.

Nearest Neighbor Algorithms: Voronoi Diagrams and k-d Trees 149

voro.pdf, vormcdonalds.jpg, voronoiGregorEichinger.jpg, saltflat-1.jpg
[Voronoi diagrams sometimes arise in nature (salt flats, giraffe, crystallography).]

giraffe-1.jpg, perovskite.jpg, vortex.pdf

[Believe it or not, the first published Voronoi diagram dates back to 1644, in the book “Principia Philosophiae”
by the famous mathematician and philosopher René Descartes. He claimed that the solar system consists
of vortices. In each region, matter is revolving around one of the fixed stars (vortex.pdf). His physics was
wrong, but his idea of dividing space into polyhedral regions has survived.]

Size (e.g., # of vertices) ∈ O(n⌈d/2⌉)
[This upper bound is tight when d is a small constant. As d grows, the tightest asymptotic upper bound is
somewhat smaller than this, but the complexity still grows exponentially with d.]
. . . but often in practice it is O(n).
[Here I’m leaving out a constant that may grow exponentially with d.]

150 Jonathan Richard Shewchuk

Point location: Given query point q ∈ Rd, find the point w ∈ X for which q ∈ Vor w.
[We need a second data structure that can perform this search on a Voronoi diagram efficiently.]

2D: O(n log n) time to compute V.d. and a trapezoidal map for pt location
O(log n) query time [because of the trapezoidal map]

[That’s a pretty great running time compared to the linear query time of exhaustive search.]

dD: Use binary space partition tree (BSP tree) for pt location
[Unfortunately, it’s difficult to characterize the running time of this strategy, although it is likely to be
reasonably fast in 3–5 dimensions.]

1-NN only!
[A standard Voronoi diagram supports only 1-nearest neighbor queries. If you want the k nearest neighbors,
there is something called an order-k Voronoi diagram that has a cell for each possible k nearest neighbors.
But nobody uses those, for two reasons. First, the size of an order-k Voronoi diagram is O(k2n) in 2D, and
worse in higher dimensions. Second, there’s no software available to compute one.]

[There are also Voronoi diagrams for other distance metrics, like the L1 and L∞ norms.]

[Voronoi diagrams are good for 1-nearest neighbor queries in 2 or 3 dimensions, maybe 4 or 5, but k-d trees
are much simpler and probably faster in 6 or more dimensions.]

k-d Trees

“Decision trees” for NN search. Differences: [compared to decision trees]
– Choose splitting feature w/greatest width: feature i in maxi, j,k(X ji − Xki).

[With nearest neighbor search, we don’t care about the entropy. Instead, what we want is that if we
draw a sphere around the query point, it won’t intersect very many boxes of the decision tree. So it
helps if the boxes are nearly cubical, rather than long and thin.]
Cheap alternative: rotate through the features. [We split on the first feature at depth 1, the second
feature at depth 2, and so on. This builds the tree faster, by a factor of O(d).]

– Choose splitting value: median point for feature i; OR X ji+Xki
2 .

Median guarantees ⌊log2 n⌋ tree depth; O(nd log n) tree-building time.
[. . . or just O(n log n) time if you rotate through the features. An alternative to the median is splitting
at the box center, which improves the aspect ratios of the boxes, but it could unbalance your tree. A
compromise strategy is to alternate between medians at odd depths and centers at even depths, which
also guarantees an O(log n) depth.]

– Each internal node stores a sample point. [. . . that lies in the node’s box. Usually the splitting point.]
[Some k-d tree implementations have points only at the leaves, but it’s better to have points in internal
nodes too, so when we search the tree, we often stop searching before we reach a leaf.]

quarter plane

84 6

3

21

5 7 9

10

11

6

7

101

5 4 8

11932

root represents R2

right halfplane

lower right

[Draw this by hand. kdtreestructure.pdf]

Nearest Neighbor Algorithms: Voronoi Diagrams and k-d Trees 151

Goal: given query pt q, find a sample pt w such that ∥q − w∥ ≤ (1 + ϵ) ∥q − s∥,
where s is the closest sample pt.
ϵ = 0 ⇒ exact NN; ϵ > 0 ⇒ approximate NN.

Query alg. maintains:
– Nearest neighbor found so far (or k nearest). goes down ↓
– Binary min-heap of unexplored subtrees, keyed by distance from q. goes up ↑

q

nearest so far

[Draw this by hand. kdtreequery.pdf] [A query in progress.]

[Each subtree represents an axis-aligned box. The query tries to avoid searching most of the boxes/subtrees
by searching the boxes close to q first. We measure the distance from q to a box and use it as a key for the
subtree in the heap. The search stops when the distance from q to the kth-nearest neighbor found so far ≤
the distance from q to the nearest unexplored box (times 1 + ϵ). For example, in the figure above, the query
never visits the box at far lower right, because it doesn’t intersect the circle.]

Alg. for 1-NN query:
Q← heap containing root node with key zero
r ← ∞
while Q not empty and (1 + ϵ) ·minkey(Q) < r

B← removemin(Q)
w← B’s sample point
r ← min{r, dist(q,w)} [For speed, store square of r instead.]
B′, B′′ ← child boxes of B
if (1 + ϵ) · dist(q, B′) < r then insert(Q, B′, dist(q, B′)) [The key for B′ is dist(q, B′)]
if (1 + ϵ) · dist(q, B′′) < r then insert(Q, B′′, dist(q, B′′))

return point that determined r

For k-NN, replace “r” with a max-heap holding the k nearest neighbors
[. . . just like in the exhaustive search algorithm.]

Works with any Lp norm for p ∈ [1,∞].
[k-d trees are not limited to the Euclidean (L2) norm.]

Why ϵ-approximate NN?

q

[Draw this by hand. kdtreeproblem.pdf] [A worst-case exact NN query.]

152 Jonathan Richard Shewchuk

[In the worst case, we may have to visit every node in the k-d tree to find the exact nearest neighbor. In that
case, the k-d tree is slower than simple exhaustive search. This is an example where an approximate nearest
neighbor search can be much faster. In practice, settling for an approximate nearest neighbor sometimes
improves the speed by a factor of 10 or even 100, because you don’t need to look at most of the tree to do
a query. This is especially true in high dimensions—remember that in high-dimensional space, the nearest
point often isn’t much closer than a lot of other points.]

Software: ANN (U. Maryland), FLANN (U. British Columbia), GeRaF (U. Athens) [random forests!]

Example: im2gps

[I want to emphasize the fact that exhaustive nearest neighbor search really is one of the first classifiers you
should try in practice, even if it seems too simple. So here’s an example of a modern research paper that
uses 1-NN and 120-NN search to solve a problem.]

Paper by James Hays and [our own] Prof. Alexei Efros.
[Goal: given a query photograph, determine where on the planet the photo was taken. Called geolocalization.
They evaluated both 1-NN and 120-NN. What they did not do, however, is treat each photograph as one long
vector. That’s okay for tiny digits, but too expensive for millions of travel photographs. Instead, they reduced
each photo to a small descriptor made up of a variety of features that extract the essence of each photo.]
[Show slides (im2gps.pdf). Sorry, images not included here. http://graphics.cs.cmu.edu/projects/im2gps/]

[Bottom line: With 120-NN, their most sophisticated implementation came within 64 km of the correct
location about 50% of the time.]

RELATED CLASSES [if you like machine learning, consider taking these courses]

CS 182 (spring, fall?): Deep Neural Networks
CS C281A (fall?): Statistical Learning Theory [C281A is the most direct continuation of CS 189/289A.]
EECS 127/227AT (both), EECS 227BT (fall): Numerical Optimization [a core part of ML]
[It’s hard to overemphasize the importance of numerical optimization to machine learning, as well as other
CS fields like graphics, theory, and scientific computing.]
EECS 126 (both): Random Processes [Markov chains, expectation maximization, PageRank]
EE C106A/B (fall/spring): Intro to Robotics [dynamics, control, sensing]
Math 110: Linear Algebra [but the real gold is in Math 221]
Math 221 (fall): Matrix Computations [how to solve linear systems, compute SVDs, eigenvectors, etc.]
CS 194-26/294-26 (fall): Computational Photography (Efros, Kanazawa)
CS C267 (spring): Scientific Computing [parallelization, practical matrix algebra, some graph partitioning]
CS C280 (spring): Computer Vision
CS 285 (fall): Deep Reinforcement Learning
CS 288 (fall): Natural Language Processing
CS 294-43 (spring): Visual Object/Activity Recognition (Darrell)
CS 294-150 (spring): ML & Biology (Listgarten)
CS 294-158 (spring): Deep Unsupervised Learning (Abbeel)
CS 294-162 (fall?): ML Systems (Gonzalez)
CS 294-173 (spring): Learning for 3D Vision (Kanazawa)
CS 294-182 (spring): ML & Econ (Haghtalab)
VS 265: Neural Computation

Bonus Lecture: Spectral Graph Clustering 153

A Bonus Lecture: Spectral Graph Clustering

SPECTRAL GRAPH CLUSTERING

Input: Weighted, undirected graph G = (V, E). No self-edges.
wi j = weight of edge (i, j) = (j, i); zero if (i, j) < E.

[Think of the edge weights as a similarity measure. A big weight means that the two vertices want to be
in the same cluster. So the circumstances are the opposite of the last lecture on clustering. Then, we had a
distance or dissimilarity function, so small numbers meant that points wanted to stay together. Today, big
numbers mean that vertices want to stay together.]

Goal: Cut G into 2 (or more) pieces Gi of similar sizes,
but don’t cut too much edge weight.
[That’s a vague goal. There are many ways to make this precise.
Here’s a typical goal, which we’ll solve approximately.]
e.g., Minimize the sparsity Cut(G1,G2)

Mass(G1) Mass(G2) , aka cut ratio
where Cut(G1,G2) = total weight of cut edges

Mass(G1) = # of vertices in G1 OR assign masses to vertices

[The denominator “Mass(G1) Mass(G2)” penalizes imbalanced cuts.]

minimum
bisection

sparsest
cut

minimum
cut

maximum
cut

graph.pdf [Four cuts. All edges have weight 1.
Upper left: the minimum bisection; a bisection is perfectly balanced.
Upper right: the minimum cut. Usually very unbalanced; not what we want.
Lower left: the sparsest cut, which is good for many applications.
Lower right: the maximum cut; in this case also the maximum bisection.]

Sparsest cut, min bisection, max cut all NP-hard.
[Today we will look for an approximate solution to the sparsest cut problem.]

[We will turn this combinatorial graph cutting problem into algebra.]

154 Jonathan Richard Shewchuk

Let n = |V |. Let y ∈ Rn be an indicator vector:

yi =

{
1 vertex i ∈ G1,

−1 vertex i ∈ G2.

Then wi j
(yi − y j)2

4
=

{
wi j (i, j) is cut,
0 (i, j) is not cut.

Cut(G1,G2) =
∑

(i, j)∈E

wi j
(yi − y j)2

4
[This is quadratic, so let’s try to write it with a matrix.]

=
1
4

∑
(i, j)∈E

(
wi j y2

i − 2wi j yi y j + wi j y2
j

)

=
1
4

 ∑
(i, j)∈E

−2wi j yi y j︸ ︷︷ ︸
off-diagonal terms

+

n∑
i=1

y2
i

∑
k,i

wik︸ ︷︷ ︸
diagonal terms

=

y⊤Ly
4
,

where Li j =

{
−wi j, i , j,∑

k,i wik, i = j.

L is symmetric, n × n Laplacian matrix for G.

[Draw this by hand graphexample.png]

[L is effectively a matrix representation of G. For the purpose of partitioning a graph, there is no need to
distinguish edges of weight zero from edges that are not in the graph.]
[We see that minimizing the weight of the cut is equivalent to minimizing the Laplacian quadratic form
y⊤Ly. This lets us turn graph partitioning into a problem in matrix algebra.]
[Usually we assume there are no negative weights, in which case Cut(G1,G2) can never be negative, so it
follows that L is positive semidefinite.]

Define 1 = [1 1 . . . 1]⊤; then L1 = 0, so [It’s easy to check that each row of L sums to zero.]
1 is an eigenvector of L with eigenvalue 0.

[If G is a connected graph and all the edge weights are positive, then this is the only zero eigenvalue. But if
G is not connected, L has one zero eigenvalue for each connected component of G. It’s easy to prove, but
time prevents me.]

Bonus Lecture: Spectral Graph Clustering 155

Bisection: exactly n/2 vertices in G1, n/2 in G2. Write 1⊤y = 0.
[So we have reduced graph bisection to this constrained optimization problem.]
Minimum bisection:

Find y that minimizes y⊤Ly
subject to ∀i, yi = 1 or yi = −1

and 1⊤y = 0
← binary constraint
← balance constraint

Also NP-hard. We relax the binary constraint. → fractional vertices!

[A very common approach in combinatorial optimization algorithms is to relax some of the constraints so
a discrete problem becomes a continuous problem. Intuitively, this means that you can put 1/3 of vertex 7
in graph G1 and the other 2/3 of vertex 7 in graph G2. You can even put −1/2 of vertex 7 in graph G1 and
3/2 of vertex 7 in graph G2. This sounds crazy, but the continuous problem is much easier to solve than the
combinatorial problem. After we solve the continuous problem, we will round the vertex values to +1/−1,
and we’ll hope that our solution is still close to optimal.]
[But we can’t just drop the binary constraint. We still need some constraint to rule out the solution y = 0.]

New constraint: y must lie on hypersphere of radius
√

n.

[Draw this by hand. circle.pdf] [Instead of constraining y to lie at a vertex of the hyper-
cube, we constrain y to lie on the hypersphere through those vertices.]

Relaxed problem:

Minimize y⊤Ly
subject to y⊤y = n

and 1⊤y = 0

}
= Minimize

y⊤Ly
y⊤y

= Rayleigh quotient of L & y

(subject to same two constraints)

y3

y⊤Ly = 8
y⊤Ly = 16
y⊤Ly = 24

1⊤y = 0

1

1
5

3
13

2 y⊤Ly = 0y2

y1

cylinder.pdf [The isosurfaces of y⊤Ly are elliptical cylinders. The gray cross-section is
the hyperplane 1⊤y = 0. We seek the point that minimizes y⊤Ly, subject to the constraints
that it lies on the gray cross-section and that it lies on a sphere centered at the origin.]

156 Jonathan Richard Shewchuk

v3 y⊤Ly = 12
y⊤Ly = 6

y1

y2

y3

5
1

3
1

2

3

y⊤y = 3

v2

y⊤Ly = 16.6077

endview.pdf [The same isosurfaces restricted to the hyperplane 1⊤y = 0. The solution is
constrained to lie on the outer circle.]

[You should remember this Rayleigh quotient from the lecture on PCA. As I said then, when you see a
Rayleigh quotient, you should smell eigenvectors nearby. The y that minimizes this Rayleigh quotient is the
eigenvector with the smallest eigenvalue. We already know what that eigenvector is: it’s 1. But that violates
our balance constraint. As you should recall from PCA, when you’ve used the most extreme eigenvector
and you need an orthogonal one, the next-best optimizer of the Rayleigh quotient is the next eigenvector.]

Let λ2 = second-smallest eigenvalue of L.
Eigenvector v2 is the Fiedler vector. v2 solves the relaxed problem.
[It would be wonderful if every component of the Fiedler vector was 1 or −1, but that happens more or less
never. So we round v2. The simplest way is to round all positive entries to 1 and all negative entries to −1.
But in both theory and practice, it’s better to choose the threshold as follows.]

Spectral partitioning alg:
– Compute Fiedler vector v2 of L
– Round v2 with a sweep cut:

= Sort components of v2.
= Try the n − 1 cuts between successive components. Choose min-sparsity cut.

[If we’re clever about updating the sparsity, we can try all these cuts in time linear in the number
of edges in G.]

5 10 15 20

-0.4

-0.2

0.2

0.4

0.6

specgraph.pdf, specvector.pdf [Left: example of a graph partitioned by the sweep cut.
Right: what the un-rounded Fiedler vector looks like.]

Bonus Lecture: Spectral Graph Clustering 157

[One consequence of relaxing the binary constraint is that the balance constraint no longer forces an exact
bisection. But that’s okay; we’re cool with a slightly unbalanced cut if it means we cut fewer edges. Even
though our discrete problem was the minimum bisection problem, our relaxed, continuous problem will be
an approximation of the sparsest cut problem. This is a bit counterintuitive.]

lopsided.pdf [A graph for which an unbalanced cut (left) is sparser than a balanced one
(right).]

Vertex Masses

[Sometimes you want the notion of balance to accord more prominence to some vertices than others. We
can assign masses to vertices.]

Let M be diagonal matrix with vertex masses on diagonal.
New balance constraint: 1⊤My = 0.
[This new balance constraint says that G1 and G2 should each have the same total mass. It turns out that this
new balance constraint is easier to satisfy if we also revise the sphere constraint a little bit.]
New ellipsoid constraint: y⊤My = Mass(G) =

∑
Mii.

[Instead of a sphere, now we constrain y to lie on an axis-aligned ellipsoid.]

[Draw this by hand. ellipse.pdf] [The constraint ellipsoid passes through the points of the
hypercube.]

Now solution is Fiedler vector of generalized eigensystem Lv = λMv.
[Most algorithms for computing eigenvectors and eigenvalues of symmetric matrices can easily be adapted
to compute eigenvectors and eigenvalues of symmetric generalized eigensystems too.]

[For the grad students, here’s the most important theorem in spectral graph partitioning.]

Fact: Sweep cut finds a cut w/sparsity ≤
√

2λ2 maxi
Lii
Mii

: Cheeger’s inequality.
The optimal cut has sparsity ≥ λ2/2.

[So the spectral partitioning algorithm is an approximation algorithm, albeit not one with a constant factor
of approximation. Cheeger’s inequality is a very famous result in spectral graph theory, because it’s one of
the most important cases where you can relax a combinatorial optimization problem to a continuous opti-
mization problem, round the solution, and still have a provably decent solution to the original combinatorial
problem.]

158 Jonathan Richard Shewchuk

Vibration Analogy

vibrate.pdf

[For intuition about spectral partitioning, think of the eigenvectors as vibrational modes in a physical system
of springs and masses. Each vertex models a point mass that is constrained to move freely along a vertical
rod. Each edge models a vertical spring with rest length zero and stiffness proportional to its weight, pulling
two point masses together. The masses are free to oscillate sinusoidally on their rods. The eigenvectors of the
generalized eigensystem Lv = λMv are the vibrational modes of this physical system, and their eigenvalues
are proportional to their frequencies.]

v3v2v1 v4

grids.pdf [Vibrational modes in a path graph and a grid graph.]

[These illustrations show the first four eigenvectors for two simple graphs. On the left, we see that the first
eigenvector is the eigenvector of all 1’s, which represents a vertical translation of all the masses in unison.
That’s not really a vibration, which is why the eigenvalue is zero. The second eigenvector is the Fiedler
vector, which represents the vibrational mode with the lowest frequency. Each component indicates the
amplitude with which the corresponding point mass oscillates. At any point in time as the masses vibrate,
roughly half the mass is moving up while half is moving down. So it makes sense to cut between the positive
components and the negative components. The third eigenvector also gives us a nice bisection of the grid
graph, entirely different from the Fiedler vector. Some more sophisticated graph clustering algorithms use
multiple eigenvectors.]

[I want to emphasize that spectral partitioning takes a global view of a graph. It looks at the whole gestalt
of the graph and finds a good cut. By comparison, the clustering algorithms we saw last lecture were much
more local in nature, so they’re easier to fool.]

Bonus Lecture: Spectral Graph Clustering 159

Greedy Divisive Clustering

Partition G into 2 subgraphs; recursively partition them.
[The sparsity is a good criterion for graph clustering. Use G’s sparsest cut to divide it into two subgraphs,
then recursively cut them. You can stop when you have the right number of clusters. Alternatively, you can
make a finer tree and then prune it back.]

The Normalized Cut

Set vertex i’s mass Mii = Lii. [Sum of edge weights adjoining vertex i.]
[That is how we define a normalized cut, which turns out to be a good choice for many different applica-
tions.]
Popular for image segmentation.
[Image segmentation is the problem of looking at a photograph and separating it into different objects. To
do that, we define a graph on the pixels.]
For pixels with coordinate pi, brightness bi, use graph weights

wi j = exp
−∥pi − p j∥

2

α
−
|bi − b j|

2

β

 or zero if ∥pi − p j∥ large.

[We choose a distance threshold, typically less than 4 to 10 pixels apart. Pixels that are far from each other
aren’t connected. α and β are empirically chosen constants. It often makes sense to choose β proportional
to the variance of the brightness values.]

baseballsegment.pdf (Shi and Malik, “Normalized Cut and Image Segmentation”)
[A segmentation of a photo of a scene from a baseball game (upper left). The other figures
show segments of the image extracted by recursive spectral partitioning.]

160 Jonathan Richard Shewchuk

baseballvectors.pdf (Shi and Malik) [Eigenvectors 2–9 from the baseball image.]

Invented by [our own] Prof. Jitendra Malik and his student Jianbo Shi.

Bonus Lecture: Multiple Eigenvectors; Latent Factor Analysis 161

B Bonus Lecture: Multiple Eigenvectors; Latent Factor Analysis

Clustering w/Multiple Eigenvectors

[When we use the Fiedler vector for spectral graph clustering, it tells us how to divide a graph into two
graphs. If we want more than two clusters, we can use divisive clustering: we repeatedly cut the subgraphs
into smaller subgraphs by computing their Fiedler vectors. However, there are several other methods to
subdivide a graph into k clusters in one shot that use multiple eigenvectors rather than just the Fiedler
vector v2. These methods sometimes give better results. They use k eigenvectors in a natural way to cluster
a graph into k subgraphs.]

For k clusters, compute first k eigenvectors v1 = 1, v2, . . . , vk of generalized eigensystem Lv = λMv.
Scale them so that v⊤i Mvi = 1. E.g., v1 =

1√∑
Mii

1. Now V⊤MV = I. [The eigenvectors are M-orthogonal.]

V =
v1

n × k

=
vk

V1

Vn

[V’s columns are the eigenvectors with the k
smallest eigenvalues.]
[Yes, we do include the all-1’s vector v1 as one of
the columns of V .]

[Draw this by hand. eigenvectors.pdf]

Row Vi is spectral vector [my name] for vertex i. [The rows are vectors in a k-dimensional space I’ll call the
“spectral space.” When we were using just one eigenvector, it made sense to cluster vertices together if their
components were close together. When we use more than one eigenvector, it turns out that it makes sense to
cluster vertices together if their spectral vectors point in similar directions.]

Normalize each row Vi to unit length.
[Now you can think of the spectral vectors as points on a unit sphere centered at the origin.]

[Draw this by hand vectorclusters.png] [A 2D example showing two clusters on a circle.
If the graph has k components, the points in each cluster will have identical spectral vectors
that are exactly orthogonal to all the other components’ spectral vectors (left). If we modify
the graph by connecting these components with small-weight edges, we get vectors more
like those at right—not exactly orthogonal, but still tending toward distinct clusters.]

k-means cluster these vectors.

[Because all the spectral vectors lie on the sphere, k-means clustering will cluster together vectors that are
separated by small angles.]

162 Jonathan Richard Shewchuk

compkmeans.png, compspectral.png [Comparison of point sets clustered by k-means—
just k-means by itself, that is—vs. a spectral method. To create a graph for the spectral
method, we use an exponentially decaying function to assign weights to pairs of points, like
we used for image segmentation but without the brightnesses.]

Invented by [our own] Prof. Michael Jordan, Andrew Ng [when he was still a student at Berkeley], Yair
Weiss.

[This wasn’t the first algorithm to use multiple eigenvectors for spectral clustering, but it has become one of
the most popular.]

Bonus Lecture: Multiple Eigenvectors; Latent Factor Analysis 163

LATENT FACTOR ANALYSIS [aka Latent Semantic Indexing]

[You can think of this as dimensionality reduction for matrices.]

Suppose X is a term-document matrix: [aka bag-of-words model]
row i represents document i; column j represents term j. [Term = word.]
[Term-document matrices are usually sparse, meaning most entries are zero.]
Xi j = occurrences of term j in doc i

better: log (1+ occurrences) [So frequent words don’t dominate.]
[Better still is to weight the entries so rare words give big entries and common words like “the” give small
entries. To do that, you need to know how frequently each word occurs in general. I’ll omit the details, but
this is the common practice.]

Recall SVD X = UDV⊤ =
d∑

i=1

δiuiv⊤i . Suppose δi ≤ δ j for i ≥ j.

Unlike PCA, we usually don’t center X.
For large δi, ui and vi represent a cluster of documents & terms.

– Large components in ui mark docus using similar/related terms, i.e., a genre.
– ” ” ” vi mark frequent terms in that genre.
– E.g., u1 might have large components for the romance novels,
– v1 ” ” ” ” for terms “passion,” “ravish,” “bodice” . . .

[. . . and δ1 would give us an idea how much bigger the romance novel market is than the markets for every
other genre of books.]

[v1 and u1 tell us that there is a large subset of books that tend to use the same large subset of words. We
can read off the words by looking at the larger components of v1, and we can read off the books by looking
at the larger components of u1.]

[The property of being a romance novel is an example of a latent factor. So is the property of being the sort
of word used in romance novels. There’s nothing in X that tells you explicitly that romance novels exist,
but the similar vocabulary is a hidden connection between them that gives them a large singular value. The
vector u1 reveals which books have that genre, and v1 reveals which words are emphasized in that genre.]

Like clustering, but clusters overlap: if u1 picks out romances &
u2 picks out histories, they both pick out historical romances.

[So you can think of latent factor analysis as a sort of clustering that permits clusters to overlap. Another
way in which it differs from traditional clustering is that the u-vectors contain real numbers, and so some
points have stronger cluster membership than others. One book might be just a bit romance, another a lot.]

164 Jonathan Richard Shewchuk

Application in market research:
identifying consumer types (hipster, suburban mom) & items bought together.
[For applications like this, the first few singular vectors are the most useful. Most of the singular vectors are
mostly noise, and they have small singular values to tell you so. This motivates approximating a matrix by
using only some of its singular vectors.]

Truncated SVD X′ =
r∑

i=1

δiuiv⊤i is a low-rank approximation of X, of rank r. [Assuming δr > 0.]

[We choose the singular vectors with the largest singular values, because they carry the most information.]

δr

r × r

. . .
v1

vr

r × d

0

0

ur

=

n × d

u1

X′

n × r

δ1

[Draw this by hand. truncate.pdf]

X′ is the rank-r matrix that minimizes the [squared] Frobenius norm

∥X − X′∥2F =
∑
i, j

(
Xi j − X′i j

)2

Applications:

– Fuzzy search. [Suppose you want to find a document about gasoline prices, but the document you
want doesn’t have the word “gasoline”; it has the word “petrol.” One cool thing about the reduced-
rank matrix X′ is that it will probably associate that document with “gasoline,” because the SVD tends
to group synonyms together.]

– Denoising. [The idea is to assume that X is a noisy measurement of some unknown matrix that
probably has low rank. If that assumption is partly true, then the reduced-rank matrix X′ might be
better than the input X.]

– Matrix compression. [As you can see above, if we use a low-rank approximation with a small rank
r, we can express the approximate matrix as an SVD that takes up much less space than the original
matrix. Often this low-rank approximation supports faster matrix computations.]

– Collaborative filtering: fills in unknown values, e.g., user ratings.
[Suppose the rows of X represents Netflix users and the columns represent movies. The entry Xi j is
the review score that user i gave to movie j. But most users haven’t reviewed most movies. We want
to fill in the missing values. Just as the rank reduction will associate “petrol” with “gasoline,” it will
tend to associate users with similar tastes in movies, so the reduced-rank matrix X′ can predict ratings
for users who didn’t supply any.]

Bonus Lecture: Multiple Eigenvectors; Latent Factor Analysis 165

PREDICTING PERSONALITY FROM FACES

hu.pdf

Hu et. al (2017).

Big Five (BF) model of personality:

– O: openness
– C: conscientiousness
– E: extraversion
– A: agreeableness
– N: neuroticism

[Researchers have found that these five personality factors are approximately orthogonal to each other. They
are highly heritable and highly stable during adulthood.]

Can we predict these traits from 3D faces?

[Studies have shown that people looking at photographs of static faces with neutral expressions can iden-
tify the traits better than chance, especially for conscientiousness, extraversion, and agreeableness. This
experiment asks whether machine learning can do the same with 3D reconstructions of faces. The subjects
were 834 Han Chinese volunteers in Shanghai, China. We don’t know whether any of these results might
generalize to people who are not Han Chinese.]

[The faces were scanned in high-resolution 3D and a non-rigid face registration system was used to fit a
grid of 32,251 vertices to each face in a manner that maps each vertex to an appropriate landmark on the
face. (They call this “anatomical homology.”) So the design matrix X was 834 × 100,053, representing 834
subjects with 32,251 3D features each.]

[Subject personalities were evaluated with a self-questionnaire, namely our own Berkeley Personality Lab’s
Big Five Inventory, translated into Chinese. The authors treated men and women separately.]

166 Jonathan Richard Shewchuk

Uses partial least squares (PLS) to find associations between personality & faces.

[Everything from here to the end is spoken, not written.]

Partial least squares (PLS) is like a supervised version of PCA. It takes in two matrices X and Y with the
same number of rows. In our example, X is the face data and Y is the personality data for the 834 subjects.
Like PCA, PLS finds a set of vectors in face space that we think of as the most important components. But
whereas PCA looks for the directions of maximum variation in X, PLS looks for the directions in X that
maximize the correlation with the personality traits in matrix Y .

The researchers found the top 20 or so PLS components and used cross-validation to decide which compo-
nents have predictive power for each personality trait. They found that the top two components for extraver-
sion in women were predictive, but no components for the other four traits in women were predictive. Men
are easier to analyze: they found two or three components were predictive for each of extraversion, agree-
ableness, conscientiousness, and neuroticism in men. However, the correlations were statistically significant
only for agreeableness and conscientiousness.

male.pdf [The relationship between male faces, agreeableness, and conscientiousness.
The large, colored faces are the mean faces. Colors indicate the values in the most pre-
dictive PLS component vector.]

More agreeable men correlate with much wider mouths that look a bit smiley even when neutral; stronger,
forward jaws; wider noses; and shorter faces, especially shorter in the forehead, compared to less agreeable
men. More conscientious men tend to have higher, wider eyebrows; wider, opened eyes; a withdrawn upper
lip with more mouth tension; and taller faces with more pronounced brow ridges (the bone protuberance
above the eyes). The authors note that men with low A and C scores look both more relaxed and more
indifferent.

Bonus Lecture: Multiple Eigenvectors; Latent Factor Analysis 167

female.pdf [The relationship between female faces and extraversion. The large, colored
face is the mean face. Colors illustrate the most predictive PLS component vector.]

More extraverted women correlate with rounder faces, especially in profile, with a more protruding nose
and lips but a recessed chin, whereas the introverts have more flat, square-shaped faces. To my eyes, the
extraverts also have more expressive mouths.

It’s interesting is that physiognomy, the art of judging character from facial shape, used to be considered
a pseudoscience, but it’s been making a comeback in recent years with the help of machine learning. One
reason it fell into disrepute is because, historically, it was sometimes applied across races in fallacious and
insulting ways. But if you want to train classifiers that guess people’s personalities with some accuracy, you
probably need a different classifier for each race. This is a classifier trained exclusively for one race, Han
Chinese, which is probably part of why it works as well as it does. If you tried to train one classifier to work
on many different races, I suspect its performance would be much worse.

Another thing that’s notable is that the authors were able to find statistically significant correlations for some
personality traits, but the majority of traits defeated them. So while physiognomy has some predictive power,
it’s only weakly predictive. It’s an open question whether machine learning will ever be able to predict
personality from visual information substantially better than this or not. Adding a time dimension and
incorporating people’s movements and dynamic facial expressions seems like a promising way to improve
personality predictions.

Tools like this raise some ethical issues. The one that concerns me the most is that, if tools like this are
emerging now, many governments probably already had similar tools ten years ago, and have probably been
using them to profile us.

One student asked whether these methods might be used by employers to screen prospective employees.
I think that tools like this are inferior to simply giving an interviewee a personality test. Such tests are legal
in the USA, so long as their questions are not found to violate an employee’s right to privacy and the results
are not used to discriminate against legally protected groups. The most troubling part of using physiognomy
to screen employees would not be that personality testing is unlawful. (It isn’t, and quite a few companies
do it.) It would be that physiognomy isn’t nearly accurate enough. An employer who uses a poorly designed
or unvalidated personality test to make personnel decisions might run a higher risk that a court might rule
that the test could have a discriminatory effect, violating Title VII of the Civil Rights Act of 1964. Also,
they probably won’t make good decisions. But perhaps in the future, better measurements, better statistical
procedures, and better algorithms might overcome these problems.

