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Abstract

The most commonly implemented method of constructing a constrained Delaunay triangulation (CDT) in

the plane is to first construct a Delaunay triangulation, then incrementally insert the input segments one by

one. For typical implementations of segment insertion, this method has a Θ(kn2) worst-case running time,

where n is the number of input vertices and k is the number of input segments.

We give a randomized algorithm for inserting a segment into a CDT in expected time linear in the

number of edges the segment crosses. We demonstrate with a performance comparison that for segments

that cross many edges, our algorithm is faster than gift-wrapping. We also show that a simple algorithm

for segment location, which precedes segment insertion, is fast enough never to be a bottleneck in CDT

construction. A result of Agarwal, Arge, and Yi implies that randomized incremental construction of CDTs

by our segment insertion algorithm takes expected O(n log n + n log2 k) time. We show that this bound is

tight by deriving a matching lower bound. Although there are CDT construction algorithms guaranteed to

run in O(n log n) time, incremental CDT construction is easier to program and competitive in practice.

Lastly, we partly extend the analysis (albeit not the linear-time insertion algorithm) to randomized

incremental CDT construction in three dimensions.

Keywords: constrained Delaunay triangulation, ǫ-net, randomized incremental construction,

computational geometry

1. Introduction

The constrained Delaunay triangulation (CDT) in the plane, proposed by Lee and Lin [26], is a vari-

ant of the well-known Delaunay triangulation in which specified edges, sometimes called segments, are

constrained to appear. The CDT is as close to being Delaunay as possible subject to those constraints. In

particular, every edge of the CDT either is an input segment or is locally Delaunay. An edge in a trian-

gulation is locally Delaunay if it is an edge of only one triangle, or it is an edge of two triangles and the

Delaunay triangulation of those triangles’ four vertices includes the edge, as illustrated at left in Figure 1.

The constraints imposed by CDTs have many uses, including representing boundaries of nonconvex

objects, supporting better interpolation of discontinuous functions, and aiding the enforcement of boundary

conditions in finite element meshes.
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Figure 1: Left: the solid edge e is locally Delaunay. The dashed edge that crosses it is not. Right: The triangle t is constrained

Delaunay, despite having two vertices inside its circumcircle. Bold lines represent segments, which block visibility.

Figure 2: A planar straight line graph and its constrained Delaunay triangulation.

The input to a CDT construction algorithm is a planar straight line graph (PSLG), depicted in Figure 2.

A PSLG X is a set of vertices and segments (constraining edges) that satisfies two restrictions: both end-

points of every segment inX are vertices inX, and a segment inXmay intersect other segments and vertices

in X only at its endpoints. We seek a triangulation of the vertices in X that includes every segment in X.

Throughout this article, every triangulation is understood to be a simplicial complex; thus it is a set

containing vertices, edges, and triangles. A triangulation of a PSLG X is a simplicial complex T ⊃ X such

that T contains the same vertices as X (additional vertices are not permitted) and the union of simplices
⋃

s∈T s is the convex hull of the vertices in X. Note that every segment in X is an edge in T .

We assume that the reader is familiar with Delaunay triangulations [14, 9]. CDTs use visibility to relax

the Delaunay “empty circle condition.” Two points p and q are visible to each other if the open line segment

pq does not intersect a segment in X. Consider a triangle t in some triangulation of X; thus t’s vertices are

in X and t’s interior intersects no segment in X. A triangle t is constrained Delaunay if it satisfies these two

conditions and t’s circumcircle (circumscribing circle) encloses no vertex in X that is visible from a point

in the interior of t, as illustrated at right in Figure 1. A constrained Delaunay triangulation (CDT) of X is a

triangulation of X in which every triangle is constrained Delaunay, as illustrated at right in Figure 2. By the

Delaunay Lemma [14, 26], a triangulation T of X is a CDT (has all its triangles constrained Delaunay) if

and only if every edge in T that is not a segment in X is locally Delaunay.
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Figure 3: Inserting a segment into a constrained Delaunay triangulation.

Figure 4: Top, an n-vertex PSLG for which inserting the k segments in order from left to right causes Θ(kn) structural changes.

Bottom, an illustration of how each segment insertion causes the deletion and creation ofΘ(n) edges and Θ(n) triangles in the CDT.

Two algorithms are known that construct the CDT of a PSLG with n vertices in O(n log n) time, which

is optimal in the decision tree model of computation. One is a divide-and-conquer algorithm by Chew [10].

Its lineage stretches back to the first Delaunay triangulation algorithm to run in O(n log n) time, the 1975

divide-and-conquer algorithm of Shamos and Hoey [35], which was subsequently simplified and elaborated

by Lee and Schachter [27] and Guibas and Stolfi [17]. The other is a sweepline algorithm by Seidel [33],

which generalizes a Delaunay triangulation algorithm of Fortune [16] to CDTs.

To the best of our knowledge, Seidel’s algorithm has not been implemented, and Chew’s algorithm has

been implemented only once (we do not recall by whom), perhaps because they are complicated. The only

CDT construction algorithm widely used in practice begins by constructing an ordinary Delaunay triangu-

lation first, then it inserts the segments into the triangulation one by one. To insert a segment is to delete all

the edges and triangles that intersect its relative interior, create the new segment, and retriangulate the two

polygonal cavities thus created (one on each side of the segment) with constrained Delaunay triangles, as

illustrated in Figure 3. Note that the cavities might not be simple polygons, because they might have edges

dangling in their interiors, as shown.

Although CDT construction by incremental segment insertion does not run in O(n log n) time, it is pop-

ular for good reasons: it takes advantage of the best existing implementations of (unconstrained) Delaunay

triangulation algorithms; it is easier to implement than other CDT construction algorithms; its speed is of-

ten excellent in practice because many real-world inputs have few or no segments that cross many edges;

and the ability to dynamically update a CDT by inserting a new segment is itself useful—for instance, in

applications that support interactive geometric modeling [21]. Moreover, Agarwal, Arge, and Yi [1] show

that if the k segments are inserted in random order, the expected number of edges and triangles deleted and

created, summed over all segment insertions, is in O(n log2 k). Compare this with the deterministic worst

case of Θ(kn) for the PSLG illustrated in Figure 4.
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In many implementations, each segment is inserted by a naive algorithm that takes O(m2) time, where

m is the number of triangles whose interiors intersect the segment, yielding a CDT construction algorithm

that takes Θ(kn2) time for some PSLGs with n vertices and k segments. See Anglada [4] for a typical

segment insertion algorithm that usually takes Θ(m2) time, though it can achieve Θ(m log m) best-case time

when it has good luck with evenly subdividing the cavities. (Anglada’s algorithm is a variant of well-known

gift-wrapping algorithms; it gift-wraps triangles from the new segment out.)

Several algorithms have been proposed that compute the CDT of a simple polygon in linear time. A

randomized algorithm of Klein and Lingas [24] computes the CDT in expected O(m) time, and a later algo-

rithm of Chin and Wang [12] runs in deterministicO(m) time. Both algorithms rely on Chazelle’s algorithm

for triangulating a simple polygon in linear time [8], which is celebrated as a theoretical breakthrough but

is considered too complicated for practical use. Lee and Lin [26] give a simpler O(m log m)-time algorithm

that is also simpler than Chew’s or Seidel’s algorithms, as it is specialized for simple polygons. Kao and

Mount [23] give an O(m log m)-time algorithm that, because it is specialized for segment insertion, is even

simpler. Anglada’s quadratic-time segment insertion algorithm remains the easiest to implement.

This article presents a randomized algorithm for inserting a segment into a CDT in expected O(m) time.

The algorithm is much easier to implement than the algorithms by Chew, Seidel, Klein and Lingas, and

Chin and Wang. We provide pseudocode, which we turned into working C code in five hours.

We also show a matching Ω(n log2 k) lower bound on the number of structural changes during random-

ized incremental CDT construction, which resolves the long-standing question of the expected complexity

of uniformly randomized incremental segment insertion for worst-case PSLGs. This lower bound is a sur-

prise; we and others had not believed the upper bound was tight.

Our third contribution is to analyze a simple algorithm for segment location—finding one triangle

deleted when a segment is inserted—and to show that it is fast enough never to be a bottleneck in CDT

construction. Specifically, its running time is at worst proportional to the number of structural changes the

CDT construction algorithm performs while building the CDT, even if the insertion order is not randomized.

With fast segment location and linear-time segment insertion, the randomized incremental segment in-

sertion algorithm constructs the CDT of an n-vertex, k-segment PSLG in expectedO(n log n+n log2 k) time.

Although this running time falls short of optimality, experience with incremental CDT construction software

shows that segment insertion rarely takes longer than constructing the initial Delaunay triangulation unless

segments that intersect many edges are inserted by quadratic-time algorithms like Anglada’s. Incremental

segment insertion is likely to remain the most used CDT construction algorithm long into the future, so we

think it is important to provide an understanding of its performance and how to make it run fast.

Our fourth contribution is to extend some of these results to three dimensions. Some tetrahedral CDTs

can be constructed by first constructing a Delaunay triangulation, then incrementally inserting polygons

into the CDT. We show that polygon location, like segment location in the plane, is never the bottleneck in

incremental construction of a three-dimensional CDT. Although an n-vertex CDT can haveΘ(n2) tetrahedra,

we show that for a class of nicely-behaved inputs that never have more than O(n) tetrahedra during the

construction process, the expected total number of structural changes during randomized incremental CDT

construction is in O(n log2 k), as in the plane. Unfortunately, it remains an open question whether polygons

can be inserted in time proportional to the number of structural changes.

Although this article devotes most of its space to analyzing algorithms, an equally important motiva-

tion for us is to demonstrate to working programmers who write triangulation codes (but might not be

researchers) that incremental segment insertion is a strong competitor among the known algorithms, and to

show them how to avoid the hazard of very slow performance on the most difficult input PSLGs.
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Figure 5: Chew’s algorithm for computing the Delaunay triangulation of a convex polygon deletes vertices from the polygon in a

random order to precompute the information needed for point location, then inserts the vertices in the opposite order.

2. Chew’s Delaunay Vertex Deletion Algorithm

Our segment insertion algorithm is closely related to an algorithm of Paul Chew [11] for deleting a

vertex from a Delaunay triangulation in expected O(m) time, where m is the degree of the deleted vertex.

The latter algorithm is a good preparation for understanding the former, more complicated algorithm. Our

algorithm also uses Chew’s as a subroutine.

Vertex deletion is an operation that updates a Delaunay triangulation so it has one less vertex and is still

Delaunay. Chew’s algorithm can delete vertices from CDTs as well.

For simplicity, consider the (seemingly easier) problem of constructing the Delaunay triangulation of a

convex polygon. Chew’s algorithm is a randomized incremental insertion algorithm that inserts one vertex

at a time into the Delaunay triangulation. Let V be a sequence listing the m vertices of a convex polygon

in counterclockwise order. The algorithm begins by generating a random permutation of V that dictates

the order in which the vertices will be inserted. It constructs a triangle from the first three vertices of the

permutation, then inserts the remaining vertices one by one.

Just before a vertex u is inserted, it lies outside the growing triangulation, but only one triangulation

edge vw separates u from the triangulation’s interior. Point location is the task of identifying the edge vw.

Next, the algorithm inserts u by first identifying and deleting all the triangles whose circumcircles enclose u.

These can be found quickly by a depth-first search from the triangle adjoining vw. Then, by extending new

edges from u, the algorithm retriangulates the cavity formed by taking the union of the deleted triangles

and △uvw, as illustrated in the right half of Figure 5. This is essentially the Bowyer–Watson algorithm

[5, 19, 20, 45] for inserting a vertex into a Delaunay triangulation.

The cleverest aspect of Chew’s algorithm is how it performs point location. It does all point location in

advance, before constructing any triangles, by imagining the incremental insertion algorithm running back-

ward in time. Specifically, imagine taking the input polygon and removing vertices one by one, reversing

the random permutation of V , yielding a shrinking sequence of convex polygons as illustrated in the left

half of Figure 5. Removing a vertex u has the effect of joining its neighbors v and w with an edge vw, which

is the edge that later will be sought for point location.

The algorithm maintains a circularly-, doubly-linked list of vertices representing the polygon. It walks

through a random permutation of V in backward order, removing vertices from the circularly-linked list

until only three remain. The algorithm constructs a triangle from the three surviving vertices, then inserts

the other vertices in the permutation of V in forward order.

The same algorithm, with no changes, can also retriangulate the cavity evacuated when a vertex is

deleted from a Delaunay triangulation, even though the cavity might not be convex. We will not justify that

claim here, except to point out that Chew’s algorithm is a disguised algorithm for deleting a vertex from a

three-dimensional convex hull [25], which is related by the lifting map [6, 32, 15] to deleting a vertex from

a two-dimensional Delaunay triangulation. On the lifting map, the Delaunay triangles adjoining a vertex lie

on the boundary of a convex polyhedral cone; Chew’s algorithm exploits this convexity.
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Theorem 1. Given an m-vertex polygon, Chew’s algorithm runs in expected O(m) time.

Proof. The point location stage runs in deterministic O(m) time. Chew derives the expected running time

of the vertex insertion stage by backward analysis, an analysis technique that Seidel [34] summarizes thus:

“Analyze an algorithm as if it was running backwards in time, from output to input.”

To simplify the analysis, we assume that every vertex set has a unique Delaunay triangulation, inde-

pendent of the order in which the vertices are inserted. This assumption might not hold if there are four

cocircular vertices, but there is an easy way to fix the analysis [9, Section 3.5], which we omit.

Every triangulation of an m-vertex polygon has 2m−3 edges, each with two endpoints. Imagine deleting

a vertex chosen uniformly at random; in expectation it adjoins 4 − 6/m edges.

With the algorithm running forward in time, the cost of inserting the last vertex is proportional to the

number of edges that adjoin it after it is inserted. The expected number of those edges is less than four.

The same reasoning holds for the other vertices. Summing this cost over all the vertices yields an expected

linear running time.

3. Inserting a Segment into a CDT

To “insert a segment into a CDT” is to take as input a CDT of a PSLG X and a new segment s to

insert, and produce a CDT of X ∪ {s}. It is meaningful only if X ∪ {s} is a valid PSLG—that is, X already

contains the endpoints of s (otherwise, they must be inserted first), and the relative interior of s intersects no

segment or vertex in X. This section presents a segment insertion algorithm similar to Chew’s algorithm.

Its expected running time is linear in the number of edges the segment crosses.

Let T be a CDT of X. If s ∈ T , then T is also a CDT of X ∪ {s}. Otherwise, the algorithm begins by

performing segment location: identifying a triangle in T whose interior intersects s. This can be done with

a simple rotary traversal of the triangles adjoining the endpoint of s with lesser degree. In Section 8, we

show that this method never increases the asymptotic running time of CDT construction.

Once one triangle whose interior intersects s is found, the others can be identified by a simple walk in

time linear in their number. The algorithm deletes these triangles fromT . All the other triangles inT remain

constrained Delaunay after s is inserted. Next, the algorithm adds s to the triangulation and retriangulates

the two polygonal cavities on each side of s with constrained Delaunay triangles, as illustrated in Figure 3.

Let P and P̂ be the two polygonal cavities; their edges include s. The randomized incremental insertion

algorithm CavityCDT in Figures 6 and 7 retriangulates P, and a second call to CavityCDT retriangulates

P̂. Be forewarned that CavityCDT cannot compute the CDT of an arbitrary polygon; it depends upon the

special nature of the cavities evacuated by segment insertion for its correctness.

CavityCDT differs from Chew’s algorithm in several ways to account for the fact that P is not always

convex. First, the vertices of the segment s are inserted first. Second, P might have edges dangling in its

interior, like the segment connecting vertices 5 and 6 in Figure 8. In this case, imagine an ant walking a

counterclockwise circuit of P’s interior without crossing any edges; it will visit one or more vertices of P

twice. Split each such vertex into two copies and pretend they are two separate vertices, like vertices 5 and 7

in the figure. (In rare circumstances, there may be three or more copies of a vertex.)

Third, CavityCDT maintains the invariant that after each vertex insertion, the computed triangulation is

the CDT of the polygon whose boundary is specified by the subsequence of vertices inserted so far; we call

this polygon a subpolygon. Because CavityCDT maintains a CDT and not merely a Delaunay triangulation,

a newly inserted vertex sometimes causes a triangle to be deleted not because the new vertex lies inside

the triangle’s circumcircle, but because the two polygon edges adjoining the new vertex cut through the
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CavityCDT(V)

{ V = 〈v0, v1, . . . , vm−1〉 is a sequence of vertices in counterclockwise order around }
{ a cavity evacuated when the segment v0vm−1 is inserted. Some vertices in the sequence }
{ are duplicated if there are dangling edges in the cavity. }
1 for i← 1 to m − 2

2 next[i]← i + 1 { The arrays next, prev: [1,m − 2]→ [0,m − 1] represent }
3 prev[i]← i − 1 { a doubly-linked list of vertex indices. }

{ distance[i] is proportional to the distance from vi to the line←−−−→v0vm−1. }
4 distance[i]← Orient(v0, vi, vm−1)

{ π[1 . . .m − 2] will always be a permutation of 1 . . .m − 2. }
5 π[i]← i

6 distance[0]← 0; distance[m − 1]← 0

{ Delete the vertices from the polygon in a random order. }
7 for i← m − 2 downto 2

{ Select a vertex to delete that is not closer to←−−−→v0vm−1 than both its neighbors. }
8 repeat

9 j← a random integer in [1, i]

10 while distance[π[ j]] < distance[prev[π[ j]]] and distance[π[ j]] < distance[next[π[ j]]]

{ Point location: take the vertex vπ[ j] out of the doubly-linked list. }
11 next[prev[π[ j]]]← next[π[ j]]

12 prev[next[π[ j]]]← prev[π[ j]]

{Move the deleted vertex index π[ j] to follow the live vertices. }
13 Swap π[i] with π[ j]

14 CreateTriangle(v0, vπ[1], vm−1) { Create the first triangle. }
15 for i← 2 to m − 2

16 InsertVertex(vπ[i], vnext[π[i]], vprev[π[i]])

17 if vπ[i] has been marked

18 Call Chew’s algorithm to retriangulate the fan of triangles that have all 3 vertices marked

19 Unmark all the marked vertices

Figure 6: Expected linear-time algorithm for retriangulating a cavity evacuated by inserting a segment into a constrained Delaunay

triangulation. The subroutines InsertVertex and Orient appear in Figure 7.

triangle. For example, the insertion of vertex 8 in Figure 8 deletes a triangle whose circumcircle does not

enclose vertex 8. Line 21 of InsertVertex (Figure 7) accounts for this possibility with an orientation test.

Fourth, unlike in Chew’s algorithm, the insertion of a vertex u can create new triangles that do not adjoin

u, as illustrated in Figure 9. The three shaded triangles in the top triangulation must be deleted when u is

inserted, but u is not inside their circumcircles. We call triangles with this property crossed triangles. After

u’s insertion, the corresponding new triangles (shaded in the bottom triangulation) may include some that

do not adjoin u.

CavityCDT inserts u in a manner that initially connects u to all the vertices of all the deleted trian-

gles. If there are crossed triangles, CavityCDT subsequently uses Chew’s original algorithm to correctly

retriangulate the shaded region (in expected linear time). We observe few crossed triangles in practice, so

the overhead of occasionally invoking Chew’s algorithm is unlikely to have much influence on the running

time. (An alternative, easier to implement, is for CavityCDT to call itself recursively with uw serving as the
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InsertVertex(u, v,w)

{ u is a new vertex we are inserting. Is the triangle △uvw constrained Delaunay? }
20 x← Adjacent(w, v) { Find △wvx on the other side of the edge vw from u. }

{ The edge vw survives if △wvx does not exist or

(u is not inside the circumcircle of △wvx and u is on the correct side of the edge vw). }
21 if x = ∅ or (InCircle(w, v, x, u) ≤ 0 and Orient(u, v,w) > 0)

22 CreateTriangle(u, v,w) { △uvw is constrained Delaunay. }
23 else { △uvw and △wvx are not constrained Delaunay. }
24 DeleteTriangle(w, v, x) { Flip edge vw→ edge ux. }
25 InsertVertex(u, v, x)

26 InsertVertex(u, x,w)

27 if InCircle(w, v, x, u) ≤ 0 { For the sake of speed, reuse the computation from Line 21. }
{ △wvx is a crossed triangle. }

28 Mark vertices u, v, w, and x to be retriangulated later (in Line 18)

Orient(u, v,w)

{ Returns a positive value if u, v, and w occur in counterclockwise order. }

return det

[

u1 − w1 u2 − w2

v1 − w1 v2 − w2

]

.

InCircle(u, v,w, x)

{ Positive if x is strictly inside the circle passing through the positively oriented vertices u, v, and w. }

return det





















u1 − x1 u2 − x2 |u − x|2
v1 − x1 v2 − x2 |v − x|2
w1 − x1 w2 − x2 |w − x|2





















.

Figure 7: Expected linear-time algorithm for retriangulating a cavity evacuated by inserting a segment into a constrained Delaunay

triangulation (continued from Figure 6). A triangulation data structure permits Adjacent(u, v) to look up the third vertex w of

a triangle △uvw in O(1) expected time, with the convention that u, v, and w are positively oriented (occur in counterclockwise

order); it returns w = ∅ if there is no such triangle. The operations CreateTriangle and DeleteTriangle add and remove positively

oriented triangles in expected O(1) time. These running times can be achieved with a hash table that maps pairs of vertices to

triangles; our implementation achieves them with a tree data structure.

segment, but we do not know whether this option preserves the expected linear running time.)

Fifth, a subpolygon might be self-intersecting. Observe in Figure 8 that deleting vertex 2 from the

cavity P creates a subpolygon G in which the edge connecting vertices 1 and 3 crosses the edge connecting

vertices 4 and 5, and the subpolygon’s interior angle at vertex 3 exceeds 360◦. By some definitions, G

is not actually a polygon, although it is a polygon in the conventional sense of a looped chain of edges;

and its triangulation in Figure 8 (bottom center) is not a simplicial complex, because it has triangles that

overlap each other. Fortunately, it is like a CDT in two respects: it has all the combinatorial properties of a

triangulation of a polygon—for example, its dual graph is a tree—and every edge is locally Delaunay.

The incremental vertex insertion algorithm works correctly even when these self-intersecting subpoly-

gons arise, subject to one caveat: it will not correctly insert a vertex at which the polygon’s internal angle is

360◦ or greater. For example, it cannot triangulate P in Figure 8 by inserting vertex 6 last, nor triangulate G

by inserting vertex 3 last. These vertex insertions are anticipated and averted during the algorithm’s point
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Figure 8: Computing the constrained Delaunay triangulation of a cavity obtained by inserting a segment s. The cavity has a

repeated vertex, numbered 5 and 7, because of the dangling edge adjoining it. The deletion of vertex 2 creates a self-intersection,

but the algorithm works correctly anyway.
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Figure 9: The shaded triangles in the top triangulation (called crossed triangles) are deleted by u’s insertion despite u not being

inside their circumcircles because the edge uw crosses them. InsertVertex produces the triangles in the middle triangulation, but

the shaded triangles are not necessarily constrained Delaunay. We use Chew’s algorithm to replace them with the shaded triangles

in the bottom triangulation, which include two that do not adjoin u.
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location step, when random vertices are deleted from P one by one until the subpolygon is reduced to a

triangle. Hence, the random permutation by which the vertices are inserted is not chosen uniformly from

all permutations of the vertices.

For the sake of speed, CavityCDT does not compute internal angles. Instead, let s̄ be the line that

includes the segment s. It is a property of the cavities created by segment insertion that a subpolygon vertex

can have an internal angle of 360◦ or greater only if that vertex is closer to s̄ than both its neighbors on the

subpolygon chain. (We will justify this claim shortly.) CavityCDT declines to delete from P any vertex with

the latter property (see Line 10). Later we will consider a second reason for this restriction (see Lemma 4).

Line 4 of CavityCDT computes the distance of each vertex of P from s̄. The point location step (Lines 7–

13) deletes vertices from P one by one, choosing uniformly at random from all the vertices that are not

endpoints of s and are not closer to s̄ than both their neighbors.

Be forewarned that CavityCDT cannot use the same triangulation data structure as the triangulation in

which the segment s is being inserted, because CavityCDT sometimes temporarily creates triangles that

conflict with those outside the cavity. For example, in Figure 8 the triangulation outside the cavity probably

includes an edge connecting vertices 7 and 9, which is an edge of two triangles. CavityCDT temporarily

creates a third triangle with this edge when it first inserts vertex 9. To avoid corrupting the data structure,

CavityCDT requires the use of a separate, initially empty triangulation data structure. The final triangles

must subsequently be copied to the main triangulation.

4. The Speed and Correctness of CavityCDT

To analyze CavityCDT, we must answer several questions: how do we understand a self-intersecting

polygon? What does it mean for it to have a triangulation or a CDT? Does its CDT obey the same rules as

a traditional CDT, such as the Delaunay Lemma? We will answer these questions by defining subpolygons

to be topological spaces we call multisheet polygons, which are constructed by gluing ordinary polygon-

shaped topological spaces together along their edges.

Before discussing those foundations, we take a brief detour to analyze the running time of CavityCDT.

The following proof is not yet complete, because it relies on a fact about CDTs of subpolygons (the forth-

coming Lemma 3) whose proof we must delay until we develop an understanding of multisheet polygons.

The proof also relies implicitly on the fact that CavityCDT and InsertVertex work correctly. But the core

argument is simple, so we put it up front.

Theorem 2. Given an m-vertex cavity, CavityCDT runs in expected O(m) time.

Proof. The expected cost of InsertVertex is proportional to the number of edges adjoining the newly

inserted vertex u plus the number of newly created triangles that do not adjoin u. We bound these numbers

separately, both by backward analysis.

Every triangulation of an m-vertex polygon has m−2 triangles and m−3 interior edges. At least (m−1)/2

vertices are eligible to be the first vertex deleted during point location and the last vertex inserted. One of

those vertices is chosen uniformly at random; in expectation it adjoins at most 2(m − 3)/((m − 1)/2) < 4

interior edges, thus fewer than 6 edges total.

When the insertion of a new vertex u causes the creation of a triangle t that does not adjoin u, as illus-

trated in Figure 9, it happens because a new subpolygon edge adjoining u entirely crosses t’s circumcircle

and hides one or more vertices inside t’s circumcircle. Consider CavityCDT running backward in time;

what is the probability that a triangle t will be deleted during the deletion of a randomly chosen vertex u that

is not a vertex of t? The forthcoming Lemma 3 states that there at most two vertices, besides the vertices of

t, whose deletion could expose t to a vertex, thereby deleting t. The probability that u is one of those two
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Figure 10: At left, each vertex has a sightline. Note that vertices 5 and 7 have different sightlines, although they are really a single

repeated vertex. A self-intersecting polygon (center) can be interpreted topologically as several polygons glued together along their

sightlines (right).

vertices is at most 4/(m − 1). Summing this probability over the m − 2 triangles, we find that the expected

number of deleted triangles not adjoining u is less than 4.

Thus, forward in time, the expected cost of inserting each vertex is constant. Summing this cost over all

the vertices yields an expected linear running time.

Before proving the correctness of the algorithm CavityCDT, we must make sense of self-intersecting

polygons and their triangulations. The original cavity P has a special property that enables CavityCDT to

work despite the possibility of self-intersecting subpolygons: P is included in a union of triangles that cross

the segment s. Therefore, each vertex vi has a sightline bi: a line segment connecting vi to s strictly through

P’s interior, depicted in Figure 10. We choose each sightline to be a subset of an edge that was deleted to

make way for s; these sightlines do not intersect each other.

A self-intersecting subpolygon G can be understood as a topological space defined by gluing ordi-

nary quadrilaterals and triangles together along the sightlines, as illustrated. We call these constructions

multisheet polygons because they can be assembled from multiple sheets of paper taped together. In such

a multisheet polygon, two points with the same Euclidean coordinates are not necessarily the same point;

they may be in different, overlapping quadrilaterals or triangles. We triangulate a multisheet polygon by

subdividing it into triangles that form the topological space G when they are glued together along shared

edges. We call this triangulation a CDT if all its edges are locally Delaunay.

One consequence of G’s sightlines is that for any vertex v of G at which the internal angle is 360◦ or

greater (e.g., vertex 3 or 6 in Figure 10), both v’s neighbors on G’s boundary chain are further from s̄ (the

affine hull of s) than v is—each because the other neighbor has a valid sightline. This observation justifies

the algorithm’s use of the latter property to screen out vertices with the former property in Lines 8–10.

Our correctness proof for CavityCDT relies on a constrained version of the famous Delaunay Lemma.

In 1934, Boris Delaunay [14] showed that a triangulation of a point set is Delaunay (has every triangle De-

launay) if and only if every edge is locally Delaunay. In 1986, Lee and Lin [26] showed that a triangulation

of a PSLG is constrained Delaunay (has every triangle constrained Delaunay) if and only if every edge is

locally Delaunay except perhaps the PSLG segments.

This Constrained Delaunay Lemma extends to a multisheet polygon G as follows. Two points p, q ∈ G

are said to be visible to each other if there is a path from p to q in G that is a straight line segment. Observe

that two distinct points in G can lie at the same position in Euclidean space yet not be visible to each other,

because the shortest path connecting them in G goes around a corner. With this definition of “visible,”

the definition of “constrained Delaunay triangle” in the Introduction applies to triangulations of multisheet

polygons. It is easy to extend the proof of Lee and Lin to show that a triangulation of a multisheet polygon

has every triangle constrained Delaunay if and only if every edge is locally Delaunay.

We are ready to complete the proof of Theorem 2.
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Figure 11: A subpolygon G′ in which the deletion of a vertex (not shown) has exposed a vertex v f inside the circumcircle C of a

triangle t, so t is no longer constrained Delaunay. The dashed lines are sightlines. The configuration depicted here is impossible

because vg does not have a sightline.

Lemma 3. Consider a subpolygon G whose CDT contains a triangle t. Imagine CavityCDT running

backward in time; suppose a vertex of G is deleted. Besides t’s vertices, there are at most two other vertices

of G whose deletion would delete t.

Proof. Let C be t’s circumcircle. As t is constrained Delaunay (with respect to G), no vertex of G is both

strictly inside C and visible from the interior of t. Suppose that the deletion of some vertex u of G causes

t to be deleted, but u is not a vertex of t, as in Figure 9. Then G has a vertex (such as v in Figure 9) that is

strictly inside C and becomes visible from t when u is deleted.

Let vi and v j be the vertices of t with the least index i and the greatest index j. The edge viv j of t cuts G

into two multisheet polygons, one having vertices numbered between i and j and one having the remaining

vertices and the segment s, as illustrated in Figure 11. Each vertex’s sightline can cross viv j at most once:

each vertex of G in the range vi+1, vi+2, . . . , v j−1 is visible from the interior of t because its sightline passes

through t, but no other vertex’s sightline intersects t’s interior. As t is constrained Delaunay, no vertex of G

in the range vi, vi+1, . . . , v j is strictly inside C.

Let vg be the vertex of G with the greatest index g < i such that vg is strictly inside C, if such a vertex

exists, as illustrated in Figure 11. Let q be an arbitrary point in the interior of t. As t is constrained Delaunay,

vg is not visible from q. As G is simply connected, there is a unique shortest path from q to vg through G; as

G is a multisheet polygon that does not include a straight path from q to vg, the shortest path is composed

of two or more line segments. Let vh be the vertex where this path first turns (hence vh is visible from q).

Symmetrically, let vl be the vertex of G with the least index l > j such that vl is strictly inside C, if such

a vertex exists, and let vk the the first vertex on the shortest path from q to vl, as illustrated. Observe that

g < h ≤ i < j ≤ k < l.

As vh is visible from q, vh is not strictly inside C. Let ℓ be the line through q and vh, and consider a line

segment e ⊂ ℓ that extends from vh directly away from q (extending the first segment of the shortest path)

until it cuts G into two simply connected multisheet polygons, as illustrated in Figure 11. The polygon on

one side of e has the vertex vg, and the polygon on the other side includes the triangle t. Observe that no

part of e is inside C (because q is inside C and vh is not).

Consider any vertex v f of G that is strictly inside C. We claim that v f can become visible from the

interior of t only if vh or vk is deleted; this claim establishes the lemma. Suppose for the sake of contradiction

that there exists a subpolygon G′ of G that retains the vertices v f , vh, and vk and the vertices of t, but within

G′, v f is visible from some point q′ in t’s interior—that is, the multisheet polygon G′ includes the line
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segment v f q
′. By our definitions of vg and vl, either f ≤ g or f ≥ l; suppose without loss of generality that

f ≤ g. (The symmetric case, in which f ≥ l, can be treated with the same reasoning in mirror image.)

As f < h ≤ i, vh’s sightline bh separates v f from t in G′. Thus the line segment v f q
′ crosses bh. We

claim that v f q also crosses bh. To see this, observe that bh must cross the entire triangle △qq′v f , because

△qq′v f is strictly inside C, vh is not inside C, and the other endpoint of bh lies on the segment s and so

cannot be in the interior of △qq′v f . But bh cannot intersect qq′, because bh does not intersect t’s interior.

Therefore, bh crosses the other two edges of △qq′v f . It follows that v f q crosses bh as claimed, so v f is on

the same side of ℓ as bh is. This implies that the line segment e separates the portion of G containing vg

from the portion containing v f (and thus f , g).

These relationships impose irreconcilable constraints on vg’s sightline. The sightline for vg terminates

on the segment s between the sightlines for v f and vh, and the sightlines do not intersect each other. Hence

vg’s sightline starts at vg, which is inside C; then it crosses e, which is outside C; and then it crosses

v f q, which is inside C. But a sightline is straight; it cannot exit and reenter C. The lemma follows by

contradiction.

Next, we justify the use of Chew’s algorithm to fix part of the triangulation (Line 18 of CavityCDT)

when the insertion of a vertex u causes the deletion of crossed triangles whose circumcircles do not enclose

u. We will show (see Lemma 4 below) that these crossed triangles always form a fan adjoining a single

vertex v, shaded at left in Figure 9. The polygon that we retriangulate with Chew’s algorithm (shaded at

right in Figure 9) is not necessarily convex, so we must justify why Chew’s algorithm will always succeed.

Recall that Chew’s algorithm is known to work correctly for retriangulating a cavity created when a vertex is

deleted from a Delaunay triangulation (and more generally, for deleting a vertex from a three-dimensional

convex hull [25]). The triangles in the fan adjoining v are separated by locally Delaunay edges. With

reference to the figure, if we add the triangle △vuz to the fan, the edge vz is locally Delaunay as well,

because the fan triangles are crossing triangles whose circumcircles do not enclose u. The polygon we are

retriangulating is the polygon obtained by deleting v. (On the lifting map, v is lifted to the apex of a convex

cone in three dimensions. The fact that the lifted vertices of the fan are in convex position from v’s point

of view is the precondition for Chew’s algorithm to work correctly.) Therefore, Chew’s algorithm correctly

retriangulates the fan.

To see that the crossed triangles always form this fan configuration, suppose without loss of generality

that s is horizontal, as in Figure 12, with the cavity above s and the vertex indices increasing from 0 at

the right endpoint of s to m − 1 at the left endpoint. Let ℓ be the horizontal line (parallel to s) through u.

By design, when u is inserted, its two neighbors (v and w) on the subpolygon G cannot both be above ℓ.

Suppose without loss of generality that u’s neighbor w, whose index is less than u’s index, is on or below ℓ.

Because there is a crossed triangle, u is a concave vertex of G, so u’s other neighbor v (with greater index)

must be strictly above ℓ.

Lemma 4. Given the suppositions stated above, the crossed triangles form a fan of triangles sharing vertex

v, and their other vertices have indices less than u’s index.

Proof. Let t be a crossed triangle. It has at least one vertex x whose index is greater than u’s and one vertex

y whose index is less. (If every vertex of t had a greater index, t would be protected from u by v’s sightline;

if every vertex of t had a lesser index, t would be protected from u by w’s sightline.) Suppose for the sake

of contradiction that x , v, as Figure 12 shows. Either y = w or the triangle edge xy crosses the subpolygon

edge uw, so y lies on or below ℓ. As xy also crosses the subpolygon edge uv, x lies strictly above ℓ.

Before s was inserted, v was connected by an edge of the CDT to a vertex v′ on the other side of s, so

there existed a circle C through v and v′ that enclosed no vertex visible from the relative interior of the edge
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Figure 12: An impossible configuration: upon the insertion of u, a crossed triangle t has a vertex x above ℓ that is not u’s neighbor

on the subpolygon chain.

vv′. The portion of vv′ terminating at s is a sightline for v in the original cavity P and in every subpolygon of

P. Both u and x are visible (within P) from the point vv′ ∩ s, so neither u nor x is inside C. There is a point

in the interior of t from which v is visible, because v’s sightline intersects t’s interior. As t is constrained

Delaunay (with respect to the polygon just before u is inserted), v is not inside t’s circumcircle C′. As t is a

crossed triangle, u is not inside C′ either.

The vertices v and x are above ℓ, and v′ and y are below or on ℓ, so both circles C and C′ (circumscribing

vv′ and xy) intersect ℓ, as illustrated. Neither circle encloses u; C intersects ℓ to the left of u, and C′ intersects

ℓ to the right of u (both possibly touching u). The edges vv′ and xy cross each other above ℓ, so v′ is outside

C′ and y is outside C. It is impossible to simultaneously satisfy the constraints that vv′ and xy cross each

other, a circle C through v and v′ encloses neither x nor y, and a circle C′ , C through x and y encloses

neither v nor v′. The result follows by contradiction.

Our correctness proof uses the constrained Delaunay property of the triangles before each vertex inser-

tion as a precondition to guarantee the locally Delaunay property of the edges after each vertex insertion.

By the Constrained Delaunay Lemma, the latter property implies that the former holds at the beginning of

the next vertex insertion.

Theorem 5. CavityCDT correctly constructs the CDT of a cavity evacuated by the insertion of a segment

into a CDT.

Proof. Let T ′ and T be the triangulation before and after a top-level call to the recursive procedure In-

sertVertex inserts a new vertex u and Line 18 of CavityCDT fixes the marked triangles (if necessary). Let

G′ and G be the corresponding subpolygons without and with u. We will show that if T ′ is a CDT of G′,
then T is a CDT of G. The result follows by induction on the sequence of vertex insertions.

It is straightforward to check that a top-level call to InsertVertex is equivalent to gluing a new triangle

△uvw onto an edge vw of T ′, then repeatedly checking each edge that is opposite the new vertex u in some

triangle (initially the edge vw, later other edges that are exposed by flips) and flipping any such edge that is

not locally Delaunay or forms a fold in the triangulation (Line 21 of InsertVertex). Every edge created by

a flip has the vertex u, and every vertex of every triangle deleted by a flip gets connected to u.

Each InsertVertex call maintains the invariant that the set of stored triangles forms a combinatorial

triangulation of a polygon—specifically, the dual graph of the triangulation is a tree whose leaves correspond

to the edges of the polygon in circular order. Gluing on a new triangle is equivalent to replacing a leaf of

the dual tree with a new degree-three node and two new leaves. Edge flips correspond to tree rotations.
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Figure 13: As △wvx was constrained Delaunay before u was inserted, ux is locally Delaunay.

If gluing △uvw onto T ′ does not create a fold at vw, then the modified triangulation is immediately

a triangulation of G. Otherwise, pretend that the algorithm flips only fold edges until none survive, then

flips edges that are not locally Delaunay. (CavityCDT actually flips the edges in a different order, but this

does not change the final product.) Observe that u is safely confined between the sightlines of v and w;

no other vertex lies between these sightlines, so no vertex can lie inside the inverted triangle △uvw. It is

straightforward to see that there is only one fold edge at any given time and the flips of the fold edges

collectively remove △uvw from G′, yielding G. Subsequent flips do not change the underlying topological

space of the triangulation, so it remains a triangulation of G.

To show that the updated triangulation T is constrained Delaunay, we show that all its edges are locally

Delaunay. Consider an edge ux created because the InCircle test in Line 21 found that the new vertex u is

inside the circumcircle of a triangle △wvx ∈ T ′; we wish to show that ux is locally Delaunay in T . Let △uxy

and △xuz be the triangles in T of which ux is an edge. The vertices y and z are visible (within G′) from

the interior of △wvx, because they are visible (within G) from every point on ux, which passes through the

interior of △wvx as Figure 13 shows. As T ′ is a CDT, △wvx is constrained Delaunay (prior to the insertion

of u), so neither y nor z is inside the circumcircle of △wvx. Let C be the circle that passes through u and x

and is tangent to the circumcircle of △wvx at x, as illustrated. As the circumcircle encloses C, neither y nor

z is inside C, so ux is locally Delaunay in T as claimed.

Let us categorize the edges of T and show they are all locally Delaunay. By the foregoing argument,

every edge adjoining u because of the Incircle test in Line 21 is locally Delaunay. Every edge that adjoins

the same two triangles in T it adjoined in T ′ is locally Delaunay because it was locally Delaunay in T ′.
Every edge that adjoins one old triangle surviving from T ′ and one triangle new to T is locally Delaunay

either because the Incircle test in Line 21 chose not to flip it or because the new triangle replaces a crossing

triangle after a vertex stopped being visible. Every edge on the boundary of G is locally Delaunay because

it is an edge of only one triangle. The only edges that fit none of these categories are the new edges created

by Line 18 of CavityCDT, which are locally Delaunay by the correctness of Chew’s algorithm. Therefore,

every edge in T is locally Delaunay, and by the Constrained Delaunay Lemma, T is a CDT.

5. A Comparison of Two Cavity Retriangulation Implementations

We have implemented CavityCDT and Anglada’s gift-wrapping algorithm [4] so that we could compare

their speeds on cavities of different sizes. Both implementations use Shewchuk’s floating-point Orient and

InCircle predicates [36], which are fast despite being robust. We timed two kinds of cavity, illustrated

in Figure 14: cavities in which all the vertices are collinear except the segment endpoints, and perturbed

versions of those cavities in which the vertices are jittered by random vertical movements proportional
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Figure 14: Constrained Delaunay triangulations of our input cavities, collinear or jittered.

Anglada CavityCDT

Orient tests

vertices time (µs) InCircle tests time (µs) InCircle tests (Line 21 only)

Cavities in 10 0.41 16 1.29 13.02 7.78

which most 30 4.20 196 4.20 67.07 43.01

vertices are 100 47.27 2,401 14.14 271.00 178.14

collinear 1,000 4,748.62 249,001 152.65 2,959.48 1,968.93

10 0.57 14.41 1.53 11.03 7.17

Jittered 85 16.26 620.04 16.26 161.39 106.04

cavities 100 20.68 804.34 19.10 191.48 125.84

1,000 719.67 32,184.86 180.63 1,920.00 1,268.00

Table 1: Timings for CavityCDT and Anglada’s gift-wrapping algorithm compiled by “gcc -O3” on a MacBook Pro with a 3.06

GHz Intel dual core, 8 GB memory (1.07 GHz DDR3 SDRAM), and a 6 MB level-two cache. Each number is an average over

10,000 runs with different jittering for each run.

to the distances between the vertices. Although these examples do not represent the variety of cavities

that can come up in practice, they are representative of the most common ways that the cavity geometry

influences the running times. Collinear points, which occur frequently in practice, bring out the worst of

gift-wrapping’s quadratic running time. Jittered vertices hide the quadratic growth until the number of

vertices is greater, because the gift-wrapping algorithm has more luck finding balanced subdivisions of

small recursive subproblems.

Table 1 tabulates average running times and numbers of predicate calls for the two algorithms. Calls

to Orient in Line 4 of CavityCDT are not counted because we optimized Line 4 by taking advantage

of subexpressions that are reused every time it iterates and by not using exact arithmetic. We optimized

Line 21 to reduce the number of Orient tests by taking advantage of the fact that if a call to InsertVertex

finds that its input triangle △uvw has positive orientation, all its recursive calls to InsertVertex will also

have positively oriented input triangles that do not require testing.

Given the cavities with collinear vertices as input, CavityCDT becomes faster than gift-wrapping for

30 vertices or more, and the advantage grows rapidly. Given the jittered cavities, CavityCDT is faster for

85 vertices or more. We observe that CavityCDT performs fewer InCircle calls on average for 8 or more

vertices. In a higher-precision implementation with expensive InCircle calls, the balance would shift further

in favor of CavityCDT.

Because both algorithms are easy to implement, a CDT construction program can choose between them

according to the cavity size. We grant that cavities of 85 vertices or more are a small minority of those that

arise in real-world CDT construction, but it would take just one segment that crosses 100,000 edges to make

one regret not having the linear-time algorithm as an option.
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6. The Cost of Randomized Incremental Segment Insertion

Agarwal, Arge, and Yi [1] show that when k segments are inserted into an n-vertex CDT in random order,

the total expected number of structural changes (triangles and edges created and deleted) is in O(n log2 k).

For completeness, we reprise their analysis, filling in many missing details. In Section 7, we exhibit a PSLG

for which this bound is tight. Thus, if an O(n log k)-time incremental segment insertion algorithm exists, it

will require a smarter insertion order, not just a better analysis.

Let X be a PSLG with n vertices and k segments. Let S be the set of segments in X. We use the theory

of ǫ-nets to bound the expected maximum number of segments in X that a line segment in the plane can

cross without crossing any segment in X that has already been inserted. Different line segments in the plane

can intersect different subsets of S , but unless k is small, not all 2k subsets are possible. The plane imposes

a structure such that the number of possible subsets is polynomial in k.

Lemma 6. Let S be a set of k non-crossing segments in the plane. Consider the sequence of segments in

S whose relative interiors intersect a fixed line, written in the order of the intersection points. Let Q be

the set of all such sequences, for all lines in the plane, with the proviso that a sequence and its reverse are

considered equivalent and are not counted as distinct members of Q. The cardinality of Q is at most 8k2+1.

Proof. We use the standard planar geometric duality by which a point p = (px, py) dualizes to a line p∗

with the formula y = pxx− py, and vice versa. Planar duality preserves incidences between points and lines,

so if a primal point p lies on a primal line ℓ, then the dual point ℓ∗ lies on the dual line p∗. Let U be the

set of vertices of the segments in S ; then |U | ≤ 2k. Vertical lines do not have duals in this formulation, so

assume without loss of generality that the coordinate system is rotated so that no two vertices in U have the

same x-coordinate. Hence, every vertical line can be tilted slightly so that it is not perfectly vertical but it

intersects the same segment interiors as before.

LetA be the arrangement (expressed as a polygonal complex) formed by the lines dual to the vertices in

U. The total number of faces of all dimensions inA—vertices, edges, and 2-faces—is at most 2(2k)2 + 1 =

8k2 + 1 [44]. If two primal lines ℓ1 and ℓ2 dualize to points in the same face ofA, it is possible to translate

and rotate ℓ1 to ℓ2 without causing it to pass over a vertex in U or change its incidences with the vertices

in U; it follows that ℓ1 and ℓ2 intersect the same segments in S in the same order. Therefore, for every

sequence of segments Q ∈ Q, there is a face ofA whose interior points all dualize to lines that generate the

sequence Q. It follows that the number of sequences in Q is less than or equal to the number of faces of

A.

Lemma 7. Let S be a set of k non-crossing segments in the plane. For every possible line segment e in

the plane, consider the subset of segments in S whose relative interiors intersect e. Let M be the set of

all such subsets, for all line segments in the plane. The cardinality of M is at most f (k), where f (k) =

k(k + 1)(8k2 + 1)/2 + 1.

Proof. The sequence of segments in S whose relative interiors intersect a line segment is an interval taken

from the sequence of segments whose relative interiors intersect a line. By Lemma 6, there are at most

8k2 + 1 such sequences, each having length at most k. A sequence of length k has k(k + 1)/2 nonempty

intervals. We add one for the empty set.

For our purposes, the exact bound given by Lemma 7 is not important; it suffices that the bound is

polynomial, rather than exponential, in k.

Next, we reprise a famous result of Haussler and Welzl [18] on ǫ-nets. Let S 1 and S 2 be two random

sequences obtained by taking i independent samples from S with replacement (hence segments may be
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repeated). For some ǫ ∈ (0, 1) and k = |S |, let E be the event that there exists a line segment e that does not

intersect any segment in S 1, but e intersects at least ǫk segments in S . If E does not occur, S 1 is said to be

an ǫ-net for S . We want to show that E is very unlikely when i is sufficiently large, thus S 1 is very likely to

be an ǫ-net. Let E+ be the event that there exists a line segment e that does not intersect any segment in S 1,

but intersects at least ǫk segments in S and at least ǫi− 1 segments in S 2. (Repeated segments in S 2 may be

counted multiple times.) The following lemma shows that event E usually entails event E+.

Lemma 8 (Adapted from Haussler and Welzl [18], Lemma 3.4). Pr[E] < 2 Pr[E+].

Proof. Suppose that event E occurs; then we will show that E+ also occurs with probability at least 1/2.

Event E implies that there exists a line segment e that intersects at least ǫk of the k segments in S . Let

γ be the number of segments in S 2 that e intersects; if γ ≥ ǫi − 1, then event E+ also occurs. Because

S 2 is chosen by randomly choosing i segments from S with replacement, γ is a binomial random variable

with expectation ǫi. Let η be the median value of γ—the lesser median if there are two medians. Kaas and

Buhrman [22] show that for any binomial distribution, ⌊ǫi⌋ ≤ η ≤ ⌈ǫi⌉. Therefore, the probability that event

E+ also occurs when E occurs is

Pr
[

γ ≥ ǫi − 1
] ≥ Pr

[

γ ≥ ⌊ǫi⌋] ≥ Pr
[

γ ≥ η] > 1/2.

Thus Pr[E+] = Pr[E]·Pr[E+|E] > Pr[E]/2.

Let E∗ be the event that there exists a line segment e that intersects no segment in S 1, but intersects at

least ǫi − 1 segments in S 2.

Lemma 9 (Adapted from Haussler and Welzl [18], Lemma 3.5). Pr[E+] ≤ Pr[E∗] ≤ f (2i) 21−ǫi, where

f ( j) = j( j + 1)(8 j2 + 1)/2 + 1.

Proof. The first inequality follows because event E+ implies event E∗. For the second inequality, imagine

sampling 2i segments from S with replacement to form a sequence S 12, then randomly choosing i of those

segments to form S 1; the remainder form S 2.

Let e be a fixed line segment in the plane, and let c be the number of segments that intersect e among

the 2i segments in S 12. The line segment e can trigger the event E∗ only if none of those c segments are

chosen for S 1, which happens with probability

(

2i − c

i

) /(

2i

i

)

=
i

2i
· i − 1

2i − 1
· · · i − c + 1

2i − c + 1
≤ 2−c.

Moreover, e can trigger E∗ only if c ≥ ǫi − 1, so the probability that e triggers E∗ is at most 21−ǫi. (The

magic of this upper bound is that it is independent of how many segments in S intersect e.)

Now, consider the probability that any line segment in the plane triggers E∗. By Lemma 7, there are at

most f (2i) subsets of S 12 that a line segment e can pick out. If two line segments intersect exactly the same

segments in S 12, then either both of them trigger E∗, or neither do. Therefore, the probability of event E∗ is

at most f (2i) 21−ǫi.

Let Π = 〈s1, s2, . . . , sk〉 be a permutation of the k segments in X, chosen uniformly at random from

the set of all such permutations. Let T0 be the Delaunay triangulation of the n vertices in X, ignoring the

segments. For i ∈ [0, k], let Ti be the CDT constructed by inserting the first i segments in Π.

A conflict is a segment-edge pair (s, e) consisting of an edge e ∈ Ti and a segment s ∈ X that crosses e.

When the segment si+1 is inserted into the triangulation Ti, it deletes every edge in Ti it conflicts with. An

edge e is said to have c conflicts if it crosses c segments in X.

18



v1

v2

v3

Figure 15: The pulling vertices v1, v2, and v3 conflict with one, two, and three segments (thick lines), respectively. The triangulation

(thin lines) connects the Θ(n) pushing vertices to v3 until a segment conceals it.

Theorem 10 (Agarwal, Arge, and Yi [1]). The expected number of edges deleted over the duration of the

randomized incremental segment insertion algorithm is in O(n log2 k).

Proof. By Lemmas 8 and 9, the probability Pr[E] that there exists a line segment that intersects at least ǫk

segments in X but intersects no segment among i segments sampled randomly from X with replacement

satisfies Pr[E] < 4 f (2i) 2−ǫi. This probability is not increased by sampling without replacement, as the

incremental algorithm does. Setting ǫ = (5 log2 k)/i yields Pr[E] < 4 f (2i)/k5 ∈ O(1/k). Therefore, the first

i randomly chosen segments are likely to be a (5 log2 k)/i-net for the segments in X.

Let e be an edge with c conflicts in the triangulation Ti. When a randomly chosen segment si+1 is

inserted, the probability that e is deleted is c/(k − i). The probability that there exists an edge with more

than (5k log2 k)/i conflicts is at most Pr[E]. As Ti has fewer than 3n edges, the expected number of edges

deleted over the duration of the algorithm is less than

3n + 3n

k−1
∑

i=1

(

5k log2 k

i(k − i)
+ Pr[E]

)

∈ O(n log2 k).

Therefore, the total expected cost of all calls to CavityCDT is in O(n log2 k). With the cost of con-

structing the initial Delaunay triangulation T0 and performing segment location for each segment prior to

inserting it (see Section 8), the incremental CDT construction algorithm runs in expectedO(n log n+n log2 k)

time.

7. A Lower Bound for Randomized Incremental Segment Insertion

There is a matching Ω(n log2 k) lower bound on the expected number of structural changes. To see this,

consider the PSLG in Figure 15, which is similar to an example Agarwal, Arge, and Yi [1] use to establish

an Ω(n log k) lower bound. The example uses two sequences of nearly cocircular vertices. On the bottom

half of the circle is a sequence of Θ(n) pushing vertices that lie precisely on the circle. On the top half is a

smaller sequence of m pulling vertices v1, v2, . . . , vm that are perturbed so they lie just inside the circle. Each

pulling vertex v j is concealed by j segments, all of whose endpoints lie outside the circle. The total number

of segments is k = m(m+ 1)/2. No segment conceals more than one pulling vertex. The pulling vertices are

placed so that edges of the CDT connect every pushing vertex to the pulling vertex with greatest index that

is not concealed, which we call the dominant pulling vertex. Every edge connecting a pushing vertex to a

pulling vertex v j has j conflicts. Say that v j is alive if no segment that conceals it has been inserted yet, and
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call the j segments that conceal v j its conflicts. When a newly inserted segment conflicts with the dominant

pulling vertex, Θ(n) edges are deleted and Θ(n) new edges are created adjoining the new dominant pulling

vertex.

We analyze the longevity of a pulling vertex vc with c conflicts with a method developed by Clarkson

[13]. After i segments have been inserted, the likelihood that vc is still alive is

Pr[vc alive] =

(

k − c

i

) /(

k

i

)

=
k − i

k
· k − i − 1

k − 1
· · · k − i − c + 1

k − c + 1

>

(

k − i − c

k − c

)c

.

Consider the (i + 1)th segment insertion for any

i ∈
[

αk ln k

m
,min

{

α

2
k1−2α ln k,

k

2
− m

}]

where α > 0 is a constant we will choose shortly. For every pulling vertex vc that has c ≤ (αk ln k)/i

conflicts, the range of i implies that c ≤ m and i ≤ k/2 − c, so

Pr[vc alive] >

(

k − i − c

k − c

)(αk ln k)/i

=

(

1 +
i

k − i − c

)−(αk ln k)/i

≥ e−(αk ln k)/(k−i−c) = k−αk/(k−i−c)

≥ k−2α.

The middle inequality follows because 1 + x ≤ ex for all x. Consider the (αk ln k)/(2i) vertices in the range

from v(αk ln k)/(2i) to v(αk ln k)/i. The probability that at least one of them is alive is

Pr[one of v(αk ln k)/(2i), . . . , v(αk ln k)/i alive] > 1 −
(

1 − k−2α
)(αk ln k)/(2i)

≥ 1 − e−(αk1−2α ln k)/(2i).

We assume that i ≤ α
2

k1−2α ln k, so with probability at least 1 − e−1 > 0.63 there is a live pulling vertex

with at least (αk ln k)/(2i) conflicts. Edges connect the live pulling vertex with the most conflicts to the

Θ(n) pushing vertices, and the (i + 1)th segment insertion deletes these edges with probability at least

(αk ln k)/(2i(k − i)). We choose α to be a positive constant less than 1/4. Therefore, the expected number

of edges deleted during the duration of the algorithm is at least

min{ α2 k1−2α ln k, k/2−m}
∑

i=(αk ln k)/m∈Θ(
√

k ln k)

0.63
αk ln k

2i(k − i)
Θ(n) = Θ(n log2 k).

The cogent observation is that there is a range of values for i spanning a factor of k0.5−2α in which the

dominant live vertex has many conflicts. Although this range is narrow (and hidden—it took us a long time

to realize it existed), it suffices to allow the summation
∑

1/i to contribute a Θ(log k) factor. In this range,

each doubling of i contributes Θ(n log k) structural changes, and i is doubled Θ(log k) times. Figure 16

depicts this idea visually.

Our lower bound example is related to the coupon collector’s problem. Imagine that the pulling vertices

represent a set of m types of coupons you wish to collect, and that when you buy a coupon (choose a random
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Figure 16: For each doubling of the number i of inserted segments from i = ln k to i = k, at most expected O(n log k) structural

changes occur, establishing the upper bound of O(n log2 k). For each doubling from i ∈ Θ(
√

k ln k) to i ∈ Θ(k1−2α ln k), at least

expected Ω(n log k) structural changes occur for the PSLG in Figure 15, establishing the lower bound of Ω(n log2 k).

segment), it is of type vi with some probability pi. Coupon collection can be modeled as a Poisson process;

the probability of collecting every coupon vi+1, vi+2, . . . , vm before collecting vi is [7]

Pr[vi after vi+1, . . . , vm] =

∫ ∞

0

pie
−pit

∏

j>i

(

1 − e−p jt
)

dt.

Our analysis is equivalent to asking, if pi = i/k where k =
∑m

i=1 i, how often do you collect a coupon for the

first time such that every coupon with greater index has already been collected? We have not been able to

find a published asymptotic bound in terms of m for this problem, but we have just shown that the expected

answer is in Θ(log2 k) = Θ(log2 m). For comparison, if every coupon arrives with equal probability, the

expected answer is in Θ(log m).

It is well known that the problem of sorting a set of numbers can be reduced to computing a triangulation

(Delaunay or not) of a point set, so every algorithm for computing a triangulation of n points takesΩ(n log n)

worst-case time in the decision tree model of computation. Therefore, CDT construction by uniformly

randomized incremental segment insertion takes expected Ω(n log n + n log2 k) time for worst-case PSLGs.

8. The Cost of Segment Location

Recall that for an uninserted segment s, segment location is the act of identifying a triangle in the current

CDT whose interior intersects s. We perform segment location with a simple rotary traversal of the triangles

adjoining the endpoint of s with lesser degree, taking time proportional to that endpoint’s degree. One way

to identify the endpoint of lesser degree is to record the vertex degrees and update them with every change

to the triangulation. A simpler alternative is to perform simultaneous rotary searches around both endpoints

of s, interleaving steps around one endpoint with steps around the other; a suitable triangle will be found in

time proportional to the lesser degree.

In practice, most segment location operations take O(1) time. But what if both endpoints of many

segments have large degrees? Here, we show that the total cost of this segment location method is at worst
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proportional to the number of vertices plus the number of structural changes that occur during segment

insertion. Therefore, segment location never worsens the asymptotic running time of incremental CDT

construction. This result holds regardless of the order in which the segments are inserted, and does not

depend upon randomization.

Consider incrementally constructing the CDT of a PSLG X with n vertices and k segments. Let l be

the total number of edges that are created during all the segment insertion operations, including edges that

are subsequently deleted. We have seen in Section 6 that in expectation, l ∈ O(n log2 k) when the segment

insertion order is randomized; but often l is much smaller.

Theorem 11. During incremental construction of the CDT of X (whether randomized or not), the total time

for segment location as described above is in O(n + l).

Proof. As segments are inserted into the CDT, the degrees of the vertices change. For i ∈ [0, k], let Ti be

the CDT after the first i segments have been inserted. For j ∈ [1, n], let d j be the maximum degree of the

vertex with index j over all the triangulations T0,T1, . . . ,Tk. It follows from Euler’s formula that the sum

of vertex degrees in T0 is at most 6n − 12, so
∑n

j=1 d j ≤ 6n + 2l − 12. The following argument shows that

all the segment location operations together take O(
∑n

j=1 d j) time, and therefore take O(n + l) time.

Suppose that we index the vertices in nonincreasing order of maximum degree, so that di ≥ d j whenever

i < j. (This indexing is not related to the insertion order!) The time to locate a segment s ∈ Xwhose vertices

are numbered i and j with i < j is at worst proportional to min{di, d j} = d j; call that number the cost of s.

For all i ∈ [3, n], let Xi ⊆ X be the PSLG induced by taking only the first i vertices in X and the segments

whose endpoints are both among the first i vertices. Let the cost of Xi be the total cost of all its segments.

Observe that the total time for segment location is proportional to the cost of X = Xn. We show that

this total is less than 3
∑n

j=1 d j. As X is planar, Xi has at most 3i − 6 edges as a consequence of Euler’s

formula. X3 has at most three edges (a triangle) with total cost at most d2 + 2d3. X4 has at most six edges,

but at most three of those are in X3; every edge in X4 but not in X3 has cost d4. Hence X4 has cost at most

d2 + 2d3 + 3d4. Similarly, X5 has at most nine edges. If X5 has edges not in X4, they cost d5 each, so X5

has cost at most d2 + 2d3 + 3d4 + 3d5. By inductive application of this reasoning, the cost of Xi is at most

d2 + 2d3 + 3
∑i

j=4 d j, and the cost of X is less than 3
∑n

j=1 d j.

9. Extensions to Three Dimensions

Incremental construction of constrained Delaunay triangulations generalizes to three or more dimen-

sions, albeit under limited circumstances. Not every polyhedron has a CDT—or even a tetrahedralization

[31, 30]—and not every CDT can be constructed incrementally. However, with the insertion of extra ver-

tices on its edges, every polyhedron can be converted into a structure that does have a CDT that can be

constructed incrementally [37, 42]. This fact is used by some algorithms for generating high-quality tetra-

hedral meshes [40, 41].

The natural analog of a PSLG in three dimensions is called a piecewise linear complex (PLC), intro-

duced by Miller et al. [28]. For our purposes, a three-dimensional PLC X is a set of vertices, segments,

and polygons (not necessarily convex) that obey certain rules characteristic of complexes; for example, the

boundary of every polygon in X must be a union of segments in X, the endpoints of every segment in X
must be vertices in X, and the intersection of any two elements of X must be a union of elements of X. See

elsewhere [9, 39] for a complete definition.

The segments and polygons in X constrain how X can be triangulated. For example, to support the

application of boundary conditions, a PLCXmay have vertices and segments floating in the relative interior

of a polygon, or vertices, segments, and polygons floating inside the convex hull of X; a triangulation of X
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Figure 17: The Delaunay triangulation on the left has n vertices and Θ(n2) tetrahedra. The insertion of a single square polygon

causes most of the tetrahedra to be deleted.

must respect these constraints. A triangulation of a PLC X is a simplicial complex T such that T contains

the same vertices as X, every segment in X is an edge in T , every polygon in X is a union of triangles

in T , and the union of simplices
⋃

s∈T s is the convex hull of the vertices in X. A constrained Delaunay

triangulation (CDT) of X is a triangulation of X in which every triangular face is either locally Delaunay or

included in a polygon in X. A CDT differs from an ordinary Delaunay triangulation in that a triangular face

that lies in a polygon is not required to be locally Delaunay.

A PLC X is said to be edge-protected if for each segment s ∈ X, there exists a closed ball whose

boundary passes through the endpoints of s, but the ball contains no other vertex in X. If X is edge-

protected, every Delaunay triangulation of the vertices in X contains every segment in X, but it does not

necessarily respect the polygons in X (and therefore it is not necessarily a triangulation of X). The CDT

Theorem [39] states that every edge-protected PLC has a CDT, which does respect the polygons.

An incremental polygon insertion algorithm of Shewchuk [38] constructs the CDT of an n-vertex, edge-

protected PLC by constructing a Delaunay triangulation of the vertices, then inserting the polygons one by

one in a manner that performs at most O(n2) structural changes. (The running time of the algorithm is in

O(n2 log n); the extra log n factor accounts for a priority queue that controls the order in which the structural

changes occur.) This number of structural changes is asymptotically worst-case optimal: Figure 17 depicts

a PLC for which the insertion of just one polygon causes Θ(n2) structural changes. Thus the question of the

number of structural changes during polygon insertion in worst-case PLCs is resolved, although the question

of time complexity is not; we hope that an O(n2)-time CDT construction algorithm will be discovered.

However, there are reasons to believe that CDT construction is faster for most PLCs that arise in practice.

It is well known that the construction of a Delaunay triangulation takesΩ(n2) time in the worst case, because

some Delaunay triangulations have Θ(n2) tetrahedra; but for many point sets, the randomized incremental

algorithm for constructing Delaunay triangulations runs in expected O(n log n) time and performs expected

O(n) structural changes. This circumstance occurs when the Delaunay triangulation has size O(n) and the

expected size of the Delaunay triangulation of a random subset of the input vertices is linear in the size of

the random subset [3]. Many real-world inputs have this property, which explains why three-dimensional

incremental Delaunay triangulators are observed to run quickly in practice on most inputs. Can a similar

statement be made about three-dimensional incremental CDT construction?

Here we show that, under assumptions that apply to many common real-world inputs, the expected num-

ber of structural changes required for randomized incremental construction of the CDT of an edge-protected
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PLC with n vertices, k segments, and m polygons is in O(n log k log m), matching the bound for CDT con-

struction in the plane. (Note that m ∈ O(k); see Lemma 12 below.) However, we do not know an algorithm

that inserts a polygon in time linear in the number of structural changes. Under somewhat stronger assump-

tions, Shewchuk’s CDT construction algorithm [38], randomized, runs in expected O(n log n log k log m)

time. Note that fast incremental polygon insertion also requires a fast polygon location algorithm, which

we describe in Section 10.

We begin with a useful lemma. A polygon can have arbitrarily many segments, and a segment can be

an edge of arbitrarily many polygons, but the number of polygons is limited by the number of segments.

Lemma 12. Let X be a PLC in R
3 with k > 0 segments and m polygons. Then m < 2k.

Proof. Imagine placing a sphere of infinitesimal radius around a vertex v ∈ X. The segments and polygons

adjoining v induce a planar graph on the sphere: each segment adjoining v pierces the sphere at a single

point, and each polygon adjoining v pierces the sphere in a circular arc adjoining two or more such points.

Define a graph by considering only the arcs subtending angles strictly less than 180◦ on the sphere; thus

there cannot be more than one arc adjoining any pair of points. If a polygon f ∈ X induces such an arc for

v, call v a convex corner of f . Each polygon has at least three convex corners, because every vertex of its

convex hull is a convex corner.

The number of arcs in a nonempty planar graph (with no pair of points connected by more than one arc

and no point connected to itself) is less than three times its number of points. By summing these numbers

over every vertex v ∈ X, we find that the number of convex corners in X is less than three times the number

of segment-vertex incidences in X. Therefore, the number of polygons in X is less than the number of

segment-vertex incidences, which is twice the number of segments.

Next, we ask how many different subsets of the PLC polygons can be stabbed by a line or a line segment.

Lemma 13. Let X be a PLC in R
3 with k segments and m polygons. Consider the sequence of polygons in

X whose relative interiors1 intersect a fixed line, written in the order of the intersection points, leaving out

polygons coplanar with the line. Let Q be the set of all such sequences, for all lines in R
3. The cardinality

of Q is in O(k4).

Proof. Imagine extending each segment in X to a line in R
3, and let L be the set of these lines. Observe

that |L| ≤ k. To any pair of lines (ℓ, ℓ′) in R
3, we assign a mutual orientation designated zero, positive,

or negative. If ℓ and ℓ′ are coplanar, their mutual orientation is zero. Otherwise, imagine each line as

a vector directed from lexicographically lesser to lexicographically greater coordinates. We say that the

mutual orientation of (ℓ, ℓ′) is positive if the cross product ℓ× ℓ′ points from ℓ to ℓ′, and negative otherwise.

We map each line ℓ ⊂ R
3 to a point in R

4 by taking the y- and z-coordinates where ℓ intersects the plane

x = 0 and concatenating the y- and z-coordinates where ℓ intersects the plane x = 1. (This map does not

take lines perpendicular to the x-axis, but we can account for those lines by repeating the argument with

the coordinate system rotated.) Consider a line ℓ that maps to a point (y, z, v,w) and a line ℓ′ that maps to a

point (y′, z′, v′,w′). The mutual orientation of the two lines is the sign of (y − y′)(w − w′) + (z − z′)(v − v′);
for example, ℓ and ℓ′ are coplanar if and only if this expression is zero.

1Rigorously speaking, “relative interior” is the wrong term here, because PLCs allow vertices and segments to float in the

relative interior of a polygon, and intersections of the fixed line with these vertices and segments should not count as intersections

with the polygon. Read “relative interior” as shorthand for “the polygon after removing all points in the PLC vertices and segments.”

With this adjustment, the polygons in a PLC truly have disjoint “relative interiors,” because the definition of PLC requires that if

two polygons intersect, their intersection is a union of PLC segments and vertices.
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If we treat (y, z, v,w) ∈ R
4 as a vector of independent variables and (y′, z′, v′,w′) as a constant, the

expression is a quadratic function from R
4 to R whose sign is the orientation of (ℓ, ℓ′) for a fixed ℓ′ and a

varying ℓ. The zero-surface of this function is the set of points in R
4 satisfying (y−y′)(w−w′)+(z−z′)(v−v′) =

0. Consider the arrangementA of surfaces in R
4 defined by overlaying these zero-surfaces for every ℓ′ ∈ L.

If two lines ℓ1 and ℓ2 map to points in the same face ofA, then it is possible to translate and rotate ℓ1 to ℓ2
without changing its orientation with respect to any line in L. It follows that ℓ1 and ℓ2 intersect the relative

interiors of the same polygons in X in the same order, possibly excepting polygons coplanar with both ℓ1
and ℓ2. The maximum number of faces in such an arrangement of zero-surfaces is in O(k4) [29, 2], and thus

the number of sequences in Q is also in O(k4).

Lemma 14. Let X be a PLC in R
3. Let P be a subset of the polygons in X. Let m be the number of

polygons in P, and let k be the number of segments of those polygons (i.e., segments in X included in at

least one polygon in P). Consider the subset of polygons in P whose relative interiors intersect a fixed line

segment, leaving out polygons coplanar with the line segment. Let M be the set of all such subsets, for all

line segments in R
3. The cardinality of M is in O(k4m2).

Proof. Follows from Lemma 13 by the same reasoning used to prove Lemma 7.

Let X be an edge-protected PLC. Let Π = 〈 f1, f2, . . . , fm〉 be a permutation of the m polygons in X,

chosen uniformly at random from the set of all such permutations. Let T0 be the Delaunay triangulation of

the n vertices in X, ignoring the polygons. Because X is edge-protected, T0 contains every segment in X.

For i ∈ [0,m], let Ti be the CDT constructed by inserting the first i polygons in Π.

A conflict is a polygon-edge pair ( f , e) consisting of an edge e ∈ Ti and a polygon f ∈ X whose relative

interior intersects the relative interior of e. When the polygon fi+1 is inserted into the triangulation Ti, it

deletes every edge in Ti it conflicts with. An edge e is said to have c conflicts if it crosses c polygons in X.

Theorem 15. In the randomized incremental polygon insertion algorithm, suppose that the expected num-

ber of tetrahedra in each intermediate triangulation T0, . . . ,Tm is in O(g(n)) for some function g(n). The

expected number of structural changes made over the duration of the algorithm is in O(g(n) log k log m).

Proof. Lemmas 8 and 9 extend to polygons in three dimensions, with the function f ( j) in Lemma 9 replaced

by another function satisfying f ( j) ∈ O(k4 j2) per Lemma 14. Thus, the probability Pr[E] that there exists a

line segment that intersects at least ǫm polygons in X but intersects no polygon among i ≤ m polygons sam-

pled randomly from X with replacement satisfies Pr[E] ∈ O(4k4(2i)2 2−ǫi). This probability is not increased

by sampling without replacement, as the incremental algorithm does. As i ≤ m < 2k by Lemma 12, setting

ǫ = (7 log2 k)/i yields Pr[E] ∈ O(1/k). Therefore, the first i randomly chosen polygons are likely to be a

(7 log2 k)/i-net for the polygons in X.

Let e be an edge with c conflicts in the triangulation Ti. When a randomly chosen polygon fi+1 is

inserted, the probability that e is deleted is c/(m − i). The probability that there exists an edge with more

than (7m log2 k)/i conflicts is at most Pr[E]. A tetrahedron is deleted only if one of its six edges is deleted.

By assumption, Ti has expected O(g(n)) tetrahedra, so the expected number of tetrahedra deleted over the

duration of the algorithm is in

O
















6 g(n)

m−1
∑

i=1

(

7m log2 k

i(m − i)
+ Pr[E]

)

















= O(g(n) log k log m).

The final triangulation Tm has expected O(g(n)) tetrahedra, so the expected number of tetrahedra created is

also in O(g(n) log k log m).
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Moreover, Shewchuk [38] shows that the total number of structural changes is in O(n2), regardless of

the polygon insertion order, so with a randomized insertion order the expected number of structural changes

is in

O(min{g(n) log k log m, n2}).
Unfortunately, there is no known algorithm that can retriangulate the cavities evacuated by the insertion

of a polygon in time linear in the number of structural changes. Shewchuk’s algorithm for polygon insertion,

which is based on bistellar flips, incurs two additional costs: anO(log n)-time cost per flip to perform priority

queue (binary heap) operations that ensure that flips occur in the correct order; and the fact that the number

of bistellar flips could far exceed the number of necessary structural changes because some tetrahedra are

created only to be immediately deleted again during a single polygon insertion operation, though the total

number of flips never exceeds O(n2). Experiments [43] suggest that it is uncommon for the number of

flips to exceed the number of deleted tetrahedra by more than a small constant, and our intuition is that

such circumstances are analogous to the circumstances in which a Delaunay triangulation has a superlinear

size—possible for inputs exhibiting a certain regular structure, but not the norm. For many, probably most,

PLCs that arise in practice, g(n) ∈ O(n), so we anticipate that randomized incremental polygon insertion

implemented with bistellar flips will often run in O(n log n log k log m) time in practice.

10. Polygon Location in Three-Dimensional CDTs

Just as segment location is the first step to inserting a segment into a planar CDT, the first step to

inserting a polygon f into a three-dimensional CDT is polygon location: the act of identifying a tetrahedron

in the current CDT whose interior intersects f .

We assume that every segment of f is an edge of the current triangulation (a safe assumption if the

underlying PLC is edge-protected). In analogy to vertex degrees, we define the degree of an edge in a

triangulation to be the number of tetrahedra that include the edge. Our polygon location method is to

perform a simple rotary traversal of the tetrahedra around the segment of f with least degree, taking time

proportional to that segment’s degree in the current triangulation.

To analyze segment insertion in the plane, in Section 8 we used the fact that after one triangle is found

whose interior intersects the new segment, the other conflicting triangles can be found by a depth-first

search in time linear in their number, and the cost of the search can be charged to the time spent deleting

those triangles. Unfortunately, this charging scheme does not suffice to analyze polygon insertion in three

dimensions, because a polygon might already be partially present in the CDT: the CDT may already contain

triangles that are subsets of the polygon, as well as edges coinciding with the polygon’s relative interior.

We can still use a careful depth-first search to find all the tetrahedra whose interiors intersect the new

polygon, but the cost of that search is proportional to the number of tetrahedra deleted plus the degrees of

the triangulation edges that are included in the new polygon but are not PLC segments (because it may be

necessary to search all the tetrahedra adjoining these edges). Fortunately, a triangulation edge that is not a

PLC segment can be included in only one PLC polygon.

Consider incrementally constructing the CDT of a PSLG X with k segments and m polygons. Let l be

the total number of distinct tetrahedra that exist in one or more of the triangulations T0, . . . ,Tm (i.e., the

tetrahedra in the initial Delaunay triangulation and the tetrahedra created during polygon insertion opera-

tions). The following theorem shows that the total cost of polygon location is dominated by the cost of

simply creating all those tetrahedra.

Theorem 16. During incremental construction of the CDT of X (whether randomized or not), the total time

for polygon location as described above is in O(l).
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Proof. The time to locate a polygon f ∈ X is at worst proportional to the number of segments of f (as we

must check the degree of each segment), which we call the first cost of f , plus the degree of its lowest-degree

segment, which we call the second cost of f , plus the number of tetrahedra deleted when f is inserted, which

we call the third cost of f , plus the sum of the degrees of any triangulation edges included in f that are not

segments, which we call the fourth cost of f .

The total first cost of all the polygons is equal to the number of polygon-segment incidences in X. Each

such incidence induces a distinct triangle-edge incidence in the final triangulation Tm. Tm has at most 12

triangle-edge incidences per tetrahedron, and there are at most l tetrahedra in Tm. Therefore, the total first

cost of all the polygons at most 12l.

The total third cost of all the polygons is at most l, because a tetrahedron must be created before it is

deleted, and a deleted tetrahedron is never created again.

Let E be the set containing every edge that exists in one or more of the triangulations T0, . . . ,Tm. For

e ∈ E, let de be the maximum degree of e over all the triangulations T0,T1, . . . ,Tm. Each tetrahedron has

six edges, so
∑

e∈E de ≤ 6l. Therefore, the total fourth cost of all the polygons at most 6l.

Suppose that the segments in X are all in E (a necessary condition for the algorithm to succeed). Order

the segments in X by their maximum degrees, from greatest to least. For all i ∈ [1, k], let Xi ⊆ X be the

PLC induced by taking all the vertices in X, the first i segments (with greatest maximum degrees), and

the polygons in X whose segments are all among those i segments. By Lemma 12, Xi has fewer than 2i

polygons. By a repetition of the same inductive reasoning employed in the proof of Theorem 11, the total

second cost of all the polygons is less than 2
∑

e∈E de ≤ 12l.

11. Conclusions and Open Problems

Although this article emphasizes the time complexity of randomized incremental segment insertion, we

draw some conclusions useful to programmers implementing CDT construction codes. First, when some

segments cross very large numbers of edges, a faster segment insertion algorithm can make enough of a

difference to justify its implementation. Second, there is a very simple segment location method that never

compromises incremental insertion’s asymptotic running time, with or without randomization. Third, it

might be worthwhile to randomize the order in which the segments are inserted; compare the expected

O(n log2 k) upper bound on the number of structural changes with the Θ(kn) structural changes that can

occur with a deterministic ordering. Fourth, the O(n log2 k) upper bound is almost always too pessimistic in

practice; circumstances in which this much work is required are difficult to devise and unlikely to occur in

the real world. Fifth, and most importantly, if incremental segment insertion is implemented intelligently,

it is fast enough; implementing a more complicated O(n log n)-time CDT construction algorithm is unlikely

to repay the effort.

Considering theΩ(n log2 k) lower bound on the expected number of structural changes that the random-

ized incremental segment insertion algorithm performs on some PSLGs, we wonder whether the algorithm

could be faster if the segments were inserted in a biased order. For example, it is possible to choose two

segments at random, determine which one crosses the fewest edges, and insert it in time proportional to the

number of edges it crosses—without taking the time to count all the edges the other segment crosses. Does

this procedure reduce the expected asymptotic number of structural changes?

Interestingly, the O(n log2 k) upper bound on the number of structural changes does not rely on the

constrained Delaunay property; the analysis applies however the cavities are retriangulated. Are there other

algorithms for computing optimal triangulations that can be sped up by randomized incremental segment

insertion?
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Finally, how quickly can an algorithm insert a polygon into a three-dimensional CDT? There is no

obvious reason to doubt that an algorithm exists that runs in expected time linear in the number of structural

changes, but neither is there an obvious reason to be confident that one exists.
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