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What is a Good Linear Finite Element?
Interpolation, Conditioning, Anisotropy, and Quality Measures



Mesh Generation and Error Analysis
Two Communities:

Mesh generation people:

Most don’t really
their own field!

Numerical analysts:

Know from experience small & large angles
are bad (and are faintly aware why).

Tend to derive asymptotic error bounds &
estimators (functional analysis, embedding theorems)−
not very useful to meshing people!

Meshing people can’t read functional
analysis anyway.

understand the goals of



Error Bounds & Quality Measures

The connections are still fuzzy.

My goals:

interpolation error
discretization error
matrix conditioning

Quality measures that can choose the better
of two elements of intermediate quality.

element stiffness matrix eigenvalues.

(Suitable for numerical optimization.)

Guide mesh generators to make good elements.

(Nearly) tight bounds on worst−case errors,

?element size
element shape

(Especially in anisotropic cases.)



max

Criterion

Interpolation error
|| f − g || 8

important.
Size important.

Size very important.
Shape only marginally

Large angles bad;
small okay.

Gradient interpolation error
|| || 8f −   g

Element stiffness matrix
maximum eigenvalue

Three Criteria for Linear Elements

Let be a function.f
Let g be a piecewise linear interpolant of

f over some triangulation.

f

g

large okay.
Small angles bad;
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f is bounded:

Main Assumption

t,
2
mc

where

r

is the radius of the
min−containment circle/sphere
of t. [Waldron 1998.]

Sharp for triangles, tetrahedra, higher dimensions...

Curvature of

Then over an element

|| f ’’( pd ) <

<

(second directional derivative along any direction

c

|| f − g || 8

)d



In mechanics, is the strains.

affects discretization error in FEM.

The Importance of Approximating Gradients Accurately

f

|| || 8f −   g



rin

Not asymptotically tight − overestimates
error for elements with small angles.

But nobody knows the constant!

^^
Approximation theory:  error bound proportional
to lmax / . inradius of element

maximum edge length of element

(See Johnson.)

Classical Error Bounds on Gradients

Functional analysis:  asymptotically tight error^

bound for triangles [Babuska and Aziz 1976].
And tetrahedra [Jamet 1976, Krízek 1992]?
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|| || 8f −   g

(Same assumption:  bounded curvature.)

Over a triangle t,

c
lmax lmed(lmin + 4 rin )

A

edge lengths inradius of

Area of t

Error Bound:  Gradients on Triangles

f

t

<

Bound tight within factor of 2.

4
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|| || 8f −   g

(Same assumption:  bounded curvature.)

Over a triangle t,

c
lmax lmed(lmin + 4 rin )

A

edge lengths inradius of

< c rcirc

Area of t Circumradius of t

Error Bound:  Gradients on Triangles

t

o
Angle near 180

f

t

<

Bound tight within factor of 2.

4
3

largelarge circumradius
error.
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|| || 8f −   g <
< < <

t,Over a tetrahedron

c
m =1
4

Am

Face areas of t

V
1

j j1 i 4 Ai +A lij

Volume of t

Edge lengths of t

6 jmax A li j=i ij

Error Bound:  Gradients on Tetrahedra



Bad

Good

Good and Bad Tetrahedra for Interpolation



Deriving the New Gradient Error Bounds

Choose a point p
Take Taylor expansion of

.

Eliminate f(p)−g(p) term from equations.
Set it to zero at element vertices ( equations).d+1

Curvature bounds yield naive bound on
|| f(p) −   g(p)

Start with standard approximation theory:

p

f−g about .p

Repeat for each point
in the triangle...

p
8|| .



rinlmax /

|| f(p) −   g(p) 8||

|| || 8f −   g

Deriving the New Gradient Error Bounds

Naive bound on
is

parabolic.  Worst point
p’

bound.

p’

bounded, so gradient of
Curvature of f is

But the naive error bound
is minimized at the incenter.

is bounded.
gives standard

p’



α = arcsin rcirc
c

.2
3

sin 2α medl ,
c2

Error Bound:  Triangle Normals on Surfaces

How much can triangle normalc

n
m

deviate from surface normal n?

Angle between m and n

α

(at any vertex) is at most

[Amenta, Choi, Dey, Leekha 2002.]

m

+ arcsin( ) + arcsin

Assumption:  spheres tangent to
surface with radius
enclose any portion of surface.

c do not



Delaunay Optimality

A set of vertices has many triangulations.

minimizes the largest mcr .

In two dimensions, the Delaunay triangulation
minimizes the largest rcirc.

In any dimensionality, the Delaunay triangulation

A domain has many triangulations that
respect its boundaries.  Among these,
the constrained Delaunay triangulation
is optimal.



Conditioning of Global Stiffness Matrix

2D:  Independent of element size.
3D:  Largest element usually dominates.

:min

Directly proportional to areas/volumes
of elements.
Somewhere between smallest and
largest elements (times a constant).

Depends on shape of element(s).

Relatively independent of shape.

max : Dominated by the single worst element.
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(for Poisson’s Equation)

of Element Stiffness Matrix
Conditioning:  Maximum Eigenvalue

max =
2+ ++

A8

Area of t

edge lengths

( )l1 + l3+ l2
2 2 2 2 − 48 2A

Maximum eigenvalue
is a quality measure that
prefers equilateral triangles.

Small angles are deleterious.
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Maximum Eigenvalue in 3D
(for Poisson’s Equation)

Dihedral angles, not planar
angles, are related to quality.

both small and large dihedral
angles hurt conditioning...

Eigenvalue for tetrahedron requires solving
a cubic equation.
Eigenvalue smallest for equilateral tetrahedra.

It’s a ‘‘well−known fact’’ that



WRONG!!!
Surprise #1

A tetrahedron can have a dihedral angle arbitrarily

Such a tetrahedron does not hurt conditioning at all!
close to 180° with no dihedral smaller than 60°.



Bad

Good

Good and Bad Tetrahedra for Conditioning



0 0.2 0.4 0.6 0.8 1 1.2
x

0.2

0.4

0.6

0.8

1

1.2

1.4

y

0 0.2 0.4 0.6 0.8 1 1.2
x

0.2

0.4

0.6

0.8

1

1.2

1.4

z

|| || 8f −   gtriangles tetrahedra

Reciprocal of interpolation error or max eigenvalue.
Behave well as objective functions for mesh smoothing
by numerical optimization.

Used to evaluate & choose elements.

Quality Measures
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ideal

...measure how effective an element’s shape is for
a fixed amount of area.

|| || 8f −   g

ideal

Scale−Invariant Quality Measures

okay



Scale−invariant quality measures:

Popular in mesh generation because they’re
easy to understand.

Two Types of Quality Measures

Incorporate the effects of shape and size
in one number.

Size−and−shape measures & error bounds:

What I advocate for most purposes.

Require more understanding of application.

Separate the effects of shape from the
effects of size.



Interpolation/discretization error and
(in 3D) conditioning depend on element size too!

interpolated gradients suggests ‘‘minimize large
angles.’’  But size−and−shape measure says
‘‘minimize circumradii’’ Delaunay.

Example:  2D scale−invariant measure for

Why Scale−Invariant Measures are Misleading

It’s okay (usually) for smaller elements to be worse
shaped than big ones.  Smoothing, cleanup,
Delaunay refinement should take this into account.



|| f − g || 8 || || 8f −   g

Uses of Error Bounds & Quality Measures

Mesh refinement: Refine element if either
or is too large.  Use

Mesh smoothing:

Smoother, slightly weaker measures available.

Topological mesh improvement:

Quality measures are designed
for numerical optimization of vertex positions.

Vertex placement in advancing front meshing.

Delaunay refinement if conditioning/shape bad.

measures plus refinement bound to judge elements.
Use quality



|| f − g || 8

Anisotropy and Interpolation Error

f

g

= Hessian of

You can judge the error of an element
by judging

E

H

Et
t

by isotropic error bounds/measures.

Let = with symmetric pos−def.EHEf.
2



|| || 8f −   g

Large angles are fine if aligned correctly and not
too large.

A good element
is one for which

Anisotropy and Gradient Interpolation

f

g

But...

for controlling
Et
t

E

has no large angle.



But no large angles allowed for these extra−long
ones.  And they must be very precisely aligned.

f

g

Longer, thinner elements than expected sometimes

Surprise #2:  Superaccurate Gradients

give the best accuracy!  (For a fixed # of elements.)



vmax
vmin

f−g

f−g

f−g

Superaccurate Gradients



Ideal element for stiffness matrix depends on anisotropy
of the PDE, not the solution.

−

Anisotropy and Conditioning

Large and small angles are fine if
isotropic standards.

looks good by

Equilateral elements can be quite bad for conditioning.

=

· B f

F B
F−12

= 0

Ft



Interpolation and conditioning don’t always

Superaccuracy implies that discretization
error sometimes disagrees with both
interpolation and conditioning!

Surprise #3:  Anisotropy Blues

Interpolation/discretization error can always
be improved by refining.  Conditioning cannot.

With finite elements, always choose
small discretization error over interpolation.

Advice:

agree on the ideal aspect ratio or orientation!



What about quadratic triangles and tetrahedra?

What about bilinear quads and trilinear hexes?

Concluding Questions

2What if the curvature bound is in the L  norm?


