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1. INTRODUCTION
Advances in sensor technology support the collection of data

sets far larger than the memory capacity of a personal computer.
For example, the North Carolina Floodplain Mapping project1 has
used LIDAR (airborne laser) to capture elevation to assess flood
risks, set insurance premiums, and create disaster plans for the en-
tire state. The bare-earth data for the Neuse River Basin shown in
the accompanying video consists of over 500 million points, total-
ing 12 GB.

Many approaches are taken to develop algorithms to process
such large data sets. Practitioners may simply divide and conquer:
partition the problem into smaller pieces, then find a way to merge
the solutions. Theoreticians develop I/O-efficient algorithms [8, 1]
to minimize the cost of reading from and writing to disk, or cache-
efficient algorithms [6] to minimize the cost of memory accesses in
a hierarchical memory model.

We advocatestreaming: making a small number of sequential
passes over a data file (ideally, one pass) and processing the data
using a memory buffer whose size depends upon the amount ofspa-
tial coherencein the data and the algorithm. Thus, we use data for-
mats that document spatial coherence, and algorithms that exploit
it, described in the next section. With them, we compute a billion-
triangle terrain representation for the Neuse River Basin from 12
GB of LIDAR data in an hour using less than 100 MB of memory
on a laptop [5]. The output can stream to further processing, such
as constructing contour or raster digital elevation maps.

2. STREAMING AND FINALIZATION
Streaming formats seek to present data in an order that supports

processing as the data arrives. In familiar streaming formats for

1http://www.ncfloodmaps.com
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audio and video, decompression and filtering operations buffer data
in a sliding window whose size is chosen so that each operation has
all the local information that it needs. This allows data to stream
out as fast as it streams in, with only a little latency.

For point clouds and triangle meshes, many operations depend
only on data in a local neighborhood. Unfortunately, for most op-
erations, there is no stream order for which a small sliding window
always contains all the neighbor information needed. So we add
explicit “finalization tags” to our input and output streams; these
tags tell a streaming algorithm which geometric entities will not be
addressed by the stream again. This peek into the future of a stream
can help an algorithm to keep its memory footprint small.

Isenburg and Lindstrom [4] describe a streaming format for poly-
gon meshes that is an intermixed stream of vertex coordinates, poly-
gons that reference vertices that have already appeared in the stream,
andvertex finalization tagsthat indicate when all the polygons ref-
erencing a vertex have already appeared. Finalization of vertexv
tells the application that it can complete all computations that were
waiting for v’s topology, output partial results, and safely free any
data structures that are no longer needed.

To support smoothing and normal estimation for streaming points
scanned from 3D surfaces, Pajarola [7] suggests finalizing a point
after its k nearest neighbors have arrived. He initially sorts the
points into a spatial total order that allows him to determine when
a point can be finalized.

To support Delaunay triangulation for streaming points without
full sorting, we definespatial finalizationfor point streams [5]: we
partition space into regions, and each region is finalized by aspa-
tial finalization tagafter the last point in the region appears in the
stream. In this video, we focus on 2D point streams. Thewidth of
a stream is the maximum number of points that appear at any one
time in regions that are not yet finalized. The width determines the
maximum number of points that must be buffered simultaneously.

Ideally, spatial finalization tags are already present in the input to
a process, but if not, they can be added with two read passes over
the input points. The first pass simply determines the bounding
box, which we partition into regions with a quadtree. The second
pass counts how many points fall into each leaf quadrant. It can
also sample a point from each quadrant to help construct a biased
randomized insertion order (BRIO) [2]. A third pass, knowing the
counts, can produce a stream with a finalization tag whenever the
last point of a quadrant appears in the stream.

If the input is not spatially coherent, then we must use a spatial
sort to increase coherence and decrease stream width. However,
we have observed that huge real-world data sets already have a lot



Figure 1: Spatially finalized points stream out of spfinalize into spdelaunay, which produces a Delaunay triangulation in a
streaming mesh format [5]. This TIN, or triangulated terrain model, can be piped to further processing:smsmooth smoothes TINz-
coordinates, thensmsimp simplifies the TIN to a smaller size, thentin2iso extracts specified isocontours as a streaming line format.
slclean removes short polylines and streams the result to a viewer that can visualize output while input is still being read.

of spatial coherence. (This is not surprising, since otherwise the
programs creating them would have been bogged down by thrash-
ing.) We can improve coherence and decrease stream width by
chunking—reordering buffered points so all the points in a quad-
rant appear consecutively. Then, within each quadrant we apply the
biased random sampling (BRIO) of Amenta et al. [2] to avert the
worst-case behavior of incremental Delaunay triangulation. These
techniques allow us to run our algorithm without needing a full ini-
tial sort.

3. STREAMING TRIANGULATION
We modified an incremental Delaunay triangulator to use final-

ization tags. We maintain two data structures that can be seen in the
accompanying video: the triangulation, and a dynamic quadtree
that tracks which quadrants have been finalized, and makes cir-
cumcircles wait on unfinalized quadrants that they intersect. When
spdelaunay2d reads a pointp, it insertsp into the Delaunay trian-
gulation. When it reads a finalization tag, it notes the finalized cell
in the quadtree, and for any circumcircles for which it cannot find
an intersecting unfinalized cell, it writes the associated triangles to
the output stream, and frees memory.

Our pipeline, illustrated on the left side of Figure 1, uses two
simultaneously running processes to triangulate the Neuse River
Basin in 61 minutes and 100 MB of memory. Thefinalizer reads
a 12 GB stream of raw points three times from disk; as mentioned
above, the first two passes may be omitted if the bounding box
and grid cell counts are already available. During the third pass it
inserts finalization tags, chunks the points to improve width, sam-
ples with a BRIO, and streams its output to the triangulator, which
writes a 24 GB mesh to the disk. No intermediate information is
stored on disk. The finalizer occupies 50–60 MB of memory (used
mainly to buffer points while reordering), while the triangulator
occupies 23 MB—less than 0.1% of the size of the mesh. If the
triangulator can read an already-finalized point stream from disk,
then it uses only the 23 MB and runs in 49 minutes.

Since the output is a streaming triangulation, it may be piped to
other applications, such as the smoothing, simplification, contour
extraction, and visualization depicted in Figure 1. Because each of
the processes after the finalizer makes a single streaming pass over
the data, the isocontours begin to appear while the finalizer is still
reading input. The accompanying video is captured from a demo is
available athttp://www.cs.unc.edu/˜isenburg/sd.
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