A Bézier-Based Approach to Unstructured Moving Meshes

Cardoze D., Cunha A., Miller G., Phillips T., and Walkington N.

Hagen Wille CS 294-1: Meshing and Triangulation

May 7th, 2008

Simulation of fluid particle flows by **Bertrand Maury** www.math.u-psud.fr/~maury

Simulation of fluid particle flows by **Bertrand Maury** www.math.u-psud.fr/~maury

2

Outline

1.Bézier-based mesh

2. Mesh modification operation and improvement methods

3. Quality measurement of curved elements

4. Simulation results

Bézier-based Mesh

Bézier element

Bézier element with control triangles

Bézier mesh

curved mesh control mesh logical mesh

B-splines on mesh boundary

Quadratic B-spline with its control polygon

Mesh Modification Operation and Improvement Methods

Edge flipping

curved mesh single edge flip control mesh four edges in flipping involved

13

Vertex insertion Utilizing isoparametric concept

reference element (unit right triangle)

Bézier element

Vertex removal operating in logical mesh

Mesh refinement operating in logical mesh

Enforce *Delaunay* property with edge flip

Adapt *Ruppert's* algorithm for refining curved elements which are too large or have a "bad" logical triangle (poor aspect ratio)

Mesh refinement Changes of *Ruppert's* algorithm for curved elements

Mesh Coarsening

Utilizing function-based coarsening paradigm of *Talmor et al* (Lecture 21)

Adaptation necessary for boundaries that must be maintained – *Douglas-Peucker* algorithm

Incremental removal of vertices to preserve Delaunay property

Edge smoothing

Quality Management of Curved Elements

Metric for Bézier elements measuring the ,curvature'

k ... element being considered A_k ... area of curved element J ... Jacobian of the geometric mapping $\chi(\xi)$

Optimizing control point position

 $\max \min\{q_i(x)\}$ $x \in K$ $i \in M$

- M ... index set of triangles incident to control point
- *x* ... control point location
- $q_i \dots$ quality value of triangle *i* in *M*

Local maxima of $\min_{i \in M} \{q_i(x)\}$

Simulation results

Simulation cycle

Generate initial mesh; repeat{

> compute velocity field with FEA; push mesh forward;

improve mesh:

- 1.Enforce Delaunay property
- 2.Refine
- 3.Coarsen
- 4.Smooth

Single (blood) cell in tube

Cells with different viscosity

Cell pushed through orifice

Cell pushed through orifice

Hagen Wille Bézier-based moving meshes

29

A Bézier-Based Approach to Unstructured Moving Meshes

Cardoze D., Cunha A., Miller G., Phillips T., and Walkington N.