CleanUp: Improving Quadrilateral Finite Element Meshes

Paul Kinney

Presentation by

James F. Hamlin

April 23, 2008

Philosophy

Quadrilateral Mesh Improvement

Permanent nodes and edges cannot be changed.

May modify connectivity and insert/remove interior nodes as required.

Mesh Improvement Goals

A square is the ideal element.

Thus:

- Minimize "skew": |angle 90°|
- Minimize aspect ratio: ||longest edge|| ||shortest edge||

Also:

Keep bad elements away from the boundary.

Kinney's CleanUp

Largely heuristic

- Find bad mesh configurations
- Map to improved configurations
- Apply improvements ad nauseum

Node Valence

A node's **valence** is the number of edges that adjoin it. A node is **regular** if its valence is 4. Otherwise, it is **irregular**.

red points denote

Valence and avg. angle:

2: 180°

3: 120°

4: 90°

5: 72°

6: 60°

Boundary Node Valence

Imagine that an ideal mesh extends beyond the boundary.

Valence Patterns

For each interior node c with valence V, we consider the 2V nodes in its link n0, ..., n(2V-1) oriented counterclockwise around it.

<u>n0..n(2V-1)</u>

c's neighboring nodes

e0..e(V-1)

c's neighboring edges

Valence Patterns

Match the valences of c and its neighbors to a

known pattern.

Neighbor node valences.

4+/-: 4 or more/less

5: 5 or more

0: don't care.

Cleanup Operations

Standard Mesh Patterns

Opposite sides of mesh (top/bottom, left/right) have the same number of edges

Standard Mesh Patterns

If we must have irregular nodes, it is because there is some transition across the mesh.

One pair of opposite sides of mesh differ by 2.

Standard Mesh Patterns

Both pairs of opposite sides of mesh differ by 1.

Connectivity Cleanup

Put together (by hand) a mapping:

Local situations in the mesh

Better local situations in the mesh

5 - 3443000000

Connectivity Cleanup Operators

 CleanUp recognizes 64 different connectivity patterns, mapping to 27 different actions.

Here are a few...

Switch Diagnoal

Element Open

Complete Remeshing

- Valence patterns are used to detect some of the improvable situations in the mesh.
 - Unlike before, valence patterns may not be oriented arbitrarily.
- Additional goal: Move irregular nodes away from the boundary.

There are more than 12 boundary-specific connectivity cleanup cases. Here's one:

Boundary "diamonds" mean the boundary node's degree is too large.

But some boundary diamonds should not be collapsed. The angle θ could become arbitrarily close to 180.

Shape Cleanup

- Shape cleanup targets angles > 160°.
- Remove chevrons (arrowheads) and bowties.
- Important: smooth before and after each shape cleanup operation

Eliminating Large Angles

Large angles are removed by combining neighbors and remeshing.

Chevrons and Bowties

Size Cleanup

- Bring edge lengths closer to some desired size.
- Edge lengths provided by background function.

Edge Length Operations

Where edge is >2.5x goal size, combine with neighbor.

Either:

Edge rotation (top).

Three smaller quads (bottom).

Edge Length Operations

Termination

- Because cleanup stages have different goals, the mesh may oscillate and the program will continue finding work to do.
- The author suggests 3 iterations of the cleanup operations before termination.

Results

Avg. Skew: 27°

Irregular Nodes: 42

4 quads w/ 3 collinear nodes

1 6-valent node

Avg. Skew: 23°

Irregular Nodes: 28

0 quads w/ 3 collinear nodes

0 6-valent nodes

Questions?

?