
���������
	���
�	�������������������� �!�#"$�%�&
'�!�(�)"*�,+

Scott Schaefer, Joe Warren
Rice University -

.0/2143658729:3

This paper provides several contributions related to dual contour-
ing implicit data including solving rank deficient QEF’s, reducing
memory requirements, and performing fast polygon updates during
CSG. First, we describe our method for solving QEF’s and pro-
vide a method using mass points that improves vertex placement
in the rank deficient case. This improvement leads to a technique
for handling vertex placement in the presence of non-manifold sign
configurations. Next, we provide a method for reducing the space
requirements for storing the implicit data needed to generate the
contour. Finally, we describe our method for storing the geometry
data in a format suitable for fast display on modern graphics hard-
ware as well as techniques updating the data-structure in constant
time during CSG operations.

CR Categories: I.3.5 [Computation Geometry and Object Model-
ing]: CSG—Curve, surface, solid and object representations

Keywords: implicit functions, contouring, crack prevention,
quadratic error functions, polyhedral simplification

; <>= 365@?&A*B�9:3%CD? =

One technique for representing surfaces is implicit modeling. In
this paradigm the surface is modeled as the zero contour of a 3D
function. This function is typically represented using a 3D grid of
data where the function is sampled at the vertices of the grid. In
practice these grids of data arise in a variety of applications such as
medical imaging and visualizing geological data.

There are several methods capable of extracting surfaces from
these grids of data; however, one of the most well-known is the
Marching Cubes algorithm of Lorenson and Cline [Lorenson and
Cline 1987]. The algorithm proceeds as follows: for each edge in
the grid that contains a sign change (i.e.; the vertices on its end-
points are of different sign), place a vertex on that edge where the
contour intersects it. Marching Cubes then provides a table that
stores the triangulation of the vertices on the edges of the grid and
is indexed by the eight signs at the corners of a cube. For each cube
in the grid, look up its sign configuration in the table and generate
polygons according to the triangulation stored there. Notice that
this method produces vertices that lie on the edges of the grid and
polygons are produced internal to the cubes in the grid. We call
these methods primal methods.
E
e-mail: F sschaefe,jwarren G @rice.edu

Figure 1: A sphere contoured using Marching Cubes (left) and Dual
Contouring (right).

Dual methods [Gibson 1998; Perry and Frisken 2001] take a dif-
ferent approach to contouring producing vertices on the surface in-
terior to each of the cubes in the grid and polygons dual to edges
of the grid. SurfaceNets [Gibson 1998] is an example of a dual
method. For each cube that contains a sign change, a vertex is gen-
erated at the centroid of the intersection points on the edges that
would have been generated by Marching Cubes. Then, for each
edge in the grid that exhibits a sign change, a polygon is produced
connecting the vertices of the four cubes containing that edge. We
call this a dual approach to contouring because for each vertex gen-
erated by this method, Marching Cubes generates a polygon; and
for each vertex produced by Marching Cubes, this method gener-
ates a polygon. Therefore, the polygonal contours created are dual
to each other.

Dual techniques introduce a number of advantages over tradi-
tional primal methods. Because vertices are placed interior to cubes
and not on the edges of the grid, there is more freedom in the posi-
tioning of those vertices. Dual techniques also produce polygons of
more uniform size than primal methods, which can sometimes gen-
erate very small polygons depending on how the contour intersects
the grid. Also, primal methods generate a noticeable gridding effect
in the surfaces because the edges of the polygons are constrained to
lie along the grid planes as seen in figure 1.

In Siggraph 2002, the authors of this paper introduced a new
technique that took a dual approach to contouring as well [Ju et al.
2002]. Entitled “Dual Contouring,” this method provided several
advantages over traditional contouring methods. First, the grid of
data was represented as a signed octree similar to Adaptive Dis-
tance Fields [Frisken et al. 2000; Perry and Frisken 2001], which re-
sulted in substantially reduced memory requirements. Second, the
method augmented the data representation with hermite data (ex-
act intersection points and normals) as was done in [Kobbelt et al.
2001] to reproduce sharp features such as edges and corners accu-
rately (see figure 2). From this hermite data, quadratic error func-
tions (QEF’s) were generated for each cube in the octree, which
enabled the method to collapse the polygonal models upward in a
Lindstrom-like [Lindstrom 2000] manner to reduce the number of
polygons present. The authors then provided a recursive method for
generating a closed contour for an unrestricted, signed octree.

Figure 2: Reporduction of sharp features. A mechanical part (left)
and its dual contour (right).

This paper expands on the techniques presented in the original
Dual Contouring paper [Ju et al. 2002]. Due to lack of space, not
all of the details could be written in the original paper on Dual Con-
touring. Specifically, we concentrate on details important from an
implementation perspective. First, we discuss our implementation
of QEF’s and describe how the rank deficient case is detected and
solved. This method then leads to a solution for positioning ver-
tices in the presence of non-manifold geometry. Next, we discuss
space considerations including a description of the data-structures
used to reduce the memory requirements of our method. Finally,
we end with a technique for polygon insertion and deletion during
CSG operations that is performed in constant time and generates
a data-structure suitable for fast display on modern graphics hard-
ware.

� � B272A*587 3%C 9��#5 5@? 5�� B = 9:3%CD? = 1
Dual Contouring utilizes the hermite data on the edges with a sign
change to position vertices inside of cubes. Each piece of hermite
data is the equation for the tangent plane of the surface where the
surface crosses that edge and is represented as an exact intersection
point, pi, and a normal, ni. The method places a vertex inside of
each cube containing a sign change at the solution to equation 1 that
minimizes E � x � . This equation can also be represented in matrix
form as the least squares solution to Ax � B where A is a n 	 3
matrix whose rows are ni and B is a n 	 1 matrix whose entries are
ni
 pi. Notice that this error function is quadratic in terms of the
variable x and, hence, the name QEF.

E � x ��� ∑
i

�
ni
 � x
 pi ��� 2 (1)

In practice, the error function, E � x � , is not represented as a list
of plane equations because the space required to store this function
is linear in the number of planes. Garland [Garland and Heckbert
1997] popularized a technique for mesh simplification that stored
this error function using a normal equation form, which resulted
in constant space usage. In this representation, the only matrices

stored are AT A, AT B, and BT B. Using the matrix form for equa-
tion 1, E � x � can be written as

�
Ax
 B � T � Ax
 B � , which is then

expanded into the form

E � x ��� xT AT Ax
 2xT AT B � BT B (2)

where AT A is a symmetric 3 	 3 matrix, AT B is a 3 	 1 matrix, and
BT B is a single scalar. Therefore, only 10 quantities need to be
stored in order to represent the error function, E � x � . This represen-
tation also has the advantage that merging two QEF’s together is
just a matter of adding the respective entries of the three separate
matrices and uses only a constant amount of space.

One disadvantage that the representation in equation 2 has is that
it is numerically unstable. Forming the matrix AT A squares the
condition number (a quantity measuring the numerical stability) of
the matrix. Therefore, this form of the error function exhibits poor
accuracy when evaluating E � x � .

Dual Contouring introduced a new, numerically stable method
for the QEF based on the QR decomposition of a matrix. This
method computes an orthogonal matrix Q as a sequence of Givens
rotations such that the product of Q and

�
A B � is of the form������

�
x x x x
0 x x x
0 0 x x
0 0 0 x
0 0 0 0�����������������������

�������
� �

��
� Â B̂

0 r
0 0�����������

� �
� (3)

where Â is an upper triangular 3 	 3 matrix. Solving the new set of
equations Âx � B̂ yields the same solution as equation 2. This tech-
nique also has the advantage that evaluating E � x ��� � Âx
 B̂ � T � Âx

B̂ � � r2 is much more numerically stable. However, this stability is
not free. While merging two QEF’s using the normal equations
takes only 10 operations, merging two QEF’s using the QR repre-
sentation takes approximately 150 operations.

���! "$#&% ')(+*),.-0/214365
There have been many different methods proposed for solving
QEF’s [Lindstrom 2000; Lindstrom and Silva 2001; Kobbelt et al.
2001; Garland and Heckbert 1997]. The majority of these methods
rely on using the pseudoinverse of the matrix AT A, which finds the
solution x with minimal L2 norm. The pseudoinverse, M 7 , of a ma-
trix M has the property that the L2 norm of the matrix MM 78
 I is
minimized. This pseudoinverse is defined for any matrix and, for a
matrix of full rank, the pseudoinverse of M is M 9 1.

Typically, the pseudoinverse is calculated using the SVD decom-
position of the matrix. The singular value decomposition of a ma-
trix, M, results in three matrices of the form M � UT DV where U
and V are orthogonal matrices and D is a diagonal matrix. The el-
ements in the diagonal of D, si, are called the singular values of
the matrix M. The SVD is particularly simple to calculate when
the matrix is of the form AT A because U � V and the rows of U
are the eigenvectors of AT A and the singular values in D are the
eigenvalues of AT A.

Since U and V are orthogonal matrices, the inverse of M is then
M 9 1 � V T D 9 1U . However, when M is rank deficient, some of
the singular values will be 0 and D 9 1 cannot be explicitly formed.
Because D is a diagonal matrix, D 9 1 is also diagonal with each
entry in its diagonal as 1

si
. However if a singular value, si, in D is 0

or close to 0, 1
si

results in a large, if not infinite, value in D 9 1. In this
situation the pseudoinverse performs a method for rank detection.
For each entry in D, if the ratio of that singular value, si, to the
maximum singular value, smax, is less than some constant, then the
value in D 9 1 is truncated to 0; otherwise, it is 1

si
.

Figure 3: Minimizing towards center of square (left). Mass point
approach (right).

In Dual Contouring, we solve for the minimizer of the QEF in
several steps. We form the QEF by first initializing a 4x4 matrix
to 0. Then, for each edge in a cube that contains a sign change,
we append the plane equation described by the hermite data on that
edge to the bottom of the matrix and perform Given’s rotations on
this 5x4 matrix to bring it into upper triangular form. Notice that
the orthogonal matrix Q is never explicitly formed during this pro-
cedure.

To solve the QEF for the minimizer, we extract the three sub-
matrices Â, B̂, and r. Next we form AT A � ÂT Â and compute
the SVD of that matrix. As noted above, finding the SVD only
requires that we compute the eigenvalues and eigenvectors of the
matrix AT A. When computing the pseudoinverse, AT A 7 , we use
a different method of truncation on the singular values. Instead of
truncating based on the relative magnitude of the value to the largest
singular value, we truncate based on the absolute magnitude of that
singular value.

Truncation based on the absolute magnitude of the singular val-
ues is not typically done. However, we use normalized vectors
in the hermite as opposed to area weighted normals. Several pa-
pers [Hoppe 1999] have shown area weighted normals to give su-
perior results in terms of polygons simplification. In Dual Con-
touring the normals are associated with edges in the grid and only
give an indication of the polygon that intersects that edge and pro-
vides no information about the surface contained within the adja-
cent grid squares. Therefore, we felt that the benefits achieved by
area weighted normals in polygon simplification would not trans-
late into implicit modeling. In fact, we found that using area
weighted normals occasionally produced artifacts where features
were lost due to incorrect truncation of singular values. By using
normalized vectors, the extracted singular values will be propor-
tional to the number of vectors that align in the direction of the
corresponding eigenvectors. Therefore, truncating singular values
at an absolute magnitude of � 1 gives a very robust method of detect-
ing noise present in the data.

One problem that using the pseudoinverse introduces is that it
finds the point on the solution space with minimal L2 norm, which
means the closest point to the origin. When the system of equations
is underdetermined (as is the case in a flat area or along an edge),
then the answer produced can be located far from the cube that gen-
erated it. Kobbelt [Kobbelt et al. 2001] and Lindstrom [Lindstrom
2000] combat this problem by translating the center of the cube that
generated the QEF to the origin, solving the equations, and then in-
verting the translation. This process effectively finds the solution
with minimal distance to the center of the cube.

Ideally, whatever point on the solution space is chosen, it should
have the property that if the solution space intersects the cube that
generated the QEF, then the point should lie inside of that cube.
Figure 3 (left) illustrates a 2D case where this property does not
hold. Here the line that intersects the square represents the solution

Figure 4: Mass points without feature dimension (upper left). Min-
imized vertices using QEF’s without mass point feature dimension
(upper right). Mass points using feature dimension (lower left).
Minimized vertices using QEF’s with mass point feature dimension
(lower right).

space. Notice that by minimizing the distance to the center of the
cube (shown as a projection), a point outside of the cube is gener-
ated even though part of the solution space is interior to the square.
This method is only guaranteed to yield the correct result if the so-
lution space intersects a sphere centered at the middle of the cube
with diameter equal to the length of the sides of the cube.

In Dual Contouring we take a different approach to solving this
problem. Instead of finding a point in the solution space that mini-
mizes the distance to the center of the cube, we minimize towards a
that we call the mass point. The mass point for a cube is the average
of the exact intersection points on the edges of the cube. Because
the mass point is a convex combination of points on the edges of the
cube, it has the property that it always lies inside of the cube that
generated it. We solve for the minimizer, x, of the equation Ax � B
with minimal distance to a point, p, in space by letting x � c � p
and computing

c � � AT A � 7 � AT B
 AT Ap � � (4)

When the system has full rank
�
AT A � 7 � �

AT A � 9 1 and the solu-
tion is the least squares solution shown previously. Figure 3 shows
a comparison between these two methods. In this figure the mass
point solution (right) generates a minimizer equal to the mass point,
which is interior to the cube. This newer method relies on the as-
sumption that the solution space will not be far from the intersection
points on the edges and then minimizes towards a point inside of the
cube close to the solution.

The addition of a mass point to the QEF adds an additional
4 floats to the representation: � ∑xi � ∑yi � ∑ zi � n � . When merging
QEF’s upward in the octree during simplification the respective
components of the mass point are summed together. The problem
with this method is that when large numbers of cubes are collapsed
together, it is possible to produce a mass point far from the actual
solution space. These aggregate mass points then suffer from the
same problems as minimizing towards the center of the cube.

To combat this effect, we introduce an alternate method for com-
bining mass points using feature detection. In addition to the data
already stored for the mass point, we also store the dimension of
the mass point. This dimension is equal to the dimension of the
feature present in the QEF for that mass point (1 = plane, 2 = edge,
3 = corner). This dimension is computed during the pseudoinverse

Figure 5: Non-manifold geometry generates a undesired point out-
side of the square (left). Using the mass point prevents spikes in the
surface (right).

and is equal to three minus the number of singular values truncated.
The algorithm for merging two mass points is then

1. If the mass points are of the same dimension, merge the two
mass points like before by summing their components.

2. If the mass points are of differing dimensions, set the com-
bined mass point equal to the mass point of the highest di-
mension. The dimension of the new mass point is also equal
to that of the higher dimensional mass point.

This algorithm has the property that the resulting mass point is
only the average of the points that generated the feature of highest
dimension. Since the minimizer of the merged QEF is likely to
be near the feature of the highest dimension, this method produces
a point inside of the cube close to the feature. In our testing this
technique solved many problems that we experienced with point
placement such as polygons folding back onto themselves.

Figure 4 shows a piece of a temple model generated using Dual
Contouring that illustrates the difference between the two tech-
niques. The left side of the figure depicts the vertices of the temple
positioned at the mass points without using feature dimension (top)
and with feature dimension (bottom). Notice that the mass points
using the dimensional quantity are positioned much closer to the
solution space than the mass points without the feature dimension.
The right side of the figure shows the minimized vertices using the
QEF’s and the mass points from the left side of the figure. The min-
imized vertex on top does not use feature dimensions and causes a
fold in the mesh. The minimized vertex on the bottom uses fea-
ture dimensions and is positioned on the solution space inside of
the cube that generated the vertex so that no such folding occurs.

Another benefit that this method has is that it provides a way of
handling point placement for non-manifold geometry. In the case
where multiple, separate pieces of a surface intersect the same cube,
QEF’s can do a poor job of positioning the minimizer (see figure 5,
left). Since Dual Contouring uses a signed grid to determine the
topology of the resulting surface, non-manifold configurations are
simple to detect using the signs at the eight corners of a cube. In
these cases, positioning the point at the minimizer of the QEF is
usually not desired and can result in “spikes” in the surface. In
these cases, we use the position of the mass point to position the
vertex inside of the cube. Using the mass point’s position has the
advantage that it is a point inside of the cube so that no folding
occurs and it is near the portions of the surface that intersect that
cube.

model size interior mixed empty/full
Chinese cube 1283 12.5% 40.2% 47.3%

temple 2563 12.5% 38.5% 49.0%
david 5123 12.5% 38.0% 49.5%

Figure 6: Percentage of different types of nodes for three different
models.

� ��� 7�9����(? = 1�C A�� 5@7 3%CD? = 1

When using a volumetric representation for models, space can
quickly become an issue. We use several techniques to reduce space
usage in Dual Contouring. Instead of using a uniform grid to de-
scribe the implicit surface, we use an octree with empty and solid
space collapsed maximally. This data structure results in a large
space savings because the space required to store the grid has been
reduced from being proportional to the volume of the object to the
surface area instead.

Even with the octree structure, we managed to reduce the space
requirements more. We identified three different types of nodes
present in the octree and specialized the data stored in each type
of node to reduce wasted space. The three different types of nodes
inside of the octree are interior nodes, homogeneous leaves, and
heterogeneous leaves. While these nodes have some data elements
in common, there are many fields that are specific to that type of
node.

All three types of nodes store the depth of the node in the oc-
tree (for the adaptive contouring algorithm). Interior nodes store
8 pointers to the children (32 bytes), a QEF (68 bytes), and the
signs at the corners of the cube (8 bytes). The QEF of an inter-
nal node stores the aggregate QEF for all of the node’s children.
Homogeneous nodes are leaves in the octree that are either com-
pletely empty or completely full and have been collapsed maxi-
mally. These nodes only store a single number (1 byte) represent-
ing the sign at all eight corners of the node. Heterogeneous nodes
are leaves of the octree that contain a sign change and, therefore,
a portion of the surface being generated. These leaves store the
signs at the corners of the cube (8 bytes), the QEF (68 bytes), and
twelve pointers to the hermite data on the edges (48 bytes). The
edge pointers are all set to NULL unless there is a sign change on
that edge, in which case the hermite data (16 bytes) populates that
pointer. We store the hermite data as a normal 	 nx � ny � nz
 and
an alpha component, which indicates where the exact intersection
point is located on that edge.

Figure 6 displays a table listing the percentages of each type of
node for three different models. Notice that the amount of homo-
geneous nodes (empty/full) dominates the two other types. By spe-
cializing the data representation for the different types of nodes in
the octree, we reduce the space consumption of the data structure
by approximately fifty percent. The space requirements can be re-
duced even further by removing the QEF’s from the data structure
resulting in a reduction of another twenty percent. These QEF’s can
be computed dynamically from the hermite data on the edges, but
this approach requires a tradeoff between size and processing time.

� �#?�
���� ? =�� � = � 5@7 3%CD? =

Because Dual Contouring uses an implicit representation for sur-
faces, approximate CSG operations can be applied to the surfaces
very quickly. Due to our use of an octree representation for the
data, these operations only take time proportional to the combined
surface area affected by the CSG operation as opposed to the af-
fected volume. However, polygons need to be added and removed

Index Data Polygons Node
0 � x,y,z � � 1,5,2,0 � ptr

.

Figure 7: Structure of the vertex array. Data is information sent to
graphics card. Polygons is a list of polygons containing this vertex.
Node is a pointer to the node that generated this vertex.

Index Vertices
0 � 0,1,2,3 �

.

Figure 8: Structure of the topology array. Vertices is a list of four in-
dices into the vertex array for the vertices that make up this quadri-
lateral.

from the previous surface in order to display the new surface. Fur-
thermore, the polygons and vertices produced need to be stored in
a format that allows for fast display on modern graphics hardware.
We provide an algorithm used in Dual Contouring that achieves
constant time insertion and deletion of polygons and vertices from
a tightly pack topology/geometry data structure optimized for dis-
play on modern graphics cards.

In order to achieve higher frame rates, graphics hardware prefers
to receive geometry data in a topology/geometry representation,
which is a tightly packed list of polygons and vertices respectively.
This structure allows the hardware to transform and light each ver-
tex exactly once. In our representation, we need additional pieces
of data stored with vertices that is not sent to the graphics card. To
maintain a tightly packed structure, we use auxiliary arrays to store
the additional data indexed in the same manner as the list of ver-
tices. However, for simplicity, we will described the data structure
as being a single entity in an array, but it should be understood that
the extra information is stored separately.

� �! ������� "��	��

����

��� 5
In Dual Contouring, each heterogeneous node (and possibly interior
nodes if the model is collapsed) contains an integer that indexes into
a vertex array for the vertex contained within that node. Each entry
in the vertex array contains the data sent to the graphics card (po-
sition, normal, texture coordinates, etc...), a list of indices into the
topology array for each quad containing this vertex, and a pointer
to the node that generated this vertex (figure 7). The topology array
simply stores a list of four indices into the vertex array in each entry
(figure 8).

Constructing these data structures is straight forward from the
octree. A single pass over the octree generates the vertices in the
vertex array with the node pointers populated, but no polygons in
its list. Next, the multi-resolution contouring algorithm described
in Dual Contouring is performed. For each polygon generated, it is
appended onto the end of the topology array and its index is added
to the list of polygons for the four vertices in that polygon.

During a CSG operation, vertices are added and removed from
the data structure dynamically corresponding to addition or deletion
of heterogeneous nodes in the octree. Removing a vertex also has
the effect of removing the polygons connected to that vertex. After
the CSG operation is finished, we perform a truncated version of
the full polygon generation pass to add the new polygons into the
model. The alterations of the vertex and topology arrays caused by
a CSG operation are performed using four methods: remove poly-
gon, remove vertex, add polygon, and add vertex.

Remove polygon takes an index of the polygon to remove from

Figure 9: Recursive calls used to generate a closed, complete con-
tour for a multi-resolution octree.

the topology list as input. The procedure simply walks over the four
vertex indices in the list for that polygon and requests that the vertex
removes that polygon’s index from its list of polygons. Next, the
polygon is removed from the polygon list by copying the polygon
at the last position in the topology list over the entry in the list being
deleted. Finally, the method processes each vertex index in the new
polygon’s list and requests that those vertices renumber the polygon
in its list from the previous index of that polygon to its new index.
This function ensures that the data structure is consistent and that
the polygons are tightly packed in the topology list.

Remove vertex is the function called during a CSG operation
when a heterogeneous node is modified or deleted. This function
processes the list of polygons stored in the vertex to be removed
from the highest index to the lowest index. For each polygon in-
dex in the vertex’s list, remove vertex calls remove polygon on that
index. Processing the polygons from highest index to lowest index
eliminates problems arising from renumbering the polygons in the
deleted vertex’s polygon list. Next, the method copies the vertex
from the last position in the vertex array to the index of the deleted
vertex. The vertex index of the node stored in the moved vertex is
then updated to point to the vertex’s new position. Next, for each
polygon in the moved vertex’s list, the procedure request that that
polygon renumbers the index of the vertex in the old position to the
new index.

When a CSG operation adds a new heterogeneous node, a new
vertex is added into the vertex list by appending the vertex to the
end of the vertex list with an empty polygon list and a pointer to
the node that generated it. Similarly, adding a polygon appends
the polygon to the end of the topology list and requests that each
referenced vertex in the vertex array add that new polygon to its
polygon list.

� �+� ������

��5 (6'����4# % � ,&# *���� *�������� (6# *
During a CSG operation, any nodes modified by the operation (in-
cluding new nodes) are marked as well as all of the parents of those
nodes up to the root. When a CSG operation finishes, old vertices
have been deleted from the vertex array, new vertices have been
added, and polygons associated with the old vertices have been
deleted from the topology list. However, the CSG operation has
not created the new polygons in the affected regions. In order to
generate those polygons, we perform a truncated version of the re-
cursive method described in Dual Contouring.

Dual Contouring introduced a new, recursive method for con-
touring multi-resolution, unrestricted octrees. The recursive calls
for contouring a quadtree in 2D are shown in figure 9. Dark regions
in the figure correspond to a call to processFace and gray regions to
processEdge. Starting at the root of the quadtree with a call to pro-
cessFace, the recursive calls continue by generating four new calls
to processFace on its four children and four calls to processEdge.
Each processEdge call produces two new calls to processEdge on
two pairs of the children as shown in the figure. ProcessFace termi-

nates when the node is a leaf. ProcessEdge terminates when both
of its arguments are leaves and then examines the shared minimal
edge (an edge in the grid that contains no smaller edge). If that min-
imal edge contains a sign change, then processEdge generates a line
connecting the two minimizers of the corresponding grid squares.
This process continues and generates a closed, complete contour.

Our truncated contouring pass uses the same recursive calls as
the full polygon generation pass. The only change made is to the
termination criteria. ProcessFace now terminates whenever its ar-
gument is a leaf or when the node being processed was not marked
as changed by the CSG operation. Likewise, processEdge contin-
ues until both of its arguments are leaves or until the function finds
that neither node was modified by the CSG operation. By truncat-
ing the polygon generation pass, this new procedure only takes time
proportional to the affected surface area of the CSG’d region.

� �(? = 9
 B21�CD? = 1

We have provided insight into many of the details of the original
Dual Contouring paper that were ommitted or shortened. We de-
scribed our implementation of the quadratic error metric (QEF) in
more detail including our mass point solution for the rank deficient
case. Since it is simple to detect non-manifold vertices using im-
plicit geometry, we also provided a method for positioning vertices
in the presence of non-manifold using these mass points. Next,
our data-structures used to store the implicit representation were re-
vealed and we illustrated how we achieved the space savings quoted
in our paper. Finally, we provided a technique for inserting and
deleting polygons in constant time and a fast, truncated polygon
generation pass that reconstructs the surface after a CSG operation.

� ��� � 5 � = 9 � 1

FRISKEN, S. F., PERRY, R. N., ROCKWOOD, A. P., AND JONES,
T. R. 2000. Adaptively sampled distance fields: A general
representation of shape for computer graphics. In Proceedings
of SIGGRAPH 2000, ACM Press / ACM SIGGRAPH / Addi-
son Wesley Longman, Computer Graphics Proceedings, Annual
Conference Series, 249–254.

GARLAND, M., AND HECKBERT, P. S. 1997. Surface simplifica-
tion using quadric error metrics. In Proceedings of SIGGRAPH
97, ACM SIGGRAPH / Addison Wesley, Los Angeles, Califor-
nia, Computer Graphics Proceedings, Annual Conference Series,
209–216.

GIBSON, S. F. F. 1998. Using distance maps for accurate surface
reconstruction in sampled volumes. In 1998 Volume Visualiza-
tion Symposium, IEEE, 23–30.

HOPPE, H. 1999. New quadratic metric for simplifying meshes
with appearance attributes. In IEEE Visualization 1999, 59–66.

JU, T., LOSASSO, F., SCHAEFER, S., AND WARREN, J. 2002.
Dual contouring of hermite data. In Proceedings of the 29th
annual conference on Computer graphics and interactive tech-
niques, ACM Press, 339–346.

KOBBELT, L. P., BOTSCH, M., SCHWANECKE, U., AND SEIDEL,
H.-P. 2001. Feature-sensitive surface extraction from volume
data. In Proceedings of SIGGRAPH 2001, ACM Press / ACM
SIGGRAPH, Computer Graphics Proceedings, Annual Confer-
ence Series, 57–66.

LINDSTROM, P., AND SILVA, C. 2001. A memory insensitive
technique for large model simplification. In IEEE Visualization
2001, 121–126.

LINDSTROM, P. 2000. Out-of-core simplification of large polygo-
nal models. In Proceedings of SIGGRAPH 2000, ACM Press
/ ACM SIGGRAPH / Addison Wesley Longman, Computer
Graphics Proceedings, Annual Conference Series, 259–262.

LORENSON, W., AND CLINE, H. 1987. Marching cubes: A high
resolution 3d surface construction algorithm. Computer Graph-
ics 21, 4, 163–169.

PERRY, R. N., AND FRISKEN, S. F. 2001. Kizamu: A system
for sculpting digital characters. In Proceedings of SIGGRAPH
2001, ACM Press / ACM SIGGRAPH, Computer Graphics Pro-
ceedings, Annual Conference Series, 47–56.

