‘H
Computer methods
ﬁa in applied
;ﬁ mechanics and
engineering

ELSEVIER Comput. Methods Appl. Mech. Engrg. 190 (2001) 3771-3796
www.elsevier.com/locate/cma

Tetrahedral mesh optimisation and adaptivity for steady-state
and transient finite element calculations

C.C. Pain, A.P. Umpleby, C.R.E. de Oliveira *, A.J.H. Goddard

Computational Physics and Geophysics Group, T.H. Huxley School of Environment, Earth Science and Engineering,
Imperial College of Science, Technology and Medicine, Royal School of Mines Building, Prince Consort Road,
London SW7 2BP, UK

Received 29 November 1999

Abstract

A method for optimising a pre-existing mesh of tetrahedral finite elements is described. It is based on a series of mesh connectivity
and node position searches of the landscape defining mesh quality. A Riemannian metric, reflecting the a posteriori error measure, is
used to calculate element size and shape. A functional is defined which embodies both shape and size quality of an element with respect
to the metric, and is used to gauge mesh quality. A heuristic-based local search strategy is adopted — local in the sense that it has no hill-
climbing abilities. The paper presents applications of the method to complex, steady-state and time-dependent problems which
highlight its anisotropic, feature-capturing abilities. Numerical evidence is provided which suggests that the computational complexity
(time) of the proposed algorithm varies linearly with the number of elements or nodes of the finite element mesh. © 2001 Elsevier
Science B.V. All rights reserved.

Keywords: Riemannian metric; A posteriori error measure; Finite element; Tetrahedral mesh; Optimisation heuristics; Anisotropic
adaptivity

1. Introduction

A common problem encountered by numerical practitioners is that the computational grid or mesh used
in a numerical simulation has to be generated a priori to the solution procedure. It is therefore difficult to
resolve adequately the local physical features at a first attempt, and the mesh often needs to be adapted to
enable the solution procedure to satisfy the resolution requirements. Importantly, this also allows the re-
duction in the computational effort which is crucial for complex applications. Developing ways of sys-
tematically modifying or adapting computational meshes to the underlying physics of problems has been
the subject of increased interest in recent years and now forms one of the most active areas of computa-
tional research.

Mesh adaptivity or optimisation relies on the derivation of an appropriate error measure which dictates
how the mesh is to be modified. Several error measures which serve as a criterion for mesh modification
have been proposed ranging from using interpolation-based methods (which are a subset of explicit
methods, see, for example, [26,33,38]), for calculating a posteriori error measures, to implicit methods
which can correctly propagate the error through the mesh, see [3,36]. An additional consideration, when
adapting the mesh is that not only node density, but also the alignment of the mesh relative to the solution
is important. For example, in boundary layers or along shocks the mesh may need to be refined in one

* Corresponding author. Tel.: +44-171-594-9319; fax: +44-171-594-9341.
E-mail addresses: c.pain@ic.ac.uk (C.C. Pain), c.oliveira@ic.ac.uk (C.R.E. de Oliveira).

0045-7825/01/$ - see front matter © 2001 Elsevier Science B.V. All rights reserved.
PII: S0045-7825(00)00294-2

3772 C.C. Pain et al. | Comput. Methods Appl. Mech. Engrg. 190 (2001) 3771-3796

direction only, e.g., normal to the boundary layer. Hessian-based adaptivity methods are capable of ful-
filling this requirement. They have two main attractive features: they are independent of the specific
problem being solved and use a non-euclidean metric enabling the meshes to be built truly automatically.

Once the error measure has been derived, the nodes are redistributed according to this measure. This step
in the adaptive procedure is quite complex algorithmically, and is intrisically dependent on the mesh
generation method and geometrical and material boundary conforming requirements. Unstructured tes-
sellation methods can deal with geometries of arbitrary complexity and they render themselves naturally to
adaptivity. There are three main approaches to the generation of unstructured tetrahedral meshes: the
Delaunay triangulation scheme [18], the Advancing Front technique [28,30] and the Quadtree/Octree ap-
proach [24]. Delaunay tessellation is a procedure for forming optimal tesselations using an appropriate
metric for measuring distances. It leads to robust algorithms which can easily incorporate adaptivity.
Region-wise coarsening/refinement can be achieved with the Advancing Front technique in which both new
nodes and triangles are regenerated in the region [24]. The main drawback of this technique is the fact that
the mesh has to be regenerated at every mesh adaptation, which can be computationally expensive for large
problems. Octree methods by nature do not offer scope for aligning the mesh anisotropically with the
solution.

In general, 2-D Delaunay meshes are of good quality and can lead to useful mesh adapting schemes for
triangular [39] and quadrilateral [10] elements. However, in 3-D when nodes are evenly distributed, the
element aspect ratio can become very large [18]: small inscribed spheres (that is thin ‘slivers’) can be
generated, despite all the edge lengths of an element being approximately equal with respect to the desired
metric. Local mesh connectivity transformations have been used in [23] to obtain a mesh that satisfies the
Delaunay property along with a modification to optimise the interior dihedral angle of the resulting tet-
rahedral elements and discourage thin ‘slivers’. Further work on 3-D Delaunay meshing can be found
[11,12,14,37].

The fact that the Delaunay kernel permits element ‘slivers” motivated the authors to discard it in favour
of mesh optimisation methods. Such methods are guaranteed to converge and have proven relatively in-
sensitive to round-off error, at least in our implementation. This research does not represent the first use of
mesh optimisation though. For example, [16] demonstrated successful mesh optimisation involving
swapping (mesh connectivity adjustments) and smoothing (node position adjustments) of a mesh, and that
using either of these independently leads to severely reduced mesh quality. In particular, interior element
angles are highly sub-optimal with node movement alone. Also, it was demonstrated that purely optimi-
sation-based node movement is CPU-expensive when compared with simpler methods such as Laplacian-
based smoothing, and with little gain in mesh quality over the latter. This has motivated us to use
approximate optimisation techniques for mesh smoothing (node movement). In addition, Buscaglia and
Dari [13] also uses optimisation methods for 2-D meshes. They used, as we do here, the quality of the
poorest element (as defined by some functional) as a measure of the overall mesh quality. This was all
achieved in the context of a Riemannian metric based on a Hessian. The Hessian was calculated by in-
troducing explicit artificial diffusion and used both weak and strong finite element forms for the Hessian
calculation. In [18] the mesh connectivity/node movement operations, required by an optimisation method,
are described in detail.

In what follows, a method is presented which adapts the mesh to the solution without sacrificing the
integrity of the boundary (geometry), or internal boundaries (regions) of the domain. It circumvents the
complexities of boundary-conforming Delaunay methods [17] by operating on the existing mesh. The error
measure employed is based on the curvature of the solution and provides a directional measure. The ob-
jective is to obtain a mesh which has a uniform interpolation error in any direction. This is accomplished
with use of a metric which is related to the Hessian of the solution field. Appropriate scaling of the metric
[14] enables the resolution of multi-scale phenomena as encountered in transient incompressible fluids
calculations. The resulting metric is used to calculate element size and shape. The mesh optimisation
method is based on a series of mesh connectivity and node position searches of the landscape defining mesh
quality which is gauged by a functional. The mesh modification thus fits the solution field(s) in an optimal
manner.

The details of the method are presented in the next section. Numerical assessment of its performance is
presented in Section 3. The mesh optimisation/adaptivity method described here is of general applicability.

C.C. Pain et al. | Comput. Methods Appl. Mech. Engrg. 190 (2001) 3771-3796 3773

It can be used for applications ranging from obtaining good quality meshes without prior knowledge of the
solution to adapting the meshes to follow transients and to iteratively adapt the finite element solution/
mesh towards an optimal steady state. Examples of this are presented in Section 4 with application to
unsteady fluid flow and steady-state radiation transport problems.

2. A mesh optimisation and adaptivity method

The mesh adaptivity approach described below is based on a variational functional which gauges the
quality of the mesh including both element size and shape as objectives. The functional is optimised using
local searches of the mesh connectivity and node positions. An appropriate definition of a metric based on
the Hessian allows distances in the desired Euclidean space to be calculated, which in turn allows the
element (length) size to be controlled by, for example, a specified interpolation error.

2.1. Optimisation heuristics

The optimisation method aims to improve, locally, the worst element. The overall objective function is
the element quality associated with the worst element of the mesh. Within the optimisation, each element in
the mesh is visited in turn and the following operations are performed within the vicinity of the element:
(1) edge collapsing; (2) edge splitting; (3) face to edge (Fig. 1(b)) and edge to face (Fig. 1(a)) swapping;
(4) edge swapping; (5) node movement.

The mesh optimiser proposes a new neighbourhood mesh configuration (local mesh transformation)
which is a small change in the mesh, using one of the above operations. This is accepted as the current mesh
configuration if the change in the maximum functional associated with all the elements affected by the
change, is negative and less than a smallness parameter x. In addition, if the maximum functional value of
all the elements that would be affected by a local mesh transformation is less than a certain threshold value
Z; (a value of 0.15 is used here) then this mesh transformation is not considered. The values of x and %,
are defined bearing in mind the element quality, the most common of which (after mesh optimisation) is
about 0.2 measured by Eq. (5), see Section 4. That is,

max{F,} —max{F,} < —x and max{F.} > 7, (1)
ees’ ecé ecé
for elements in the set & and element functionals F, Ve € & (which measure the quality of elements e) that
will be effected by a proposed local mesh transformation; & is the set of, and F, are the functional values of
the elements changed or created by the proposed local mesh transformation. A positive non-zero value of k
is used to avoid problems with round-off error and also provides some additional control over the CPU
requirements of the algorithm (x = 0.01 is the default and is used in the applications).

4
TN

4

(a) Face to edge (b) Edge swapping

Fig. 1. Digram showing: (a) edge to face and face to edge swapping; (b) edge to edge swapping with four elements.

3774 C.C. Pain et al. | Comput. Methods Appl. Mech. Engrg. 190 (2001) 3771-3796

However, if

max{F,} —max{F,} <0 and max{F,} > 7, (2)
eed’ ecd ecd
then the proposed local transformation is still accepted if

- Z{F }— ZF < —k and max{F} > F,, (3)

ees’ ecs

in which K is the number of elements in & of the current mesh that will be affected by the proposed
transformation, and K’ are the number of elements of the proposed mesh that are different from the current
mesh. It is convenient to define Criterion 1: either Eq. (1) or Egs. (2) and (3) are satisfied for a local mesh
transformation.

During the optimisation each element is visited in turn, sweeping across all the elements of the mesh, in a
similar manner to a Gauss—Seidel iteration [20]. When an element is visited all the mesh connectivity op-
timisation operations above are performed in turn, and out of these the best proposed configuration is
accepted, as long as Criterion 1 is met, otherwise the mesh is not altered. If Criterion 1 is not satisfied for
operations (1)—(5) listed above, then the element is marked not to be visited again. In this way the opti-
misation does not repeat, unnecessarily, moves to new mesh configurations. Any new elements that are
created (including elements that change shape due to node movement) are added into the end of the list of
elements so they will be analysed during the current ‘sweep’ to see if they and their neighbouring elements
can be improved. Once the last element in the element list is visited the mesh optimisation is finished.

A record is maintained of all operations that did not improve (according to Criterion 1) the quality of
the local functional so that these operations are not repeated needlessly in neighbouring elements etc. When
an element is visited the element is marked not to be visited again and the operations of face to edge
swapping are considered for its four faces. If any of these operations are accepted then the old elements are
deleted and are replaced by new elements.

Whenever an element is created all nodes and edges of this new element are unmarked. An element can
be created partly from existing nodes and edges and partly from new nodes and edges. The absence of the
mark says that the corresponding node, edge or element is a candidate for a local transformation. Each
node, edge and element has its own mark for this purpose.

If an edge of an element is visited and edge operations (edge swapping, edge collapsing, edge splitting)
are proposed, but none are accepted, then this edge is marked not to be considered again for local mesh
edge transformation. If an edge is accepted the edge is deleted along with all affected elements which are
then replaced by new elements.

When a node is moved all surrounding elements are deleted and replaced by new elements which are
added into the end of the element list.

2.2. The functional — gauge of mesh quality

The functional used to gauge the quality of the mesh is
= ¥l (4)

in which p is the norm (the even infinity norm is used), F is a vector of length equal to the number of
elements, and the component F, of vector F associated with element e is

F, ZZ "+ ulge)’, (5)
e,

where %, is the set of edges of element e and p = 1. The first term in this functional gauges the size of
element e and the second term, involving ¢., its shape.
In Eq. (5), 0; for edge / is defined as

5/:}"1—1,

where 7, is the length, with respect to the metric M (Q) defined in Euclidean space Q, of edge /.

C.C. Pain et al. | Comput. Methods Appl. Mech. Engrg. 190 (2001) 3771-3796 3775

(a) The mapping (b) Metric superposition

Fig. 2. (a) Mapping between Euclidean metrics; (b) the metric M, has been distorted to become a circle and the metric M, has been
distorted using the same operations. The maximal inner ellipsoid is shown as a dashed line.

q. in Eq. (5) is defined as,

%(%Q, (6)

where o = 1/ (2\/6), p, 1s the radius of the inscribed sphere of element e in Euclidean space with respect to
M(Q) (see Fig. 2(a)). The scalar o« has been chosen such that g. = 0 for an ideal element (aspect ratio of
unity in relation to the metric M). The two terms of Eq. (5) work together in the sense that (q(,)2 requires the
element e edge lengths to be approximately unity for it to be a good measure of the element shape quality
while >, 5? when optimised, will force the edge lengths of element ¢ to be approximately unity with
respect to M.

2.3. Calculating the functional

The length r; of edge /, with respect to M(Q), is given by

= / (s:(6) "M (@ + s:(6))s2(2)) i, ™)

in which a and b are positions of the two nodes associated with edge /, s,(¢) is the position in €, relative to
point a, along edge /. The magnitude of s,(¢) is the arc length parameter for edges that are straight lines. For
the purposes of integration s,(z) is associated with parameter z.

Eq. (7) is used to calculate the distance along an edge. M () has been discretised node-wise, and has a
linear variation within each element and so M (Q) has a linear variation along each edge. All the edges of the
meshes used in this work are on straight lines. Therefore, the application of one point quadrature is gauged
sufficient to obtain r;, via

= (] M), (8)

in which v; is a vector in a direction along edge / with a magnitude equal to the edge length, and A, is the
edge-centred metric

1
M;zii;;]M,-.

In this equation, the set /", contains the two nodes of edge /. It is convenient to also define an element-
centred metric

1
Me = Z ZM> (9)
ict,

where .7, are the set of nodes at the vertices of element e. Since M; is positive definite for all nodes i, both
M,;, VI and M,,Ve are guaranteed to be positive definite. The node-wise metrics M; are calculated by in-

3776 C.C. Pain et al. | Comput. Methods Appl. Mech. Engrg. 190 (2001) 3771-3796

terpolating the metric M(Q) from the original mesh onto the latest mesh. Thus, interpolation is required
every time a node is created or moved in the mesh optimisation.

In order to calculate the in-sphere radius p, the face areas and volume of element e will first need to be
obtained. A triangle of sides length «a, b, ¢ has an area of

A= (40 — (@ + b+)" (10)

The values of the distances a, b, ¢ are obtained with respect to the metric M using Eq. (8). The volume of the
tetrahedral element e is given by

V,=—|F, 7 Fel, (11)

where 7, 7, and 7, are the vectors of three edges of element ¢ with a common node. Note that ¥, is signed, so
it can be used to check if an element has turned ‘inside-out’ during a local mesh transformation, and that
the edge order a, b, ¢ must be consistent for all tetrahedra. The volume ¥, of an element in metric space is
approximated by

Ve = (det(M.))"7., (12)

where 7, is the element volume in Euclidean space and M, is the element averaged metric, given by Eq. (9).
The radius (with respect to M) of the inscribed sphere of element e can then be calculated using

3
A AL A+ A

AN

e

Pe

where A¢, 45, 45, A5 are the areas of the four faces of element e calculated from Eq. (10).

2.4. The metric

The previous section discussed the formation of the functional from a given metric. In this section the
metric is derived from a solution field variable and an error norm based on the interpolation error. In 1-D
the interpolation error € is defined as

>y

Ox?

(13)

€ = i’

(see [40]), where 7, is the length of element e, i is the solution variable and 7 is an O(1) scalar, in fact j = 1
is used here.
In multi-dimensions

e = |Hv

for some Hessian H (assumed independent of Euclidean space, in this case) and vector v representing the
desired direction and length. The Hessian H can be replaced by a modified Hessian Q (see later on in this
section).

For a required (specified) interpolation error ¢ a metric M is defined such that an element size (length) is
unity if it has the desired interpolation error €. Thus,

M ="H|. (14)
€
The length of vector v with respect to M is then calculated from

lolly = (0" M0)'",

C.C. Pain et al. | Comput. Methods Appl. Mech. Engrg. 190 (2001) 3771-3796 3777

for spatially independent M. Thus, in 1-D the length d, with respect to M of an element e of length #, is

. 1/2
d, = | nL
e eé .

The metric M must be modified to take into account maximum and minimum element sizes. The result is a
metric M defined as

oy

Ox?

M=VTAV, (15)

where V' (rotation matrix) contain the eigenvectors of the metric M given by Eq. (14). The eigenvalues
A, ¥je{l,2,3} of M are based on the eigenvalues 4;, Vj e {1,2,3} of metric M but modified as
follows:

ij:max{i}alzm%lxi;} vie{1,2,3} (16)
as =
with

. (1 o1 .

2= min ¢ o max § ||, o vj e {1,2,3}, (17)

in which « is the maximum aspect ratio (100 is the default and has been used in Section 4). The maximum
aspect ratio of an element is thus controlled through the metric by capping the larger size(s) associated with
an element. This corresponds to increasing the smaller eigenvalue moduli, in Eq. (16). Also Ay, and A,y in
Eq. (17) are the minimum and maximum element sizes (more specifically, edge lengths) tolerated in the
mesh. Since /;, Vj € 1,2, 3 are positive, M, given by Eq. (15), is positive definite.

The Hessian, for a field ¥/(Q), in 2-D is

[@p/ad) (@)
= <(62w/ayax> (@y/2y) >

and similarly in higher dimensions H = VIVy.

In order to calculate an error norm it is often convenient to normalise the Hessian with the magnitude of
the solution ¥ so that the resulting error norms are not biased towards the larger values of | ¥ |. This takes
the form of

1

Q B max(\lﬂ, lpmin)

H (18)

for some positive ... The use of i, in this equation avoids problems with round-off error (dividing by
zero or a small number) and also provides control or a cut-off point for the magnitude of y below which
fine mesh resolution is deemed unnecessary.

2.5. Hessian calculation

Hessian calculation can be troublesome, particularly due to accuracy considerations near boundaries. In
[13] an explicit diffusion was introduced in the Hessian calculation to suppress spurious oscillations re-
sulting from a weak finite element formulation. However, the weak formulation requires some additional
information to yield the second derivative at and normal to, the boundaries.

Galerkin methods are repeatedly applied to calculate the first derivatives, so at a node i:

oy

Ox

~q, =L /N,-(@l///@x) dv

i

3778 C.C. Pain et al. | Comput. Methods Appl. Mech. Engrg. 190 (2001) 3771-3796
and similarly for ¢,,, ¢.,, thus

(GW/ax Ny = Z qx,-7

etc. N, are the finite element basis functions and L is the row summed lumped mass matrix, see [40]. The
second-order terms that make up the Hessian

Gxx; qu; qxz;
H=14q9x 9y 9=
Qzx; Yz Y9z

centred on node i are calculated by for example
_ Oq _ Oq

o =L [N2 Y, x_:L,l/N,- zdr.
q; i i / ax q Vi i ay

Accuracy is still reduced at boundaries because of the reduced size (roughly half the size of the stencil away
from the boundaries) of the supporting stencil.

2.6. Superposition of metrics

Often one requires to solve problems with two or more solution fields, each field having its own metric,
reflecting its own required mesh resolution. In this formulation each field can also have its own error re-
quirements, which will in turn be reflected in the metric associated with that field.

For simplicity, it is important to superimpose the metrics so that the mesh adaptivity method has only to
deal with a single metric field. The alternative would be to calculate the distance associated with each metric
(or solution field) and determine some representative distance from these. We take the approach of using
the finest mesh resolution dictated by any of these fields. Thus, the minimum distance would be the rep-
resentative mesh resolution distance. Using this philosophy, two metrics can be superimposed by deforming
one of the metrics so it can be represented by the unit sphere (that is the identity matrix). The second metric
is deformed using the same operations, then the superimposed metric is chosen to be the maximal ellipsoid
which fits inside both the unit sphere and the ellipsoid, see Fig. 2(b). This maximal ellipsoid or metric is then
transformed back to the original system for use with the mesh adaptivity algorithm. The transformation of
a vector v’ in Euclidean space associated with metric .# to v in Euclidean space, is v/ = A~ /2% v and will be
used repeatedly to superimpose the metrics.

For the deformation of a metric into a sphere, the metric is chosen which requires the least distortion,
measured by

maXie(123} 4

(19)

- T
MiN;ef12,3} 4

in which /; are the eigenvalues of the metric. Suppose the metrics .#, .4, are to be superimposed, and .#
is the least distorted, defined by Eq. (19), of the two metrics and

%1 “/A"Vl, ﬂz “/ AZHKZ
M 1s mapped to a space in which .# is represented by a unit sphere and so becomes,
My = APty TAT = 9T A9,

in which 2, A are the eigenvectors and eigenvalues of .#,. Now the eigenvalues A (or 4;, Vi € {1,2,3}) are
limited using /; = max{1, 4;} so that the resulting metric I (with eigenvalues A or 4;,Vi € {1,2, 3}) defines
the maximal inner ellipsoid, see Fig. 2(b). .# = 27 A2 is transformed back to the original space to obtain
the final metric

M=vTA2uAy .

C.C. Pain et al. | Comput. Methods Appl. Mech. Engrg. 190 (2001) 3771-3796 3779

Superimposing n > 2 metrics is performed by repeating the above procedure, G(.#,, .#,), for each addi-
tional metric

M = G(-- G(G(M\, M), M) -~ M,).

2.7. Predicting the number of elements

It is important to be able to predict the number of elements that will be generated for a given metric field
M(Q), so that the mesh adaptivity and finite element solution CPU times (or memory requirements) can in
turn be predicted. If mesh adaptivity is anticipated to produce an excessive number of elements then the
metric M (Q) can be scaled such that a maximum number of elements is not exceeded by the mesh optimiser.

Now in metric space, M(Q) , the optimal element volume is y = (1/+/72). Assuming that all the elements,
after optimisation of the mesh, have a volume y then the number of elements E,.,, after optimisation, can be
calculated from

Eod 17
Enew = M, (20)
s
where E 4 is the number of elements in the original mesh to be adapted and so e loops over the original
mesh elements in the above equation. Now if Ee = 0., then a new metric M. (Q) = fM(Q) replaces
M(Q) for use in the mesh adaptivity algorithm for some scalar . None unity 0 acknowledges the fact that
Eq. (20) is not exact — we have found that 0 ~ 0.85. In Eq. (20), V, is the volume, given by Eq. (12), of
element e of the original mesh with respect to M(€). Since the required number of elements is Ep,x, the
scalar § must satisfy

So(det(pMe)) V. _ 3o, B (det(M.)) Ve
7 Y

OF max —

and thus

p= V0E max 7’
C\ D (detm)) Py,)

2.8. Edge collapsing

This operation deletes all elements that belong to an edge and collapses the two nodes of the edge,
usually to the centre of the edge. It may be worthwhile to simultaneously optimise the new node position,
even if this is restricted to being along the edge to be collapsed and possibly further restricted to three
points: at one of the two nodes; at the other node; at the mid-point of the edge. However, to reduce the size
of the number of configurations to search through and the CPU requirements of mesh optimisations, the
edge is collapsed to a node at its mid-point when possible. There are situations when an edge can only be
collapsed to one of the nodes, for example, if one of the nodes of the edge is used to define the surface of the
domain or an interior surface bounding regions of different material properties. If both nodes of an edge lie
on one of these surfaces, and the surface will change shape with edge collapsing then collapsing this edge is
not permitted.

2.9. Edge splitting

Edge splitting involves inserting a node at the centre of an edge and generating new elements sur-
rounding the split edge. Again, it is possible to simultaneously optimise the new node position as well as
split the edge. However, this is not done here, again, for computational efficiency.

3780 C.C. Pain et al. | Comput. Methods Appl. Mech. Engrg. 190 (2001) 3771-3796
2.10. Edge and face-edge swapping

Face to edge swapping can be performed if two tetrahedra share a common face and their combined
interior is convex. This is achieved by introducing an edge between the two nodes that are not shared,
producing three tetrahedral elements, see Fig. 1(a). Conversely, it is easy to see that the inverse operation of
edge to face swapping is also possible.

In general, an edge of the mesh can be removed and the surrounding S elements replaced by 25 — 4
elements. In the edge to face example, S = 3, two elements replace three. For S greater than 4, more ele-
ments are created than are removed. This, and the fact that regions with edges surrounded by many ele-
ments are of poor quality, suggests that there is an upper bound, above which edge swapping is rarely
worthwhile. This was determined as S > 7 in [16]. The number of possible ways that elements can be re-
connected after deleting an edge is shown diagrammatically in [16] and is given by

(25 —4)!

Cr_(S—l)!(S—2)! 1)
(see [18]). An optimisation method would therefore have to search through a large number of connectivity
permutations for large S. Thus, to make the algorithm efficient, S has been limited to 4, see Fig. 1(b). Four
is the minimum value of S that leads to good quality optimised meshes. If an edge not on the surface of the
domain has four surrounding elements it has only two possible re-connections, see Fig. 1(b). This edge
swapping is unique in that it is its own inverse. On the surface of a domain with four coplanar points
belonging to two joined triangles on neighbouring tetrahedra, edge swapping operations are performed
between the two possible re-connections.

2.11. Node movement

Node movement, or smoothing, is often used to improve mesh quality, see [18]. This is perhaps most
commonly achieved by visiting each node and re-positioning it to the centroid of all the surrounding nodes
(nodes that share an edge with visited node). In general, the centroid is calculated with respect to a metric.
This is analogous to Laplacian smoothing but in a distorted space with a diffusion tensor reflecting this
distortion/metric.

In this work, the objective of movement of an individual node is to move it to a position which minimises
the worst element quality given by Eq. (5), of an element surrounding this node. Thus, the implied func-
tional is the even infinity norm of all the functionals associated with these surrounding elements. Unfor-
tunately, this functional is not amenable to differentiation and therefore its roots cannot be found readily by
methods that rely on differentiation. However, if this functional is approximated with a functional that has
the differential properties required (e.g., using the two-norm instead of the infinity norm), then the large
number of non-linear optimisation methods in the literature [7] becomes applicable, e.g., Newton Raphson
iteration, gradient methods with line searches. However, non-differential methods can also be effective, e.g.,
choosing an optimal element for each face of the ball obtained by removing the node. Some average of the
new node positions associated with each optimised element is then adopted as the node position, see [18].

In this work, the aim is to equate, without decreasing the local mesh quality, the edge lengths given by
= (vTM,v,)l/ % of the set of edges .#; connected to node i. This can be achieved by minimising

1 1
E; = 3 Z 1= 3 Z v} Mu. (22)
le?; le?;
If this is differentiated w.r.t the position p’ of the node i under consideration and using v, = p’ — yi, then

an = ZMIUIa

o =

where y; is the node position of the node connecting node i via edge /. Thus, at the minimum given by
Eq. (22)

C.C. Pain et al. | Comput. Methods Appl. Mech. Engrg. 190 (2001) 3771-3796 3781
S Mp = My;—q =0,
S S

withq' =37, , Myy,. Let 4" = >7,_, M), then p' can be calculated from 4'p’ = ¢'. This equation is amended
by introducing a diagonal matrix D', chosen to achieve diagonal dominance and ensure insensitivity to
round-off error when solving the resulting equation

(Di _|_At)(pt _ﬁl) — qi _14[1/7\[7
in which ﬁ is the previous position of node i and
i 3 ; r
b max{A (14 0) S0, | A, 1) i =, N
Jjk { 0 o j1 et ik ()

o = 0.01 is used in this work. Relaxation of p' using x' = wp' + (1 — w)p', w € (0, 1] is applied to Eq. (24) to
obtain

(D' + 4 = p') = wlg' — AF), (24)

which is solved for the new node position x* (w = 1/2 is used here).
It is important to use relaxation because the functional Eq. (22), used for node movement, is not entirely
consistent with minimising the worst element quality given by Eq. (4), among all the surrounding elements.

2.11.1. Node movement constrained to a surface or curve

A similar procedure to that described above is used to move nodes constrained to an internal or external
surface of the domain. Since the surface mesh is comprised of triangles — a series of plane surfaces — two
cases of node movement need to be considered: (i) node movement on a tangent plane to the surface;
(i1)) node movement along a line between a group of triangles.

Along a tangent plane, case (i), the new node position is some linear combination of two orthogonal
vectors in this plane) and u} say. If & is a unit vector along an edge of one of the triangles containing node
i to be moved, then u = (1/u})u x (u} x ;) where #, is measured along another edge of the same triangle
and v’ is a scalar chosen to make #} a unit vector. Suppose

= o+ ol +

is the new proposed node position and the new vector of an edge /, connected to node i, is given by
vh=p =X =l + obu? + p — x.

Using this equation in Eq. (22) and introducing the matrix U’ = (u} u}) it is easy to see that
E = % {oc"TMioc" +g" o+ oc"Tg’}, (25)

with
i i i oA i %
¢=> vt - o= (%)
e¥; 2

and M’ = U" dlew, M,U". Setting the first differential of Eq. (25) to zero and introducing relaxation via
ol = wo! + (1 —w)d', the following equation for o, is obtained:

(D' + M), = —we',

in which D’ is a matrix used to ensure a certain level of diagonal dominance, (see Eq. (23)). The new node
position x’ of node i, is then calculated from

S I B B
X =Uao +p —x.

3782 C.C. Pain et al. | Comput. Methods Appl. Mech. Engrg. 190 (2001) 3771-3796

When the node movement has no constraints then

1 00
v=[(01 0],
00 1

for all nodes i not on the boundary or internal surface of the domain. In addition, if the node i is to be
constrained to lie on a line then x' = &, u} + p, which is the equation of the line with «} the unit vector
tangent to the line and U’ = u}.

2.12. Data structures

The mesh optimisation method has been implemented with a memory manager consisting of two linked
lists containing node, edge and element information. This allows the efficient deletion/insertion of elements,
edges and nodes from/to the mesh as the optimisation proceeds. It guarantees efficient use of memory
resources and is one of the novel features of the adaptive method. One linked list contains nodal infor-
mation (including co-ordinates and metrics) and one contains element and edge information. Other data
structures for meshing are described in [15,18,27].

2.12.1. Description

Both linked lists are made of data ““cells”, which contain information about the item (or part of item) it
references, as well as pointers to the next item (or part of item), and the previous item (or part of item).

Each nodal cell, see Fig. 5, contains information for only one node regarding the co-ordinates of the
node, the metric for the node, the type of node (i.e., whether it is on an immutable ‘geometry’ surface,
whether it is on a geometry edge) as well as the pointers to the locations in the list for the next and previous
nodes. In Fig. 5 the part of the data cell labelled ‘contnr’ stores the element of the original mesh in which
the node is contained (used for interpolation). Other parts of the data cell contain the node number as-
signed to it and node movement and deletion constraints associated with internal or external surfaces of the
domain.

Information for an edge (Fig. 3) is stored within a single cell of the second linked list, with two references
into the nodal list for the nodes at each end of the edge, as well as geometry information (similar to the
nodes), and the pointers to the next and previous item in the list. The flags in this cell indicate whether this
is an edge or element cell and assuming it is an edge the flags contain geometrical information about the
edge, such as whether or not it is used to define the shape of the domain or an internal surface and whether
this edge can be deleted. One flag indicates whether the edge has been visited previously and the optimi-
sation chose not to alter the elements surrounding the edge. The flags also indicate if the data cell is
currently empty or not. The edge length with respect to M is also contained in the cell (denoted as ‘functnl’
in Fig. 3) along with some spare memory used in the mesh optimisation routine.

Information for an element (Fig. 4) spans three cells of the second list, with four references into the same
list for the neighbouring elements, six references for the edges that make up the element, and the usual next/
previous pointers. Note that the first cell of an element has a ‘next’ pointer that points to the cell containing
the second part of information for that element, which itself has a ‘next’ pointer that references the third

next
item

prv
pir .

prev. ‘_j

item

o Py ®»
®BOa © — b

—2 0B

Fig. 3. Data structure for edge information, part of the combined edge-element linked list.

C.C. Pain et al. | Comput. Methods Appl. Mech. Engrg. 190 (2001) 3771-3796 3783

next
item

! shbourine |- S ! HNEEE
prv| neighbouring nxt prv edges [|x& nxt PV cdges | p % 1 [nxt
| clements fphf " DD iy " a a |
L PR B 1 Pl oyt a3 4 pdgP Pl 56| g|P

L I : lelpls

prev.
item

Fig. 4. Data structure for element information, part of the combined edge-element linked list.

next
node
S N R A T
e t
Y[co-ords | o | w O 1 [nx
' ' m = t r 1 C a
Prlxiyizffnf LSS e
[1 rim [[[[[[[[s
prev‘q_j

node

Fig. 5. Data structure for node information, part of node linked list.

and final part of information for that element. The flags in an element cell (see Fig. 4) contain similar
information to the flags associated with an edge. It also includes information about: flags; a region number
which is used to recognise internal surfaces of the domain; the in-sphere radius w.r.t M of the element; and
the sum 1/2 Z,ege(él)z which forms part of Eq. (5).

The final cell containing a valid item (or part of item) will point on to an empty (free) cell. Each empty
cell then points on to further empty cells, until all the cells of the list have been visited — the last cell has an
‘end marker’ for its next pointer. Fig. 5 gives an example of a list containing edges, elements and free space.
In addition there is a special ‘start pointer’ which gives the location in the list of the first item, and a ‘free
pointer’, which points to the first free cell.

2.12.2. Adding and removing an item

A new item is added in the cell pointed to by the free pointer (in the case of an element, it spans two
further free cells). The next and previous pointers need no updating, but the free pointer must be updated to
point to the next free cell in the list (which is pointed to by the newly-filled cell).

An item is removed by severing its place in the list (i.e., changing the previous and next cells to point
around it), and inserting it into the used/free interface — i.e., changing its next pointer to point to the current
free pointer, and its previous pointer to point to the last filled cell (given by the previous pointer of the cell
pointed to by the current free pointer). The free pointer is then updated to point to the newly-freed cell. In
the case of element removal, three cells are freed and the first one is pointed to by the current free pointer,
with the other two following on in the same order as for the element. It should be noted that if the item
being removed is the first in the list (i.e., pointed to by the start pointer) then the start pointer must be
updated to point to the next item (unless the removed item is the only one in the list — which should never
happen).

This technique for addition and removal has the advantage of guaranteeing that just-freed cells are the
first to be re-used. Thus, the lower parts of the memory or linked list are used first. Since a removed item is
pointed to by the free pointer, it will be the next to be filled if an item is added.

3. Performance analysis of the mesh adaptivity method

In this section, we analyse the performance of the adaptivity method by applying it to a relatively simple
problem. This problem was designed to highlight the anisotropic meshing capabilities of the method. The

3784 C.C. Pain et al. | Comput. Methods Appl. Mech. Engrg. 190 (2001) 3771-3796

domain is a box and the mesh should adapt to follow the features of three fields containing three per-
pendicular ridges, as described below. Interpolation errors are set to be the same for each field and the three
metrics associated with these are superimposed to obtain one metric on which the mesh is adapted. The
initial mesh has five elements, which is then optimised, based on a homogeneous isotropic metric, to
produce the mesh shown in Fig. 6(a) from which the adaptivity was initiated. The simple box problem has

S=2h
=S

a

e

2R\

A
o
"av 45

(c) mesh after one adapt (120412 elements) (d) error after one adapt

(e) mesh after two adapts (128752 elements) (f) error after two adapts

Fig. 6. Evolution of mesh and solution errors to accurately represent the three ridges. The maximum errors in (b), (d) and (f) are 31.70,
10.19 and 4.84, respectively. The minimum errors in (b), (d) and (f) 1.45 x 1072,3.31 x 1072 and 4.02 x 1072, respectively.

C.C. Pain et al. | Comput. Methods Appl. Mech. Engrg. 190 (2001) 3771-3796 3785

been adapted with a minimum and maximum element sizes of 0.02 and 1.0, respectively. In addition, the
maximum aspect ratio has been controlled, through the metric, to be 100.
Each ridge is defined by

fi =alge —b*) +c with b=0.07, ¢ =1, (26)

in which the three planes ¢, = 0 are defined by

2
‘]1:(X—J/)27 6122(1—)‘—)’)27 613=<§—Z)7
where

1 otherwise

a_{ﬁ if ¢, <0.07,
3

0 /qx 1s the perpendicular distance from the given plane k. These fields are held on the meshes shown in
Figs. 6(a), (c), and (e) and are exact at the nodes but have a linear variation within an element. This in-
accuracy leads to inaccuracy in the Hessian used to calculate the errors, and thus, after one adaptation of
the mesh, Fig. 6(c), the mesh resolution does not accurately reflect the fields given by Eq. (26), but has an
improved (relative to the mesh shown in Fig. 6(a)), capacity to do so. Again the fields, given by Eq. (26), on
this new mesh are more accurate and thus the mesh can more readily represent the Hessian which is used to
help guide mesh refinement, to obtain the mesh after the second adaptation, see Fig. 6(¢e).

Notice that, where the ridges cross on the surface of the domain, Fig. 6(c) and (e) the aspect ratio of the
elements is about unity and that the error measure, which is simply the volume of the element in metric
space (see Eq. (12)) normalised with the ideal element volume (1/1/72), shown on the surface of the domain
in Figs. 6(b), (d) and (f) becomes more uniform with each mesh adaptation.

Figs. 7(a) and (b) show the mesh, after the final adaptation, inside the domain on horizontal and vertical
planes through the centre of the domain, respectively. Fig. 7(a) clearly shows the anisotropy of the mesh
along the ridges and an area where the mesh has aspect ratio of unity (on the plane) where the ridges cross.
In Fig. 6(b) it is seen that the mesh in this area (of unit aspect ratio on the plane shown in Fig. 6(a)) is highly

("",mr;., m'\
Ve

"Mﬂ%
/

RN

4

A‘(}; \
N\ 7% O
N N\
b7 N\

Qi

|
il
i l’m S

il

Jl
Ol
il m

|

il

il
AM,W

(a) mesh inside domain (b) mesh inside domain

Fig. 7. Adapted mesh of a cube to follow anisotropically three ridges which are perpendicular to each other. The adapted mesh has
128752 elements and 24449 nodes. (a) and (b) show the mesh inside of the domain with (a) central horizontal cut, top view (b) central
vertical cut.

3786 C.C. Pain et al. | Comput. Methods Appl. Mech. Engrg. 190 (2001) 3771-3796

anisotropic in the perpendicular direction. These mesh features demonstrate the effectiveness of the metric
supposition method.

The mesh has been adapted, from that shown in Fig. 6(a), once to resolve the three fields with three
different interpolation error requirements. Fig. 8(a) shows the resulting distribution of edge lengths and
Fig. 8(b) the normalised in-sphere radii relative to the metric, which is our gauge of element shape quality.
A unit normalised in-sphere radius is optimal in which the in-sphere radius has been normalised with the
optimal radius (1/ \/ﬁ) The distribution of the overall element qualities (judged by Eq. (5)) is seen in
Fig. 8(c). Notice that the distributions, Figs. 8(a)—(c) have converged to approximately the same curve.

One of the five original tetrahedra, that make up the initial domain, and that has a face on one of the
faces of the cube was given a different region ID which means that the shape of this region must be
maintained throughout mesh adaptation. The resulting mesh optimisation has difficulty in conforming to
the initial boundary of the domain as well as optimising their element qualities. However, the ability to do
this is important when optimising meshes to conform to geometrically complex shapes or internal
boundaries of the domain. Thus, the element qualities are generally lower than those for the case with no
internal boundaries, see distributions in Fig. 8(d). This was demonstrated for the intermediate interpolation
error requirements of the three mesh adaptations whose results are shown in Figs. 8(a)—(c).

The parameters dictating the speed of the optimisation (£, k) (see Section 2.2), were increased from the
default values (0.15,0.01) to (0.25,0.05) to speed up the mesh optimisation. Mesh optimisations were then

0.16
0.09
0.14 +
0.08 - 26750 elements
0.12 -
0.07
0 2
g 5
B 006 E 010
© ©
S s
= 005 S L
kel g 0.08
c [s}
‘% 0.04 S
8 2 006 |
s S
0.03 w
0.04 -
0.02
0.01 0.02 -
0.00 L L - 0.00 s . .
0.0 05 1.0 15 2.0 25 0.0 0.5 1.0 15 2.0
Edge length In-sphere radius
(a) edge length (b) normalised element in-sphere radius
0.19
0.18 | 0.18

017 |
0.16 F
0.15 F
0.14 |
0.13 F
012 F
011 F
010 F | |
0.09 F

0.08 F
0.07 F
0.06 |
0.05 F
0.04 F
0.03 £
0.02 '
0.01 |
0.00

tetra material (78284 clems)

homogeneous (78186 elems)

Fraction of total elements
Fraction of total elements

. e 0.00 P
0.0 05 1.0 15 0.0 05 1.0 1.5

Element functional Element functional

(c) element functionals (d) element functionals

Fig. 8. Mesh adapted to more closely follow the three fields each containing a ridge like structure. Three meshes have been obtained
with varying interpolation error requirements: (a) histogram of the edge lengths in metric space (relative to the ideal length); (b) the
in-sphere radius distribution (used to define the quality of an element); (c) the overall functional judging the quality of the elements.
(d) is the same as (c) except that a tetrahedral region has been placed within the domain which the elements must conform to.

C.C. Pain et al. | Comput. Methods Appl. Mech. Engrg. 190 (2001) 3771-3796 3787

0.10 0.16 ‘ ‘ ‘
0o0s | Connectivity only 1
) Connectivity & movement 0.14 - Connectivity only B
— Node movement only Connectivity & movement
008 [- - - - Original mesh] T Nede movementonly
042 - - - - Original mesh 1
0.07 |- b %)
@ 010 | e B
S 006 [1 5 .
B ° o
-] ‘ |
[s} L] B L 4
S 005 o 008 Ol
2 5 o
S 004 [] 5 bl 1
[l £ 006 =g F I 1
g |
0.03 |-] w .
004 | |]
0.02 |- b ‘
0.02 | i B
001 F e] ‘
THeL I
0.00 . el 0.00 | . . e —
0.0 0.5 1.0 15 2.0 25 3.0 0.0 0.5 1.0 1.5 20
Edge length In-sphere radius
(a) edge length (slow optimisation) (b) element shape (slow optimisation)
0.10 T T T T T 0.16 T T T
0.09 [Connectivity only 1
: Connectivity & movement 014 | Comeciviy oy]
wos b 7. Nodemovementnly 1 Connectiviy & moverment
— Node movement only
0.12 - - - - - Original mesh h
0.07 | e 1 @
P 5
2 0.10 - o 4
S 006 [. 1 E I
3 \ - i
2) t ‘
S 005 [| 1 © 008 H’ R
%ol 1 g -
S 004 [] s ‘ '
s | 5 006 | 1
I | a-r
003 [| 1 w
‘ 004 |- | 4
0.02 | J ‘
g 0.02 - B
001 [[T] : -
| Tt i -
0.00 L= : = 0.00 1 L T e
0.0 05 1.0 15 20 25 3.0 0.0 0.5 1.0 15 2.0
Edge length In-sphere radius
(c) edge length (fast optimisation) (d) element shape (fast optimisation)

Fig. 9. (a) and (b) Slow high quality optimisation (%, = 0.15, k¥ = 0.01); and fast (c¢) and (d) low quality optimisation (%, = 0.25,
K = 0.05). The uniform mesh containing three ridges has been adapted to more closely follow the three fields. Three mesh adaptations
were performed with: node movement only; mesh connectivity only; both mesh connectivity and node movement. The original mesh
statistics are also provided for comparison.

1200 T T T T T T T T T T T T 0.18 T T
L < bl E 3
G— decreasing elems - tighter (0.15, 0.01) e
&— & increasing elems - tighter (0.15, 0.01) P 1
1000 F [A- - Adecreasing elems - (0.25, 0.05)] tighter optimisation (0.15, 0.01) 1
S & - faster optimisation (0.25, 0.05)
¥— increasing elems - (0.25, 0.05) P 1
Y k|
800 [v 1 2 E
g
38 E] H k|
c o E|
8 |
2 600 F 9 5 El
2 z
2 b] c i
© S]
ks
400 [1 < E
w
200 q k|
0 _
0 20000 40000 60000 80000 100000 120000 1.0 15
Elements Element functional
(a) CPU time (b) mesh quality comparison

Fig. 10. (a) CPU requirements to adapt the mesh from a uniform mesh of 77,497 elements to a mesh adapted to three ridges as the
interpolation error is varied (#, = 0.25, k = 0.05); (b) difference in the quality of the mesh for fast and slow optimisations (%, = 0.15,
k= 0.01).

3788 C.C. Pain et al. | Comput. Methods Appl. Mech. Engrg. 190 (2001) 3771-3796

performed for the intermediate error requirement. The resulting edge and in-sphere radii are shown in Fig. 9
with: mesh connectivity operations only; the default algorithm with both mesh connectivity and node
movement operations; node movement only; and for the original mesh. Clearly the mesh quality is far
superior with both mesh connectivity and node movement.

A comparison of the distribution of the element functionals (given by Eq. (5)) for slow and fast opti-
misations are shown in Fig. 10(b) for the intermediate error requirements, along with the CPU require-
ments of the algorithm, Fig. 10(a), as the number of elements (or required interpolation error) is varied. It
should be noticed that the CPU requirements of mesh adaptivity varies approximately linearly with the
number of elements produced. This linearity in CPU requirements is expected to carry over to general
steady state and transient problems. In these cases the CPU time for mesh optimisation is reduced because
the starting mesh is often of good quality, unlike the original mesh shown in Fig. 6(a).

4. Applications of mesh optimisation and adaptivity

As mentioned earlier, the mesh optimisation/adaptivity method presented above is of general applica-
bility. To demonstrate this we describe next its application to transient CFD problems and a steady-state
radiation transport problem.

4.1. Transient incompressible flow

The primitive variable form of the Navier—Stokes equation is given by

Du _,
Yo vWu — Vp, (27)
V-u=0, (28)

where p is the pressure, u the velocity containing three components and D is the total derivative.

The well-known difficulty in satisfying the Ladyzhenskaya—Babuska—Brezzi condition [5,8], associated
with mixed formulations can be circumvented by using a shared pressure/velocity mesh and introducing
explicitly, a stabilisation term [4,22,34,35]. This stabilisation term takes its motivation from the success of
the Poisson equation approach, see [1,2,21], for solving the incompressible Navier—Stokes equations. This
approach, which involves deriving and solving an elliptic differential equation for pressure, has been
demonstrated to introduce implicitly a fourth-order (in pressure) stabilisation term into the continuity
equation, the magnitude of which depends linearly on a product of the square of the element/cell length and
the time step size [35]. In the incompressible transient fluids problems solved here a consistent discretisation
(assemble both continuity and momentum equations then solve the resulting discretised equations) is used
and therefore the fourth-order stabilisation term is introduced explicitly into the continuity equation. This
approach is a natural beneficiary of mesh adaptivity since its main drawback is the fact that the continuity
equation can be poorly satisfied in regions with a large spatial variation of pressure. But since the offending
term depends on the square of the mesh spacing, adapting the mesh to follow variations in pressure, among
other things, ensures that this term remains small.

The momentum equations (27) and (28) are discretised by using the Crank—Nickolson time stepping
method and Galerkin discretisation in space, as outlined in [29]. However, we lump the resulting mass
matrix in the momentum equations. The non-linear terms of the form u,(Ou,/0x) are linearised using
i1, (Ou, /Ox) with i, taken from the previous time step and u, the x-component of velocity. The resulting set
of linear equations are of the form

1 u! - n 14172

CTuthl +Kpn+1/2 _ 0’ (30)

C.C. Pain et al. | Comput. Methods Appl. Mech. Engrg. 190 (2001) 3771-3796 3789

in which the matrix B; is the row sum lumped mass matrix and u, p are vectors containing the unknown
velocities and pressures centred on the nodes and the superscript represents the time level at which the
variables are defined. As well as applying Greens theorem to the second-order terms, it is also applied
to the pressure term thus introducing pressure into the natural boundary conditions which are of the
form

0 0
v——np =0, va—anyp:O, v%fnzpzo. (31)

The are used as outlet boundary conditions. The stabilisation matrix K takes on the form
K=0'M"0,
in which

Q,:/' = % /V(VN,)TZVNJ dx dy dZ,

where the integral is over the domain V, N; are the finite element shape functions associated node i and the
tensor /4 is a discretisation of the distance across the element in various directions.

4.1.1. Applications of mesh adaptivity

In this section the flow past a single infinite cylinder, which is a 2-D benchmark flow problem, and 3-D
flow past a bundle of cylinders (representing a sub-set of a boiler tube bank) is simulated with the aid of
mesh adaptivity. The Reynolds numbers used in both simulations is 200 and the non-dimensional time step
size is 0.025. In both simulations the mesh adapts every 10 time steps and the limit on the aspect ratio was
set to 1000.

For transient problems, such as these, at, say every n time steps, the mesh is adapted if F, > 3, see Eq. (5).
In practice, for the examples presented this criterion is always met and so we always adapt the mesh every
10 time steps. However, for these transient problems there is little change in the fields some of the domain
from one mesh adaptation to the next and so the mesh optimisation method has a good quality initial mesh
which speeds up the mesh optimisation. The element quality distributions for these examples were found to
be very similar to that shown in Fig. 8(b) with the slower optimisation and so these results are not shown
here.

4.1.1.1. 2-D flow past a single cylinder. The diameter of the cylinder is unity and the domain extent, shown in
Fig. 11(a), is 30 diameters long 15 wide; the centre of the cylinder is placed 7.5 diameters from the inlet
boundary on the left. At the inlet boundary, left hand side boundary of Fig. 11(a), the inlet velocity of unity
in the direction normal to this boundary was specified and all other velocity components were set to zero.
The top and bottom boundaries of the three-dimensional box shaped domain were 0.1 diameters away from
each other and on which symmetry boundary conditions were applied in order to ensure the flow remained
2-D. At the sides of the domain, again symmetry boundary conditions were applied and a no slip boundary
condition is enforced on the cylinder. Figs. 11(a)—(d) show the evolution of the mesh spanning just over half
a shedding cycle. The outlet boundary on the right most side of Fig. 11(a) has boundary conditions (31)
applied to it. In Fig. 12(a) the pressure at a time level of 123 time units is plotted and one can clearly see the
low pressure regions in the centre of the vortices shed off the cylinder. The velocity vectors at this time level
are shown in Fig. 12(b) and a close up of the mesh and velocities are shown in Figs. 12(c) and (d),
respectively.

The interpolation error was set to € = 0.03 (see Eq. (14)) and the value of ¥, in Eq. (18) was set to
0.25. The minimum and maximum element lengths (A, and Ay,) were set to 0.0025 and 4, respec-
tively.

The speed of the flow was measured at three points 2.5, 5 and 20 diameters directly down-stream of the
cylinder centre. Fig. 13(a) shows the speed of the flow at these three points and it can be deduced that the
non-dimensional frequency (Strouhal no.) is 0.183 which is in agreement with [6,19]. In addition Fig. 13(b)

3790 C.C. Pain et al. | Comput. Methods Appl. Mech. Engrg. 190 (2001) 3771-3796

(a) t=120

(b) =121

(c) =122

(d) t=123

Fig. 11. Mesh (looking down from above the domain) at four time levels into the simulation — time levels span approximately half one
shedding cycle.

shows how the number of elements changes over time into the simulation as the flow features evolve. Notice
that the number of elements is initially relatively large, due to the high gradients caused by the impulsive
initialisation of the flow. The number of elements decreases then increases as the complexity of the flow
increases and the non-linearities advect down-stream.

C.C. Pain et al. | Comput. Methods Appl. Mech. Engrg. 190 (2001) 3771-3796 3791

L
N
il
>

(c) mesh near cylinder (d) velocity vectors near cylinder

Fig. 12. Fields at # = 123 time units into simulation. (a) pressure with a linear scale from in the range (—0.87,0.60) dark is low pressure
and light is high pressure (b) velocity vectors — maximum velocity 1.6 (c) mesh in the vicinity of the cylinder (d) velocity vectors in
vicinity of cylinder.

T T 20000 T T T T
—— 2.5 diameters for cylinder centre
rrrrr 5 diameters from cylinder centre
125 | ---- 20 diameters from cylinder centre il
15000 1
fi]
€
@
° £
@ o
2]
@ K}
075 N} NI A A S
L i A0 S Y A A R I N <
) h Bt IR 10000 []
P A VAR A
0.25 . ; L 5000 L L L L
100.0 110.0 120.0 130.0 140.0 0.0 20.0 40.0 60.0 80.0 100.0
time time
(a) the speed at three points (b) number of elements

Fig. 13. Flow past a single cylinder: (a) variation with time of speed at points 2.5, 5 and 20 diameters directly downstream of the
cylinder centre (Strouhal no. 0.183); (b) variation in the number of elements with time.

4.1.1.2. Three-dimensional flow past a bundle of cylinders. The diameter of each cylinder is unity and the
domains horizontal extent is shown in Fig. 14(a). The bottom left and top right corners of the domain have
horizontal coordinates of (—11,—11) and (33, 11), respectively. The centres of the cylinders are aligned with
the z-coordinate and placed at x- and y-coordinates (in cylinder diameters) given by the following nine
pairs:

(0,0), (24,0),(—2a,0), (—a,a), (a,a),(0,2a),(—a,—a), (a,—a), (0 — 2a),

3792 C.C. Pain et al. | Comput. Methods Appl. Mech. Engrg. 190 (2001) 3771-3796

(a) mesh on surface of domain

=
I

VA'
Wliwsal
DENRREA

(c) mesh near cylinders (d) velocity vectors near cylinders

Fig. 14. Mesh and velocity field at + = 80 units into the simulation of flow past a bundle of cylinders. The mesh has 65,844 nodes and
342,828 elements: (a) top view of mesh on surface of domain; (b) top view of velocity vectors on surface of domain (maximum velocity
1.85); (c) mesh near cylinders; (d) velocity vectors near cylinders (maximum velocity is 1.82).

() t=78 o () t=79

Fig. 15. Velocity vectors in the vicinity of the nine cylinders at: (a) #+ = 76 time units; (b) ¢ = 77 time units; (c) ¢t = 78 time units;
(d) ¢t =79 time units.

in which @ = 1.679558. The depth of the domain is 4.21 diameters and at the top of the domain z = 4.21 a
symmetry boundary conditions is imposed and at the bottom z = 0 a no slip boundary conditions is en-
forced, which is also enforced on the cylinders. A symmetry boundary condition is also imposed on the

C.C. Pain et al. | Comput. Methods Appl. Mech. Engrg. 190 (2001) 3771-3796 3793

sides of the domain y = —11 and y = 11. At the inlet boundary, left hand side boundary of Figs. 14(a) and
(b), the inlet velocity of unity in the direction normal to the boundary was specified and all other velocity
components were set to zero. At the outlet boundary on the right most side of Fig. 14(a) boundary con-
ditions given by Eq. (31) are applied.

Fig. 14 show the mesh and velocity vectors at 80 time units into the simulation. At which point it has
reached a quasi steady state. Notice that the fluid tends to avoid the group of cylinders by moving around
them, see Fig. 14(b), thus producing a large scale flow governed by a the a length scale dictated by the
maximum distance between any two cylinders in the horizontal. Relatively small scale flow features are
also generated immediately behind the cylinders. Figs. 14(c) and (d) show the mesh and velocity vectors in
the vicinity of the cylinders, showing the detailed flow features picked up by mesh adaptivity including the
highly anisotropic boundary layer at the bottom of these pictures. To give an idea of the dynamics of the
flow the velocity vectors are shown in the vicinity of the cylinders at four time levels in Fig. 15. Each
mesh adaptation takes approximately 5 minutes of CPU and the ¢z = 80 was achieved in 24 h of com-
puting time.

4.2. A steady-state neutron radiation transport problem

Modelling the transport of radiation through matter is important in many engineering applications, such
as the analysis of nuclear reactors, the design of radiation shields, nuclear waste management, human
medical dosimetry and nuclear down-well logging. This is not an easy numerical problem as geometries can
be quite complex and a seven-dimensional phase space has to be addressed in full. We describe here the
solution of the problem concerning the prediction of the neutron distribution in a MAGNOX nuclear
reactor fuel assembly.

The multi-speed, linear transport equation which governs the way in which radiation propagates
through matter is [25]

V-Qy+HY=S,

where is the angular flux, €2 represents the direction of particle flow, H is the scattering-removal operator
and S a given distributed source. This equation is solved via a combined variational finite element-spherical
harmonics method which has been incorporated into the EVENT [31] code. The method gives rise to
sparse, symmetric, positive-definite systems of linear equations for the moments of the angular expansion at
each of the nodes of the finite element mesh. The equations are solved via nested preconditioned conjugate
iterative procedures [32].

The main requirement for this type of problem is that the mesh must be adapted to capture the features
of the radiation distribution in space, angle and energy. The interpolation error of the neutron scalar flux
(also shown if Fig. 16(a)) of the sixth energy group (thermal energy) was used to obtain the metric through
which the mesh is adapted. This was used in absence of suitable weights for the metrics associated with each
of the scalar neutron fluxes in the six energy groups (fields).

The mesh is adapted through a series of adaptive steps by adapting the mesh and refining the solution,
to a final mesh converged solution. The final adapted mesh is seen for a MAGNOX nuclear reactor fuel
lattice [9] at the topmost part of the domain in Figs. 16(a) and (b) shows the regions of different material
properties which the mesh in Fig. 16(a) must conform to. A MAGNOX lattice cell consists of a uranium
metal fuel rod, with associated metallic etc. cladding regions separated by a coolant gas ‘void’ from a
graphite moderator region. The whole domain is shown in Fig. 16(c) with regions shaded according to
their material properties. At the bottom of the lattice of Fig. 16(c) the mesh is a near mirror image of
that shown in Fig. 16(a) and along the elongated main body of the lattice, the mesh is highly aniso-
tropic (lengthened) in the vertical direction. The final adapted mesh has 28692 elements and 6047 nodes.
This simulation took approximately 30 min of CPU time on an Compaq XP1000 ALPHA (EV6)
workstation for a calculation consisting of 6 neutron energy groups and 5 angular variables per energy

group.

3794 C.C. Pain et al. | Comput. Methods Appl. Mech. Engrg. 190 (2001) 3771-3796

S

—_—

AN

=

=

"

=

—

—_—

—

Al

=

——

=
=N

S
==

_————

=

ve 6.62¢107
™~ 6624107
™~ 6.38107°
#1070 - 5.98+10
™~ 558107
#1077 = 5.18+107
+1070 = 4784107
#1077 — 4.38+107
41070 = 3984107
+107° — 3.58¢107°
#1070 — 3.18+107°
41070 — 2784107
" — 2.384107°
S~ 1984107
ow 1.58«107°

S—

———a
——=

——
—

X
—=

(a) mesh at top of domain for group 6 scalar flux

(b) different materials (c) materials across whole domain

Fig. 16. Diagrams showing the adapted mesh (with 28692 elements and 6074 nodes) and regions of different material of the MAG-
NOX lattice: (a) the adapted mesh at the upper part of domain with the scaler flux of the sixth energy group superimposed; (b) regions
of different material properties at the top most part of the domain; (c) whole domain showing materials.

5. Conclusions

The mesh optimisation method described here provides high quality anisotropic meshes for finite ele-
ment solvers and the indications are that the implementation can have a time complexity that varies linearly
with the number of elements. The methods have been designed to be insensitive to round-off error and the
mesh adaptivity algorithm as a whole has proven to be robust (the mesh optimisation method does not fail
to produce valid elements). This is important for long transient calculations, for example. To make the

C.C. Pain et al. | Comput. Methods Appl. Mech. Engrg. 190 (2001) 3771-3796 3795

algorithm efficient, the number of local mesh transformations considered has been minimised subject to the
constraint that high quality meshes must be obtained.

It is shown that mesh adaptivity offers a natural partnership for the pseudo compressibility method used
here to solve the incompressible Navier—Stokes equations on a shared velocity/pressure mesh, because it
offers a solution for the problem associated with this method of poor continuity satisfaction in regions with
large variations in pressure. Anisotropic adaptivity in particular offers substantial computational im-
provements over fixed mesh methods. There were no significant difficulties in solving, with iterative solution
methods, either the radiation or fluids problems on the highly distorted anisotropic meshes produced by
adaptivity. For calculations with many field variables of different types, more work is required to obtain
suitable weightings of the metrics associated with each field.

Acknowledgements

Support by the UK Engineering and Physical Sciences Research Council and British Energy Plc. through
grant GR/K/73466, is gratefully acknowledged.

References

[1] S. Abdallah, Numerical solutions for the pressure Poisson equation with Neumann boundary conditions using a non-stagged grid,
I, J. Comput. Phys. 70 (1987) 182-192.

[2] S. Abdallah, Numerical solutions for the incompressible Navier-Stokes equations in primative variables non-stagged grid II,
J. Comput. Phys. 70 (1987) 193-202.

[3] M. Ainsworth, J.T. Oden, A posteriori error estimation in finite element analysis, Comput. Methods Appl. Mech. Engrg. 142
(1997) 1-88.

[4] S.W. Armfield, Finite difference solutions of the Navier-Stokes equations on staggered and non-staggered grids, Comput. Fluids
20 (1991) 1-17.

[5] 1. Babuska, Error bounds for finite element method, Numer. Math. 16 (1971) 322-333.

[6] E. Berger, R. Willie, Periodic flow phenomena, Ann. Rev. Fluid. Mech. 4 (1972) 313-329.

[7] C.M. Bishop, Neural network for pattern recognition, Oxford University Press, New York, 1995.

[8] F. Brezzi, On the existance, uniqueness and approximation of saddle-point problems arising from Lagrange multipliers, RAIRO
Ser. Rouge Anal. Numer R 2 (1979) 129-151.

[9] BNFL Magnox, private communication, May, 1999.

[10] H. Borouchaki, P.J. Frey, Adaptive triangular-quadrilateral mesh generation, Int. J. Num. Methods Engrg. 41 (1998) 915-934.

[11] H. Borouchaki, P.L. George, Optimal Delaunay point insertion, Int. J. Num. Methods Engrg. 39 (1996) 3407-3437.

[12] H. Borouchaki, S.H. Lo, Fast Delaunay triangulation in three dimensions, Comput. Methods Appl. Mech. Engrg. 128 (1995)
153-167.

[13] G.C. Buscaglia, E.A. Dari, Anisotropic mesh optimization and its application in adaptivity, Int. J. Num. Methods Engrg. 40
(1997) 4119-4136.

[14] M.J. Castro-Diaz, F. Hecht, B. Mohammadi, O. Pironneau, Anisotropic unstructured mesh adaption for flow simulations, Int.
J. Num. Methods Fluids 25 (1997) 475-491.

[15] L. de Floriani, Data structures for encoding triangulated irregular networks, Adv. Engrg. Software 9 (1987) 122-128.

[16] L.A. Freitag, C. Ollivier-Gooch, Tetrahedral mesh improvement using swapping and smoothing, Int. J. Num. Methods Engrg.
40 (1997) 3979-40002.

[17] P.L. George, F. Hecht, E. Saltel, Automatic mesh generator with a specified boundary, Comput. Methods Appl. Mech. Engrg.
92 (1991) 269-288.

[18] P.L. George, Delaunay Triangulation and Meshing: Application to Finite Elements, Editions HERMES, Paris, 1998.

[19] J. Gerrard, The wakes of cylindrical bluff bodies at low Reynolds numbers, Philos. Trans. Roy. Soc. 288 (1978) 351-367.

[20] G.H. Golub, C.F. Van Loan, Matrix Computations, Johns Hopkins University Press, Baltimore, Maryland, 1983.

[21] P.M. Gresho, S.T. Chan, M.A. Christon, A.C. Hinmarsh, A little more on stabilized O, 0, for transient viscous incompressible
flow, Int. J. Num. Methods Fluids 21 (1995) 837-856.

[22] T.J.R. Hughes, L.P. Franca, A new finite element formulation for computational fluid dynamics: VII. The Stokes problem with
various well-posed boundary conditions: symmetric formulations that converge for all velocity/pressure spaces, Comput. Methods
Applied Mech. Engrg. 65 (1987) 85-96.

[23] B. Joe, Three-dimensional triangulations from local transformations, SIAM J. Sci. Stat. Comput. 10 (1889) 718-741.

[24] Y. Kallinderis, P. Vijayan, Adaptive refinement-coarsening scheme for three-dimensional unstructured meshes, AIAA J. 31 (1993)
1440-1447.

[25] E.E. Lewis W.F. Miller Jr., Computational Methods of Neutron Transport, Wiley, New York, 1984.

3796 C.C. Pain et al. | Comput. Methods Appl. Mech. Engrg. 190 (2001) 3771-3796

[26] R. Lohner, K. Morgan, K.O. Zienkiewicz, An adaptive finite element procedure for compressible high speed flows, Comput.
Methods Appl. Mech. Engrg. 51 (1985) 441-465.

[27] R. Lohner, Some useful data structures for the generation of unstructed grids, Comm. App. Numer. Methods 4 (1988) 123-135.

[28] R. Lohner, P. Parikh, Generation of three-dimensional unstructured grids by the advancing-front method, Int. J. Num. Methods
Fluid 8 (1988) 1135-1149.

[29] S. Mansoorzadeh, C.C. Pain, C.R.E. de Oliveira, A.J.H. Goddard, Finite Element simulations of incompressible flow past a
heated/cooled sphere, Int. J. Num. Methods Fluids 28 (1999) 903-915.

[30] P. Moller, P. Hansbo, On advancing front mesh generation in three dimensions, Int. J. Num. Methods Engrg. 38 (1995) 3551-
3569.

[31] C.R.E. de Oliveira, An arbitrary geometry finite element method for multigroup neutron transport with anisotropic scattering,
Prog. Nuclear Energy 18 (1986).

[32] C.R.E. de Oliveira, C.C. Pain, A.J.H. Goddard, Parallel domain decomposition methods for large-scale finite element transport
modelling, in: Proceedings of Int. Conf. on Math. Comput. Reactor Physics, Envir. Anal. Portland, USA, 1995.

[33] J. Peraire, M. Vahdati, K. Morgan, O.C. Zienkiewicz, Adaptive remeshing for compressible flow computations, J. Comput. Phys.
72 (1987) 449-466.

[34] C.M. Rhie, W.L. Chow, Numerical study of the turbulent flow past an airfoil with trailing edge seperation, AIAA J 21(11) (1983).

[35] F. Sotiropoulos, S. Abdallah, The discrete continuity equation in primitive variable solutions of incompressible flow, J. Comput.
Phys. 95 (1991) 212-227.

[36] T. Strouboulis, J.T. Oden, A posteriori error estimation of finite element approximations in fluid mechanics, Comput. Methods
Appl. Mech. Engrg. 78 (1990) 201-242.

[37] N.P. Weatherill, Efficient three-dimensional Delaunay triangulation with automatic point creation and imposed boundary
constraints, Int. J. Num. Methods Engrg. 37 (1994) 2005-2039.

[38] J. Wu, J.Z. Zhu, J. Szmelter, O.C. Zienkiewicz, Error estimation and adaptivity in Navier—Stokes incompressible flows, Comput.
Mech. 6 (1990) 259-270.

[39] X. Xu, C.C. Pain, A.J.H. Goddard, C.R.E. de Oliveria, An automatic adaptivity meshing techniques for Delaunay triangulations,
Comput. Methods Appl. Mech. Engrg. 161 (1998) 297-303.

[40] O.C. Zienkiewicz, R.L. Taylor, The finite element method, vol. 2, fourth ed., McGraw-Hill, New York, 1991.

