
1Optimal Good-Aspect-Ratio Coarsening for Unstructured MeshesGary L. Miller� Dafna Talmor� Shang-Hua TengyAbstractA hierarchical gradient of an unstructured mesh M0is a sequence of meshes M1; . . . ;Mk such that jMkjis smaller than a given threshold mesh size b. Thegradient is well-conditioned if for each i in the range1 � i � k, (1) Mi is well-shaped, namely, elementsof Mi have a bounded aspect ratio; and (2) Mi isa coarsened approximation of Mi�1. The gradientis node-nested if the set of the nodes of Mi is asubset of that of Mi�1. The problem of constructingwell-conditioned coarsening gradients is a key step forhierarchical and multi-level numerical calculations. Inthis paper, we give an algorithm for �nding a well-conditioned hierarchical gradient of a two dimensionalunstructured mesh. Our algorithm can be used togenerate both node-nested and non-nested gradients.The gradient M1; . . . ;Mk we generate is optimal inthe following sense: there exists a constant c suchthat for any other well-conditioned hierarchical gradientM 01; . . . ;M 0k, jMij � cjM 0i j, that is, the size of the meshat each level is smaller up to a constant factor.1 IntroductionThe class of hierarchical and multi-level techniques hasbecome one of the most e�ective and successful classesof numerical techniques for solving partial di�erentialequations (PDEs). These techniques have been used inmultigrid methods [4] and multi-level domain decompo-sition [5].Numerical methods such as the �nite element, �nitedi�erence, and �nite volume methods apply the follow-ing �ve basic steps to solve a PDE over a domain 
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the domain.3. Generate a system of linear or non-linear equationsover M for the governing PDEs (e.g., assemble thesti�ness matrix and the right hand vector).4. Solve the system of equations and estimate theerror of the solution.5. Adaptively re�ne the mesh and return to step (3)if needed.Once the mesh M is generated, we need to solve asystem of linear equations de�ned over M . A hierarchi-cal method solves this linear system by �rst construct-ing a hierarchical gradient of meshesM0; . . . ;Mk, whereM0 =M is the �nest mesh that discretizes 
. For eachi in the range 1 � i � k, the mesh Mi is a geometriccoarsening of Mi�1. The gist of multigrid methods andother hierarchical numerical methods is the transforma-tion of partial solutions from mesh Mi to mesh Mi�1using interpolation, and from mesh Mi to mesh Mi+1using restriction. Informally, these hierarchical methodssolve a PDE on 
 by �rst obtaining an initial vector so-lution either for M0 or for Mk, and then improving thequality of the vector by transforming it hierarchicallyup and down the hierarchy while applying some simpleand e�cient iterative methods at each level.The simplest form of a hierarchical gradient is a se-ries of nested structured meshes (regular grids). Brandtshowed, by carefully using restriction and interpolation,that the solution forM0 can be obtained very e�cientlyusing multigrid methods. See also Bramble, Pasciak andXu [10]. Nested structured hierarchical gradients areattractive choices in practice because they can be eas-ily generated and because the convergence of the struc-tured multigrid methods is well understood. However,the use of structured regular grids limits the applica-bility of this simplest class of hierarchical gradients toproblems whose domains are simple and whose solutionfunctions have small or constant Hessian [12, 5, 18].The use of unstructured meshes is inevitable inthe solution of complex problems with more intricatedomain geometry and solutions. This paper concernswith the problem of generating quality hierarchicalgradients for unstructured meshes.The e�ectiveness of a hierarchical method that uses



2an unstructured hierarchical gradient M0; . . . ;Mk de-pends on the quality of this gradient [10, 5, 6]. Inparticular, Chan and Zou provided su�cient conditionsfor multilevel additive Schwarz methods to work on un-structured meshes. Informally, their conditions require,for each i in the range 1 � i � k, that (1) Mi is well-shaped, e.g., in two dimensions elements of Mi shouldhave a bounded aspect ratio; and (2) Mi approximatesMi�1 in the numerical formulation. The coarseningproblem can thus be informally de�ned as: Given a well-shaped meshM0 and a threshold size b, construct a gra-dient M1; :::Mk with jMkj � b that satis�es conditions(1) and (2).In this paper, we give an algorithm for the coarsen-ing problem. Our algorithm guarantees the quality ofthe hierarchical gradient (i.e., it produces gradients thatsatis�es conditions (1) and (2)). It also minimizes thesize of the mesh at each level up to a constant factor. Agradient is node-nested if the set of the nodes of Mi isa subset of that of Mi�1. Our algorithm can be used togenerate both node-nested and non-nested coarseninggradients.A version of this research, for the simpler caseof quasi-uniform mesh coarsening, was included in asurvey of our work we submitted to the 5th internationalmeshing roundtable [13]. In this paper we address theproblem of general unstructured mesh coarsening.2 The problem of Mesh Coarsening2.1 Mesh qualities. A two dimensional domain 
is a planar straight-line graph (PSLG), whose boundaryis polygonal. The edges in the PSLG can representboundaries between two materials, points of specialinterest or holes. In this extended abstract we assumea simple form of this general de�nition. Our domain isthe unit square, and its boundary is the square's fouredges.A mesh is a discretization of the domain. Thediscrete components of the mesh are the mesh elements.We mostly discuss triangular meshes, whose elementsare triangles. We will often refer to the following threecategories of meshes: (1) grids: a mesh whose elementsare squares of equal size. (2) quasi-uniform unstructuredmeshes: a mesh whose elements' side lengths di�er byat most a constant factor. (3) unstructured meshes: ageneral mesh, with no restriction of the elements' sizeand shape.Not all meshes perform equally well in numericalcomputations. Numerical and discretization error de-pend on the geometric shape and size of the mesh el-ements [17]. We will use the following de�nitions forquantifying the geometric shape and mesh element size.Definition 2.1. The edge-length function of a

mesh M , elM , is de�ned for each x 2 
 to be the lengthof the longest edge of all the mesh elements that containx. Definition 2.2. The aspect ratio of a triangularmesh element is the smallest angle of the element.The aspect ratio of a mesh is the smallest angle of itselements.A mesh is said to be of bounded aspect ratio if itsaspect ratio is larger than �, where � is a prede�nedparameter quantifying the mesh quality. We note thatthere are many de�nitions for the aspect ratio of a twodimensional mesh which are interchangeable with theabove de�nition [2].The el function is a measure of the mesh elementsize; the aspect ratio is a measure of the element shape.These two qualities are often at odds: to produce a goodaspect ratio mesh conforming to the boundary the meshoften has to be �ner. The goal of mesh generation is toconstruct a good aspect ratio mesh whose element sizesare as large as possible (so that the number of meshelements is as small as possible).2.2 Mesh coarsenings. A coarsening M 0 of a meshM is a mesh whose edge length function elM 0 is point-wise bigger than elM but still conforms to the samedomain.The coarsening can be classi�ed as element-nested,node-nested or non-nested. In general, a triangularmesh does not have any element-nested coarsening,unless it was carefully crafted as such. Furthermore,coarsening, even in the relaxed sense of node{nestedmeshes, can cause a degradation in the aspect ratioof the coarser mesh compared to that of the �nermesh. In this paper, we are interested in generatinga sequence of respectively coarser meshes - a gradientof mesh coarsenings. This sequence will be referredto as the hierarchical coarsening gradient of M . Theobjective of this paper is to develop an automatic meshcoarsener which guarantees good aspect ratio of theentire coarsening gradient. We now introduce somede�nitions to formalize our discussion.Definition 2.3. The depth of an hierarchicalgradient is the number of meshes (levels) in the gra-dient; The width of level i of the gradient is jMij, thenumber of elements in the mesh Mi.Definition 2.4. Let � be a constant in the range0 < � < �=2; and let b; I be two positive constants.A hierarchical gradient M0; :::;Mk in two dimensions isa (�; I; b){Well-Conditioned Hierarchical gradientif jMkj � b and for each i in the range 1 � i � k eachangle � in Mi satis�es � < � < � � �. Furthermore,every two adjacent meshes are I{locally similar, i.e.elMi+1 � IelMi .



3The �rst condition, good aspect ratio, is motivatedby the requirement from iterative methods: The multi-grid method and multi-level domain decomposition usean iterative method to \smooth" the residual errorat each level. The convergence properties of iterativemethods are related to the aspect ratio of the underly-ing mesh. Chan and Zou [6] showed that bounded as-pect ratios at each level are important for both additiveSchwarz based multi-level domain decomposition andmultigrids. The second condition, the local similarity,is motivated by the restriction and interpolation phasesof the multigrid methods, which are used to transformpartial solution between meshes in adjacent levels of thehierarchy. To reduce the interpolation and restrictionerrors, adjacent meshes should approximate each otherwell. Both local similarity and bounded aspect ratiowere used in Chan and Zou's analysis, which showedthat they are su�cient for multilevel additive Schwarzmethods to work on unstructured meshes.GivenM0 and (�; I; b), the problem of hierarchicalmesh coarsening is to �nd a (�; I; b)-well conditionedhierarchical gradient with smallest depth and width.2.3 Previous approaches to mesh coarsening.To produce a node nested coarsening, a subset of the �nemesh nodes is picked, and retriangulated to form thecoarse mesh. Various approaches to mesh coarseningdi�er in the methods they use to pick the coarsermesh nodes, and the retriangulation method. Theproblem of mesh coarsening received much attention,see [9, 19, 11, 15, 1, 7]. However, none of the papers wefound address the geometrical issues of mesh coarsening.Properties such as element quality of the mesh or thesize of the intersection of the coarse and �ne mesh (theirlocal similarity) are not discussed beyond empiricalobservations.Picking the node set of the coarser mesh using amaximal independent set (MIS) technique seems to bethe most popular approach [5, 9, 19, 11, 15, 7]. The1D skeleton of the �ne mesh is viewed as a graph,and a set of nodes such that no two share an edgeis picked (independence). A node not picked for thecoarse mesh must neighbour a node that was retained,so the independent set is maximal. An MIS can beconstructed to ensure a constant factor reduction in thenumber of the mesh nodes. However, we now show thatthe MIS technique can not guarantee the aspect ratioof the coarsened meshes, both for quasi-uniform and forgeneral unstructured meshes.Quasi-uniform unstructured mesh coarsen-ing: The MIS on the 1D skeleton technique is very suc-cessful in reducing the mesh size to a fraction of its orig-inal size; however it carries no guarantees for the other

qualities of the mesh hierarchy, such as its aspect-ratio.The problem is illustrated in Figure 1: certain choicesof an MIS of the original mesh degrade the aspect ra-tio of the coarser mesh. The aspect ratio degradationcompounds with repeated applications. This can be ob-served even for very uniform meshes, as in the grid-likemesh of the �gure.
Figure 1: Repeated applications of MIS can degrade theaspect ratio.General unstructured mesh coarsening:Above we gave an example of a quasi-uniform mesh forwhich certain choices of the MIS cause repeated degra-dation of its aspect ratio. For general unstructuredmeshes, a much stronger statement is true: there ex-ists an unstructured mesh such that all possible choicesof MIS result in a coarsening hierarchy with increasinglyworse aspect ratio.Let M0 be a one dimensional mesh whose nodes areP = f2i�1 � 1 : i = 1 � � �ng. The edges of the meshare between adjacent points, M0 is a line graph of nnodes. The aspect ratio of a one dimensional mesh isthe maximum ratio between two adjacent edges, hencethe aspect ratio of M0 is equal to 2.For this mesh there is no well-conditioned coarsen-ing gradient of depth logn. This statement is a corol-lary of the results presented in this paper. Since theMIS technique reduces the size of the mesh by a con-stant factor at each level, it fails to produce good aspectratio coarsenings.In particular, the MIS technique de�nes a hierar-chical gradient where the jth mesh fMjg has node setPj = f2i2j�1 � 1 : i = 1 � � �n=2jg. In other words, Pj isformed by taking every other point of Pj�1. The aspectratio of mesh Mj is therefore at least 22j � 1, and wors-ens super{exponentially. This one dimensional examplecan easily be extended to two and three dimensions.As part of the results in this paper, we will ob-tain bounds for the shortest (up to a constant) well-conditioned gradient for this mesh and provide simplealgorithms for its generation.3 Function Based Mesh CoarseningIn this section, we present our approach to mesh coars-ening. In order to construct a well-conditioned hier-archical gradient we have to overcome the escalating



4degradation of the mesh quality, demonstrated in theprevious section.Rather than using only the information present inthe respectively coarser meshes, we use an intermediaterepresentation which we term \spacing functions". Thespacing functions, along with the point set of theinitial mesh, capture the information necessary for thegeneration of the coarser meshes.At a high level, M0 de�nes a spacing function f0which describes the typical size and point spacing ofM0. Our idea is to compute a spacing function fifor each level, and use it to generate Mi. Given thespacing functions our task is then to create a pointset that is \spaced" according to that function, andtriangulate it (as for mesh generation [12]). We referthis mesh coarsening technique as function-basedcoarsening. It contains four steps: (1) recover thespacing function of the initial mesh; (2) increase thespacing value of the mesh points smoothly to obtain thenew spacing functions; (3) delete some mesh nodes sothat the remainder nodes are spaced according to thenew spacing function; and (4) compute the Delaunaytriangulation of the nodes obtained in Step (3).3.1 Recovering the spacing function: We �rstformalize our notion of a spacing{function.Definition 3.1. Let � > 1 be a real number. Apoint set P is �-spaced according to a function f if forany two points p; q 2 P , f(p1) + f(p2) < �kp� qk. Thefunction f is then referred to as the �-spacing functionof P .The initial spacing function we use is based on thenatural spacing of the original mesh:Definition 3.2. The nearest neighbour (NN)function of a point set P � 
 assigns to each pointp 2 P the distance to the point q 2 P nearest to itsuch that q 6= p. It can be extended to the domain 
 byassigning to a point x 2 
 the radius of the smallestclosed ball centered at x and containing at least twopoints from P .3.2 Coarsening the spacing functions:Definition 3.3. Let P be a point set in a domain
 in IR2. Let g be a spacing function over 
. Let C > 1be a real number. The C-coarsening of f with respectto P is a spacing function over 
 such that for all x 2 
fg;C;P (x) = minp2P f̂g;C;p(x);where for each point p 2 P , f̂g;C;p(x) = C � g(p) +kp� xk. When clear from the context, we omit g fromthe notation.We can use a simpler way to generate the coarseningfunction for quasi-uniform functions g:

Procedure: one level coarsen(M)Input: M, a mesh over a square 
.C, the coarseing factor.g, the �-spacing function of M.Output: M1, a coarser triangular mesh.Method:1. Let P0 be the square's corners; P1 themesh nodes located on the square'sedges; P2 the rest of the mesh nodes.2. Compute f(pi) = fg;C;P (pi) for each pi 2 P.3. Let P̂2 be the set of points fpg in P2whose distance from the boundaries isat least �f(p). (� is a small fixedconstant.)4. Construct a conflict graph with respectto f: CG(P0 [ P1 [ P̂2).5. Let S be a maximal independent set ofCG generated by first considering thepoints P0, then P1, and finally P̂2.6. ReturnM1 = DT (S), the Delaunay triangulationof S.Figure 2: One level function based coarsening.Definition 3.4. Let P be a point set in a domain
 in IR2. Let g be a spacing function over 
. LetC > 1 be a real number. The C-threshold-coarseningfunction is de�ned as:tg;C;P (x) = max(g(x); Cminy2
 g(y))The set of coarsening functions we suggest is therefore:� for general coarsening: ffNN;2i;P g and � is aconstant depending on the aspect ratio (see section5).� for quasi{uniform coarsening: ftNN;2i;P g and� = 2.3.3 Coarsening the meshes: Let M0 be the initialmesh, C the factor by which the mesh should becoarsened. To coarsen the mesh, we �rst generate thecoarsened spacing function values for each node of themesh using C , and then pick a subset of the mesh nodeswhich is �-spaced by this spacing function. One possiblemethod to pick the coarsened mesh nodes is by using acon
ict graph.



5Definition 3.5. The con
ict graph of a pointset P , CG(P ), with respect to a �-spacing function f isa graph CG(P ) = (P;E) whereE = �(pi; pj) : kpi � pjk < f(pi) + f(pj)� �Our proposed scheme is outlined in Figure 2. Thisone-level scheme can be naively extended to a multi-level scheme by repeatedly applying it with coarser andcoarser spacing functions fi, generated using functioncoarsening and constants of the form C i for level i.However this in general produces a gradient thatis not node-nested, for it generates the mesh at eachlevel independently of other levels. To construct anode-nested hierarchical gradient, we need a subtlerapproach. At a high level, we �rst generate Mk, thecoarsest mesh. We then enforce that nodes in Mk willbe chosen in Mk�1. Repeating this enforcement, wecan build a node-nested well-conditioned gradient. Theresulting scheme is outlined in Figure 3.Lemma 3.6. Si+1 is also an independent set ofCGi.Proof: Because C > 1, Ci+1 > C i. Therefore, for eachpoint x 2 
, fCi+1;P (x) � fCi;P (x). By de�nition 3.5,CGi+1 is a supergraph of CGi. Hence any independentset of the former must be independent in the later aswell. 2Therefore, Algorithm multi level coarsen cor-rectly generates a node-nested multilevel gradient.The rest of this paper will show the correctnessof this coarsening method, stated in the following twotheorems:Theorem 3.7. Let M0 be a mesh whose smallestangle is bounded bellow by �. The hierarchical gradient(M1; :::;Mk) produced by the algorithm of Figure 3 hasthe following properties:1. aspect ratio: There is a constant �1 depending on� only such that for 1 � i � k, the smallest angleof mesh Mi is bounded bellow by �1.2. local similarity: There is a constant I dependingon � only such that for each 1 � i � k, elMi �IelMi�1 .Therefore, the hierarchical gradient generated is(�1;I1; jMkj)-well-conditioned.Theorem 3.8. Let M 01,...,M 0k be any (�; I ; b)-well-conditioned gradient of M0, for some positive constants�; I. Let M1,...,Mk be the result of the application ofthe algorithm of Figure 3 on M0 for k iterations, thenthere is a constant c such that 8i : jMij � cjM 0i j. HenceM1,...,Mk is (�1; I1; c1b)-well-conditioned gradient.A simple corollary of the last theorem, is that ouralgorithm optimizes the number of levels up to an

Procedure: multi level coarsen(M0)1. Let k be the length of the requiredhierarchy.2. Let Mk = one level coarsen(M0; fCk+1;P ).Let Sk be the point set of Mk.3. For i = k � 1 to 1� Let Si be a maximal independent setof CGi that contains Si+1. Notethat by Lemma 3.6 Si+1 must be anindependent set of CGi.� Let Mi = DT (Si).4. Return (M1; :::;Mk).Figure 3: Multi level nested function based coarseing.additive constant factor when coarseing the mesh downto a constant sized mesh:Corollary 3.9. If M 01,...,M 0k is (�; I; 1){well{conditioned gradient, then M1,...,Mk can be completedto an (�1;I1; 1){well{conditioned gradient of depth atmost k + c1.4 Spacing Functions Qualities and MeshQualitiesThis section focuses on the intimate connection betweenthe mesh qualities and its spacing function qualities. Inparticular, we show that spacing functions can capturethe two most important mesh properties: its elements'shape, and its elements' size and number. This con-nection is the foundation of our coarsening approachcorrectness, which will be discussed in the next section.4.1 From a mesh to a spacing function. Thespacing function we recover from each mesh is theNearest Neighbour function (NN), see De�nition 3.2.This function depends only on the node set of themesh. A generalization of this function, the localfeature size function, plays an important role in theanalysis of mesh generation algorithms [16, 3, 14]. Thesefunctions change slowly spatially, in analogy to theslowly changing element sizes of the well-shaped mesh.Definition 4.1. A function f is 1-Lipschitz over adomain 
 if for any two points x,y in 
, jf(x)�f(y)j �kx� yk.The proofs of the following two lemmas are elementary:Lemma 4.2. (Ruppert [16]) For each point set Pin IRd, NNP is 1-Lipschitz.Lemma 4.3. NNP is a 2-spacing function of P .



6 For a good aspect ratio mesh M , the el function(see De�nition 2.1) is equivalent up to a constant factorto NN.Theorem 4.4. (Ruppert [16]) Let M be a meshwith smallest angle bound �. Let P be the node set ofM . There exist two positive constants C1; C2 dependingon � only such that C1elM (x) � NNP (x) � C2elM (x).Since every point set P is 2-spaced according to the1-Lipschitz function NNP , these notions by themselvesare not powerfull enough to describe good aspect ratiomeshes. Intuitively, spacing functions prevent pointsfrom clustering, but do not prevent the formation ofarbitrarily large gaps. We now formalize the notion ofa gap in terms of the spacing function.Definition 4.5. Let f be an integrable functionover a domain 
. The f-area of a sub-domain B of
 is given by Af (B) = RB 1=(f(x))2dA.The following lemma shows triangles of a good aspectratio mesh are of constant NN-area, and relates thenumber of elements to the area of the domain. Theproof is omitted from this extended abstract.Lemma 4.6. Let M be a mesh with smallest anglebound �.1. For each mesh triangle T :sin2 �2C22 � ANNM (T ) � 12C21 sin �2. Let N be the number of triangles, then:sin2 �2C22 N � ANNM (
) � 12C21 sin �NWhere C1 and C2 are the constants of Theorem 4.4.We capture the notion of a gap using empty balls. A ballB is called an empty ball with respect to a mesh M if Bdoes not contain any node of M . The following lemmastates an empty ball can intersect at most a constantnumber of triangles. The proof is omitted from thispaper.Lemma 4.7. Let M be a mesh with smallest anglebound �. Any empty ball B intersects at most C3 =4 + 3 4sin4 � triangles of M .Finally, the following theorem states the relationshipbetween a good aspect ratio mesh and spacing functions.In particular, a good aspect ratio mesh posseses a 2-spacing function and has no large gaps in terms ofthat spacing function. The next sub-section shows theinverse statement is true as well. Theorem 4.8 is asimple corollary of Lemmas 4.6 and 4.7.Theorem 4.8. Let M be a mesh with smallestangle bound �.1. Let C4 = C3 12 sin �C21 . The NNM -area of each emptyball is at most C4.

2. Let L = 2 � 8C4, and let x be any point of 
.Any ball containing x whose radius is greater thanL �NNM (x) must contain some node p of the mesh.The 1-dimensional analogs of the notion of gaps,and their related theorems, are valid for the functionNN on the boundaries of 
 (in our case the four edgesof the unit square). They were omitted for the sake ofbrevity.4.2 From a spacing function to a mesh. In thissection we show that a point set spaced according toa spacing function, where no large gaps in terms ofthe spacing function occur, is the node set of a goodaspect ratio mesh. In particular, we show the Delaunaytriangulation of that point set is of good aspect ratio.The following theorem is the inverse of Theorem 4.8.Theorem 4.9. Let P be a set of points �{spacedby a 1{Lipschitz function f , such that each empty ballB is of constant bounded area, Af (B) � �. Thenthe smallest angle � of each Delaunay triangle of P isbounded by: sin � � 8��2� .The following theorem shows that the function f�{spacing P is equivalent up to a constant factor to thefunction NNP . The connection between f and elDT(p)then follows by Theorem 4.4.Theorem 4.10. Let P be a set of points �{spacedby a 1{Lipschitz function f , such that for each emptyball B Af (B) � �, then:NNP (x)=(L2 + 2L) � f(x) � (2� + 1)NNP (x)For the sake of brevity, the theorems in this sub-section ignored the boundary case. For the analogousresults on the boundaries, we further require that thepoint set is spaced on the boundaries with no largegaps in terms of the spacing function restricted tothe boundaries, and that points in the interior of 
stay away from the boundary: for some constant �,the distance of each non boundary point p from theboundary must be at least � � f(p). The aspect ratio ofthe Delaunay triangulation then depends on � as well.5 Spacing Function Based CoarseningThis section is concerned with the correctness of ourcoarsening approach, as stated in Theorems 3.8 and3.7. In particular, we show that given an initialbounded aspect ratio mesh and a coarsening factor C ,our algorithm produces a bounded aspect ratio meshwhich is (up to a constant factor) the smallest meshwhose el function is at most C times larger (point wise)than the el function of the original mesh.5.1 Aspect ratio of the coarser meshes. We�rst establish that our coarsening functions are all 1-



7Lipschitz. This follows from De�nitions 3.3 and 3.4.Lemma 5.1. If g is 1{Lipschitz, then for any coars-ening factor C � 0, fg;C;P and tg;C;P are 1{Lipschitz.The next theorem establishes the main result of thissub-section: that the mesh generated by our one-levelcoarsening algorithm, see Figure 2, is a bounded aspectratio mesh.Theorem 5.2. Let P be the point set of a mesh M0with smallest angle bound �. Let C > 1 be the coarseningfactor. Let M1 be the coarser mesh returned by ourone-level coarsening algorithm with spacing parameter� = 12pL and coarsening function fNN;C;P . Further,assume L � 4, where L is the constant of Theorem 4.8.There exists a constant �1 depending on � and � onlysuch that the smallest angle of M1 is larger than �1.Proof: Let P1 denote the point set of M1. P1 is �{spaced by fNN;C;P . Theorem 4.9 implies that if thef -area of any Delaunay ball B is smaller than somepositive constant �, then sin �1 � 8��2� . Let f stand forfNN;�;P . Therefore, we proceed to prove the theoremby showing that the f -area of any empty ball in M1 isbounded .We �x some point p 2 P1 and a ball B through p.Without loss of generality, let f(p) = 1, let p = (0; 0),and let the center of B lie on the y-axis, see Figure4. We show that if the ball B is large, it cannot beempty. Let L be the constant of Theorem 4.8. Let B'sradius be 12L. We show B must contain a point of P1in its interior. (Note that B all ready contains p on itsboundary).The center coordinate of B is (0; 12L). Let B0 bea smaller ball nested in B of radius 3L centered at(0; 2+3L). The proof consists of showing that B0 mustcontain a point of P , and that this point could not beruled out by taking a maximal independent set of thecon
ict graph of P , and hence must belong to P1 aswell.Since M is a good aspect ratio mesh, Theorem 4.8implies any ball of radius LNNP (x) through x mustcontain a point q 2 P . Since f � NNP , any ball ofradius Lf(x) through x must contain a point q 2 P .Let x0 = (0; 2). x0 lies on the boundary of B0, and bythe 1-Lipschitz property of f , f(x0) � f(p) + 2 = 3.Hence, the ball B0 which is of radius 3L � Lf(x0) mustcontain a point q 2 P .Without loss of generality, let q = (x; y) be on theboundary of B0. (all the bounds we derive hold if q isinternal to B0 as well). We now show q 2 P1 as well.We use the following facts about q:I. By Lemma 5.3, the distance from q to the boundaryof B is larger than y=2.

q=(x,y)

(0,12L)
B

p=(0,0)

B

(0,3L+2)
B

0
1Figure 4: The existence of a mesh point of M1 in B.II. By Lemma 5.4, if L � 4 and � = 12pL, thenf(q)=� � y=6.Let B1 be the ball with center q and radius f=� (seethe dashed ball in Figure 4.) If point q 62 P1, then theremust be some point w 2 P1 such that q and w share anedge in the con
ict graph used to create P1. If w 2 Bthen B contains a point of P1 in its interior, and weare done, therefore w must be outside B and propertyI implies d = kw � qk � y=2.Because f is 1-Lipschitz, f(w) � d+ f(q). q and wshare a con
ict graph edge, hence f(q) + f(w) � �d.The last two inequalities imply 2f(q) + d � �d. Byproperty I, 2f(q) � (�� 1)d � (�� 1)y=2. By propertyII, �y=3 � 2f(q) � (� � 1)y=2. Hence �=3 � (� � 1)=2.However, the last is a contradiction for � > 3, as is thecase for our �.This contradiction implies q and w do not share acon
ict graph edge, and q 2 P1. This in turn impliesthat if B's radius is greater 12L, B can not be empty.2 The following two lemmas were necessary for theproof of the theorem:Lemma 5.3. If L > 2=3 then the distance from anypoint (x; y) on B0 to the boundary of B is greater thany=2.Proof: First notice that y > 0. The distance from (x; y)to the boundary of B is equal to R �px2 + (y �R)2,where R = 12L. Because (x; y) is on the boundaryof B0, we have x2 + (y � r � 2)2 = r2, implyingx2 + y2 = 2y(2 + r)� 4� 4r = y(4 + 6L)� 4� 12L, forr = 3L. This in turn implies, after some manipulationswe omit, that x2 + (y � r � 2)2 < (R � y=2)2. Thislast inequality is true when L > 2=3, y > 0, L > 0 andR = 12L. Because y=2 < R we have, after taking thesquare root, R�px2 + (y �R)2 > y=2, completing theproof. 2



8 Lemma 5.4. If L > 4 and � = 12pL, thenfNN;C;P (q)� � 1 + kp� qk� � y6 :Proof:As shown in the proof of Lemma 5.3 kp� qk2 =x2+y2 = y(4+6L)�4�12L. Thus, f(q) � 1+kp� qk �1 + py(4 + 6L)� 4� 12L. The Lemma states that1 + py(4 + 6L)� 4� 12L � �y=6, or equivalently,py(4 + 6L)� 4� 12L � �y=6� 1Squaring both side, it su�ces to show that y(4 +6L)�4�12L < �2y2=36+1��y=3. Hence it is enoughto show that �2y2=36��y=3�y(4+6L) > 0. Since y > 2this is true if �2=18��=3�(4+6L) > 0. The conditionsL > 4 and � = 12p(L) guarantees this inequality. 2The aspect ratio bound derived in Theorem 5.2applies to the special case of quasi-uniform meshes aswell. However, we can obtain better bounds, using asimpler proof, for quasi-uniform meshes. These boundsare derived for a simpler coarsening spacing function,the threshold spacing function of De�nition 3.4.Theorem 5.5. Let P be the point set of a mesh M0with smallest angle bound �. Let C > 1 be the coarseningfactor. Let M1 be the coarser mesh returned by our one-level coarsening algorithm with spacing parameter � = 2and coarsening function tNNP ;C;P . The smallest angle�1 of M1 is bounded bellow by:sin �1 � 13 + 4Lwhere L is the constant from Theorem 4.8, dependingon � only.5.2 Local similarity. We now show that neighbour-ing meshes in the hierarchical coarsening gradient gen-erated by our method our localy similar, see De�ni-tion 2.4.The proof of the following lemma is elementary:Lemma 5.6. [linearity and monotonicity] For anyC > 1 and for any 
 � 1. For each point x 2 
fg;C;P (x) � fg;
C;P (x) � 
fg;C;P (x):Theorem 5.7. Let M0 be a mesh whose smallestangle bound is �. There exists a constant I dependingon � only such that such that for each mesh Mi+1 ofthe hierarchical gradient (M1; :::;Mk) produced by theAlgorithm of Figure 3elMi+1 � IelMiProof: The coarsening function used to create Mi+1 isfi+1 = fg;2C;P , the one used to createMi is fi = fg;C;P ,

for some value C . By Lemma 5.6,fi+1 � 2fiBy Theorem 4.10NNPj=(L2 + 2L) � fj � (2� + 1)NNPjwhere Pj is the set of points of mesh Mj . By Theorem4.4 C1elMj � NNPj � C2elMjHence C1=(L2 + 2L)elMi+1 � fi+1 � 2fiand 2fi � 2(2� + 1)C2elMiand we can take I to be 2C2(2� + 1)(L2 + 2L)=C1. 25.3 Size optimality. We now show, up to a con-stant, that for any C > 1 the size of the mesh producedby our one-level coarsening algorithm is the smallestpossible. The following Lemma shows that fg;C;P is thelargest 1{Lipschitz function that is smaller than C �g atthe points of the initial mesh M0. The proof is elemen-tary, and is omitted from this paper.Lemma 5.8. Let C > 1. Let h be a 1-Lipschitzfunction over the domain 
 such that for all p 2 Ph(p) � C � g(p). Then for all x 2 
, h(x) � fg;C;P (x).We now show that tNNM ;C;P and fNNM ;C;P areequivalent up to a constant factor for a quasi{uniformmesh M . This connection implies it su�ces to showthat meshes spaced by fNNM ;C;P are of optimal size.Lemma 5.9. Let M be a quasi{uniform mesh, i.e.there exist ratio constant � such that:minNNM � NNM (x) � �minNNMThenfNNM ;C;P=(2L�+ 2�) � tNNM ;C;P � fNNM ;C;P :Definition 5.10. Let M and M 0 be two well-shaped meshes over a domain 
. For any positiveC > 1, we say elements of M 0 are at most a fac-tor of C larger than those of M if for all x 2 
,elM 0(x) � C � elM (x). In other words, for each pointx 2 
, the largest triangle of M 0 that contains x is nomore than a factor C larger than the largest triangle ofM that contains x.We now state the main result of this sub-section:Theorem 5.11. Let M0 be mesh with smallest an-gle bound �0. For any C > 1, Let M be the mesh ob-tained by the algorithm of Figure 2 with coarsening fac-tor C. Let M 0 be a mesh with minimal angle bound �0whose elements are at most a factor of C larger thanthose of M0, then there exists a constant D dependingon �0 and �0 only such that jM j � DjM 0j.



9Proof: By the assumption elM 0 � CelM0 . Since theconstant bounds we derived in previous Lemmas dependon the smallest angle, we will refer to them in this proofsas a function of the relevant angle. Let P0 be the nodeset of M0 and let P be the node set of M . By Theorem4.4, NNM 0C2(�0) � elM 0 � CelM0 � CC1(�0)NNM0Therefore by Lemma 5.8,NNM 0 � fNNM0 ;CC2(�0)C1(�0) ;P0By Lemma 5.6:NNM 0 � C2(�0)C1(�0)fNNM0 ;C;P0By Theorem 4.10:NNM 0 � (2�(�0) + 1)C2(�0)C1(�0) NNMwhere � is the spacing constants used in the coarseningalgorithm. Now Lemma 4.6 implies the result. 2A simple application of this Lemma to all the levelsof the coarsening gradient proves Theorem 3.8, whereasTheorem 5.2 can be applied to its multi-level version,Theorem 3.7.6 Practical Concerns6.1 Mesh quality. The proof outlined in previoussections provided a constant bound on the smallest an-gle of of the mesh hierarchy. However the bound canbe quite small mathematically. Given the practical im-portance of the coarsening problem, we implementedthe algorithm presented in this paper. We now pro-vide some experimental evidence that our coarseningapproach indeed produces coarsening meshes of veryreasonable quality in practice.We include the numerical data for the \crack plate"mesh, which was generated by Omar Ghattas and Xi-aogang Li of Carnegie Mellon University. The physicalproblem modeled by the mesh is a plate with a hori-zontal crack running from the middle of the left edge tothe center of the plate [8]. The following Table 1 liststhe coarsening hierarchy statistics of our method. SeeFigure 5 for these meshes.To o�er a comparison, we also implemented amaximal independent set approach. We applied the MISbased program on the same initial mesh and observeda signi�cant and iterative degradation on the smallestangle as shown in Table 2. This smallest angle occurs

coarsening num num min maxfactor nodes triangles angle angle1 5120 9984 41.25 93.882.1 2242 4374 18.43 135.014 1035 1982 18.23 135.068 305 564 18.43 135.0116 148 272 19.44 123.6932 119 220 18.01 130.2364 102 189 18.01 130.23128 92 170 18.01 130.23Table 1: Quality of meshes coarsened using a functionbased approach. The �rst row describes the originalmesh.coarsening num num min maxiteration nodes triangles angle angle1 1215 2346 18.43 126.872 289 537 14.04 139.403 76 131 3.37 135.00Table 2: Quality of meshes coarsened using a maximalindependent set approach.in the center of the square, so the iterative degradationcan not be attributed to edge e�ects, or our choiceof boundary coarsening. The crack mesh is extremelyunstructured, and the MIS based program fails toguarantee a bound on the aspect ratio in part becauseit attempts to reduce the number of mesh elements toomuch. Note that with our approach, the coarseningfactor is doubled in later iterations but not the numberof nodes.6.2 Algorithmic e�ciency. The algorithm of Fig-ure 2 has a simple O(n2) time implementation. Wean appropriate choice of data structures, we can reducethe algorithmic cost. The two computational expensivesteps are the coarsened function construction and thepoint set selection according these functions.The spacing function computation as described inFigure 2 takes O(n2) time. In practice we can use otherrelated spacing function, that still yeild a theoreticallycorrect algorithm. A particulary useful one is thespacing function based on a balanced quad-tree [3] ofthe �ne mesh. The balanced quad-tree can be e�cientlycoarsened and can be used as an estimation of thespacing function of the underlying mesh. An importantnext step in our work is to develop such an e�cientand practical implementation of our function basedcoarsening algorithm.References
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