Developing a Practical Projection-Based Parallel Delaunay Algorithm

Guy Blelloch
Gary L. Miller
Dafna Talmor

Carnegie-Mellon University
Delaunay Triangulation

- Given a set of points $P \in \mathbb{R}^2$ find their Delaunay triangulation.
- T is a Delaunay triangle if its circumcircle contains no points from P in its interior.
- Many applications; we are motivated by scientific computing applications such as mesh generation.
Goal of this Work

Developing a practical parallel Delaunay algorithm that works well for a variety of distributions
Sequential Delaunay Algorithms

Variety of theoretical paradigms:

<table>
<thead>
<tr>
<th>Algorithm by:</th>
<th>Paradigm</th>
<th>Major Subroutines</th>
</tr>
</thead>
<tbody>
<tr>
<td>Shamos and Hoey [75]</td>
<td>divide and conquer</td>
<td>stitching two subdiagrams</td>
</tr>
<tr>
<td>Guibas and Stolfi [83]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dwyer [87]</td>
<td>divide and conquer with bucketing</td>
<td>stitching two subdiagrams</td>
</tr>
<tr>
<td>Fortune [87]</td>
<td>sweepline</td>
<td>advancing a front of Delaunay edges</td>
</tr>
<tr>
<td>...</td>
<td>incremental construction</td>
<td>planar point location</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

All have been implemented and well-studied:

- Surveys by Su and Drysdale [95] and Fortune [90].
- Algorithms’ run times within a factor of 2 of each other.
- **Dwyer’s algorithm:**
 - Generally the best: run times, operation counts.
 - Guaranteed $O(n \log n)$.
 - On some distributions (e.g. uniform) expected $O(n)$.
 - Bucketing: merge subsolutions into rows; merge rows.
Parallel Delaunay Algorithms

- **Variety of theoretical paradigms:**

<table>
<thead>
<tr>
<th>Algorithm</th>
<th>Paradigm</th>
<th>Major Subroutines</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aggarwal et al. [88]</td>
<td>divide and conquer</td>
<td>parallelize stitching step</td>
</tr>
<tr>
<td>Reif and Sen [89]</td>
<td>polling - Randomized divide and conquer</td>
<td>compute sub-diagram; divide with duplication</td>
</tr>
<tr>
<td>Edelsbrunner and Shi [91]</td>
<td>marriage before conquest: projection-based</td>
<td>planar point location; 2D CH; linear programming</td>
</tr>
</tbody>
</table>

- **Implementations not based on theory:**
 - Implementations based on bucketing algorithms and local search: Su[94], Merriam[92], Teng et al. [93]
 - Efficient only for uniform distributions: performance degrades to $O(n^2)$ work for clustered points.
 - Until now, no work addressed at general distributions.

- **The problem: inefficiency of theoretical algorithms**
 - High constant factors can not be offset by available parallelism.
 - **We have to develop more efficient variants**
Work–Efficiency

- **Work**: Total number of operations.
- **Estimating Efficiency**: Measuring the constant factors in work complexity.

Program A is α--work efficient with respect to program B if $w(A) \leq \frac{1}{\alpha}w(B)$.

Work–efficiency in our case:
- The base–line we picked is Dwyer’s program.
- Work : floating point operation count.
- Experimental measurements over our test-suite.

Restating our goal: developing a parallel Delaunay algorithm which is
- work-efficient with respect to Dwyer’s algorithm over our test-suite.
- parallel.
Which Paradigm to pick?

- **Obstacles to efficiency:**

<table>
<thead>
<tr>
<th>Algorithm</th>
<th>obstacles</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aggarwal et al. “divide and conquer”</td>
<td>complicated data structures and subroutines</td>
</tr>
<tr>
<td>Reif and Sen “polling”</td>
<td>study by Su: duplication causes expansion factor of 6</td>
</tr>
<tr>
<td>Edelsbrunner and Shi “marriage before conquest”</td>
<td>complexity $O(n \log^2 n)$ subroutines: linear programming; planar point location; 2D convex hull</td>
</tr>
</tbody>
</table>

- **Our Algorithm:**
 - “Marriage before conquest”.
 - Projection–based.
 - A simpler algorithm:
 - solves a simpler problem: Edelsbrunner and Shi find 3D CH, we find 2D Delaunay triangulation.
 - only subroutine used: 2D CH.
Algorithm: “Marriage before Conquest”
Algorithm: Projection-Based
Algorithm: Quality of Divide

• **Lemma:** If the path is derived from a parabola centered on a line L, then the left sub-problem is composed of points:
 - Left of L or
 - On the path.

Two important implications:

1. To decide if a point is in the left sub-problem, need only its orientation with respect to L (no planar point location).
2. If L is a median line, number of internal points is halved.
Algorithm: End Game (Theory) —

- No internal points - our strategy no longer $O(n \log n)$ work.
 - Edelsbrunner and Shi’s strategy works till the end.
 - The strategy uses linear programming, ham sandwich cuts and planar point location.

- Finding triangulation of a polygon (theory):
 - $O(n)$ sequential algorithm by Wang and Chin [95].
 - Switch to other $O(n \log n)$ parallel algorithms.
Algorithm: Theoretical view

Our algorithm: using certain subroutines we get the first $O(n \log n)$ work projection–based algorithm.

Delaunay (P, B)

<table>
<thead>
<tr>
<th>If (no internal points) then return OTHER_DELAUNAY(P)</th>
<th>$O(\log^2 n)$</th>
<th>$O(n \log n)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>find median line L=(x,0) or L=(0,y) Q = projection(P)</td>
<td>$O(\log^2 n)$</td>
<td>$O(n)$</td>
</tr>
<tr>
<td>$O(1)$</td>
<td>$O(n)$</td>
<td></td>
</tr>
<tr>
<td>find Delaunay path H using Q: H= OVERMARS(Q)</td>
<td>$O(\log^2 n)$</td>
<td>$O(n)$</td>
</tr>
<tr>
<td>split (P,B) into (P’,B’) and (P”,B”') return Delaunay(P’,B’) U Delaunay(P”,B”')</td>
<td>$O(1)$</td>
<td>$O(n)$</td>
</tr>
<tr>
<td>$O(\log^3 n)$</td>
<td>$O(n \log n)$</td>
<td></td>
</tr>
</tbody>
</table>
Algorithm: Experimental view

Our implementation: worst case $O(n^2)$, efficient in practice.

\[
\text{Delaunay} \ (P, B) \quad \Rightarrow \quad \text{worst case work} \quad \text{experimental work}
\]

<table>
<thead>
<tr>
<th>If (no internal points) then return \ OUR_END_GAME(B)</th>
<th>O(n)</th>
<th>O(n^2)</th>
<th>O(nlogn)</th>
</tr>
</thead>
<tbody>
<tr>
<td>find median line \ L=(x,0) or \ L=(0,y) \ Q = projection(P)</td>
<td>O(log2n)</td>
<td>O(n)</td>
<td>O(n)</td>
</tr>
<tr>
<td>find Delaunay path H using Q: \ H= OUR_CH(Q)</td>
<td>O(log2n)</td>
<td>O(nlogn)</td>
<td>O(n)</td>
</tr>
<tr>
<td>split \ (P,B) into \ (P',B') and \ (P'',B'') \ return Delaunay(P',B') U Delaunay(P'',B'')</td>
<td>O(1)</td>
<td>O(n)</td>
<td>O(n)</td>
</tr>
</tbody>
</table>
Algorithm: End Game (Practice) —

- End-game subproblems: 10-20 points.
- Switch strategy once problem size is small.

Our strategy for finding a triangulation of a simple Delaunay polygon:

- Pick some node u, find one edge out of it.
- Cost: small constant factor $O(n)$ work.
- Use edge to split into two Delaunay polygons.
- Worst case $O(n^2)$.
Algorithm: Convex Hull (Practice)

- Simple quickhull: $O(n^2)$.
- Guaranteed $O(n \log n)$ 2D CH:
 - Chan et al. [SODA 95]
 - An efficient version of Kirkpatrick and Seidel’s ultimate convex hull.
- A hybrid algorithm:
 - Few levels of quickhull followed by the optimal algorithm:
 - Try to reduce problem size quickly using quickhull.
 - Switch to guaranteed method.
Experimental Techniques: Language

The NESL language:

- Nested data parallelism: well suited for irregular algorithms
- Good prototyping language:
 - Bridges between the PRAM model and the processor based model.
 - Measuring work and depth: complexity guarantees for primitives.
 - Portable to various parallel architectures.
 - Easy debugging on workstation.
 - Work in progress: compiled into C with MPI primitives.

Goals of the NESL implementation

- Measure work efficiency
- Measure parallelism (depth)
Experimental Techniques: Test Suite

- Scientific Computing Motivated
 - No artificial distributions

- Related to the uniform distribution via a Lipschitz function

- Easy to generate
 - No “one-sized” examples.

Uniform, Normal, Line, Kuzmin
Experimental Techniques: Measurements

We compare the number of floating point operations between our parallel program and Dwyer’s implementation:

- Correlated with run–time for this type of programs.
- Can be used to compare programs with different primitives.
- Primitive counts do not account for the following:
 - Orientation test (CCW): costs 5.
 - N orientation tests with the same line: cost $3N + 5$.
- Particular implementation of Dwyer’s known to be efficient.

Our experimentation shows our program is close to 0.5-work-efficient.
Experimental Results: Efficiency

- Our algorithm performs almost uniformly on the various distributions.
- Dwyer’s smarter cuts and merge order bring less savings on the Line distribution.
Experimental Results: Depth

- Estimated the total depth of the call tree.
- Depth not strongly influenced by distribution.
- Parallelism = \(\frac{\text{Work}}{\text{Depth}} \).
- E.g. for \(N = 131072 \) available parallelism is 45000.
Experimental Results: Work Division

- Convex Hull accounts for the largest portion of operations.
- Similar convex hull costs across the distributions.
- Similar over all work division across the distributions.
Conclusions and Continuations

Our contributions:

- We developed a parallel projection–based algorithm which is:
 - competitively work-efficient for a variety of distributions, even compared to the best sequential algorithms.
 - $O(n \log n)$ work (theoretically).

- An application–driven representative test–suite.

Future work:

- Communication costs and run times:
 - On–going work: translating to C with MPI primitives (Jonathan Hardwick).

- Open Questions:
 - Experimentally observed 2D CH behaviour: $O(n)$ expected run–time (for our test-suite).
 - Parallel Delaunay triangulation of simple polygons.