Marc Khoury
Our geometric intuition developed in our three-dimensional world often fails us in higher dimensions. Many properties of even simple objects, such as higher dimensional analogs of cubes and spheres, are very counterintuitive. Below we discuss just a few of these properties in an attempt to convey some of the weirdness of high dimensional space.
You may be used to using the word "circle" in two dimensions and "sphere" in three dimensions. However, in higher dimensions we generally just use the word sphere, or
Consider a square with side length 1. At each corner of the square place a circle of radius
We can do the same thing in three dimensions. At each corner of the unit cube place a sphere of radius
To understand what happens in higher dimensions we need to compute the radius of the inner sphere in terms of the dimension. The radius of the inner sphere is equal to the length of the diagonal of the cube minus the radius of the spheres at the corners. See Figure 3. The latter value is always
Thus the radius of the inner sphere is
In dimensions two and three, the sphere is strictly inside the cube, as we've seen in the figures above. However in four dimensions something very interesting happens. The radius of the inner sphere is exactly
The area of a circle
The intersection between a sphere and a plane is a circle. If we look at the sphere from a side view, as shown in Figure 5, we see that the radius can be computed using the Pythagorean theorem (
Summing up the area of each cross section from the bottom of the sphere to the top of the sphere gives the volume
Now that we know the volume of the
(Approximately because the denominator should be the Gamma function, but that's not important for understanding the intuition.)
Set
The volume of the unit
Given the rather unexpected properties of high dimensional cubes and spheres, I hope that you'll agree that the following are somewhat more accurate pictorial representations.
Notice that the corners of the cube are much further away from the center than are the sides. The
Suppose that you wanted to place a band around the equator of the unit sphere so that, say, 99% of the surface area of the sphere falls within that band. See Figure 8. How large do you think that band would have to be?
In two dimensions the width of the band needs to be pretty large, indeed nearly 2, to capture 99% of the perimeter of the unit circle. However as the dimension increases the width of the band needed to capture 99% of the surface area gets smaller. In very high dimensional space nearly all of the surface area of the sphere lies a very small distance away from the equator!
To provide some intuition consider the situation in two dimensions, as shown in Figure 10. For a point on the circle to be close to the equator, its
What happens to the values of the coordinates as the dimensions increases? Figure 11 is a plot of 20000 random points sampled uniformly from a
Recall that every point on a
The really weird thing is that any choice of "equator" works! It must, since the sphere is, well, spherically symmetrical. We could have just as easily have chosen any of the options shown in Figure 12.
Consider a unit circle in the plane, shown in Figure 13 in red. The blue circle is said to kiss the red circle if it just barely touches the red circle. (Leave it to mathematicians to think that barely touching is a desirable property of a kiss.) The kissing number is the maximum number of non-overlapping blue circles that can simultaneously kiss the red circle.
In two dimensions it's easy to see that the kissing number is 6. The entire proof is shown in Figure 14. The proof is by contradiction. Assume that more than six non-overlapping blue circles can simultaneously kiss the red circle. We draw the edges from the center of the red circle to the centers of the blue circles, as shown in Figure 14. The angles between these edges must sum to exactly
It is more difficult to see that in three dimensions the kissing number is 12. Indeed this was famously disputed between Isaac Newton, who correctly thought the kissing number was 12, and David Gregory, who thought it was 13. (Never bet against Newton.) Looking at the optimal configuration, it's easy to see why Gregory thought it might be possible to fit a 13th sphere in the space between the other 12. As the dimension increases there is suddenly even more space between neighboring spheres and the problem becomes even more difficult.
In fact, there are very few dimensions where we know the kissing number exactly. In most dimensions we only have an upper and lower bound on the kissing number, and these bounds can vary by as much as several thousand spheres!
Dimension | Lower Bound | Upper Bound |
---|---|---|
1 | 2 | 2 |
2 | 6 | 6 |
3 | 12 | 12 |
4 | 24 | 24 |
5 | 40 | 44 |
6 | 72 | 78 |
7 | 126 | 134 |
8 | 240 | 240 |
9 | 306 | 364 |
10 | 500 | 554 |
11 | 582 | 870 |
12 | 840 | 1357 |
13 | 1154 | 2069 |
14 | 1606 | 3183 |
15 | 2564 | 4866 |
16 | 4320 | 7355 |
17 | 5346 | 11072 |
18 | 7398 | 16572 |
19 | 10668 | 24812 |
20 | 17400 | 36764 |
21 | 27720 | 54584 |
22 | 49896 | 82340 |
23 | 93150 | 124416 |
24 | 196560 | 196560 |
As shown in the table, we only know the kissing number exactly in dimensions one through four, eight, and twenty-four. The eight and twenty-four dimensional cases follow from special lattice structures that are known to give optimal packings. In eight dimensions the kissing number is 240, given by the