04/23/14
01:15:40

CS61B: Lecture 37
Wednesday, April 23, 2014

AMORTI ZED ANALYSI S

W’ ve seen several data structures for which | claimed that the average tine
for certain operations is always better than the worst-case tine: hash tables,
tree-based disjoint sets, and splay trees.

The mat hematics that proves these clainms is called _anortized_analysis_.
Anmortized analysis is a way of proving that even if an operation is
occasional 'y expensive, its cost is made up for by earlier, cheaper operations.

The Averagi ng Met hod

Most hash tabl e operations take Q(1) time, but sometimes an operation forces
a hash table to resize itself, at great expense. Wat is the average time to
insert an iteminto a hash table with resizing? Assunme that the chains never
grow |l onger than (1), so any operation that doesn’t resize the table takes
Q(1) time--nore precisely, suppose it takes at npbst one second.

Let n be the nunber of itens in the hash table, and N the nunber of buckets.
Suppose it takes one second for the insert operation to insert the newitem
increment n, and then check if n = N If so, it doubles the size of the table
fromNto 2N, taking 2N additional seconds. This resizing schene ensures that
the load factor n/Nis always |ess than one.

Suppose every newy constructed hash table is enpty and has just one bucket--
that is, initially n =0 and N= 1. After i insert operations, n =1i. The

nunber of buckets N nust be a power of two, and we never allowit to be |less
than or equal to n; so Nis the snallest power of two > n, which is <= 2n.

The total time in seconds for _all_ the table resizing operations is

2+4+8+ ... + N4+ N2+ N=2N- 2.

So the cost of i insert operations is at nmost i + 2N - 2 seconds. Because

N <= 2n = 2i, the i insert operations take <= 5i - 2 seconds. Therefore, the
average running tinme of an insertion operationis (5i - 2)/i =5 - 2/i
seconds, which is in O(1) tine.

We say that the _anortized_running_time_ of insertionis in (1), even though
the worst-case running tine is in Theta(n).

For al nbst any application, the anortized running tinme is nore inportant than
the worst-case running tine, because the anortized running tine deternines the
total running tine of the application. The main exceptions are sone
applications that require fast interaction (like video ganes), for which one
real ly slow operation mght cause a noticeable glitch in response tine.

37

The Accounting Met hod

Consi der hash tables that resize in both directions: not only do they expand
as the nunber of items increases, but they also shrink as the nunber of itens
decreases. You can't analyze themw th the averagi ng nmethod, because you don’t
know what sequence of insert and renpve operations an application m ght
perform

Let’s try a nore sophisticated nethod. |In the _accounting_nethod_, we "charge"
each operation a certain anobunt of time. Usually we overcharge. Wen we
charge nore tine than the operation actually takes, we can save the excess tine
in a bank to spend on |ater operations.

Before we start, let’s stop using seconds as our unit of running tine. W
don’t actually know how many seconds any conputation takes, because it varies
fromconputer to conputer. However, everything a conputer does can be broken
down into a sequence of constant-tinme conputations. Let a _dollar_ be a unit
of time that’s |long enough to execute the sl owest constant-time conputation
that comes up in the algorithmwe’ re analyzing. A dollar is a real unit of
time, but it's different for different conputers.

Each hash tabl e operation has

- an _anortized_cost_, which is the nunber of dollars that we "charge" to do
that operation, and

- an _actual _cost_, which is the actual nunmber of constant-time conputations
the operation perforns.

The anortized cost is usually a fixed function of n (e.g. $5 for insertion into
a hash table, or $2 log n for insertion into a splay tree), but the actual cost
may vary wildly fromoperation to operation. For exanple, insertion into a
hash table takes a long, long tinme when the table is resized.

Wien an operation’s anortized cost exceeds its actual cost, the extra dollars
are saved in the bank to be spent on later operations. Wen an operation’s
actual cost exceeds its anortized cost, dollars are withdrawn fromthe bank to
pay for an unusual ly expensive operation.

If the bank bal ance goes into surplus, it neans that the actual total running
tine is even faster than the total anortized costs inply.

THE BANK BALANCE MUST NEVER FALL BELOW ZERO. |f it does, you are spending nore
total dollars than your budget clains, and you have failed to prove anything
about the anortized running time of the algorithm

Think of anortized costs as an allowance. If your dad gives you $500 a nonth
al | onance, and you only spend $100 of it each nonth, you can save up the
difference and eventually buy a car. The car may cost $30,000, but if you
saved that nmoney and don’t go into debt, your _average_ spending obviously
wasn’'t nore than $500 a nonth.

04/23/14
01:15:40

Accounting of Hash Tables

Suppose every operation (insert, find, renove) takes one dollar of actual

running time unless the hash table is resized. W resize the table in two

ci rcunst ances.

- An insert operation doubles the table size if n = N AFTER the newitemis
inserted and n is increnmented, taking 2N additional dollars of tine for
resizing to 2N buckets. Thus, the load factor is always |ess than one.

- The renove operation halves the table size if n = N4 AFTER the itemis
deleted and n is decrenmented, taking N additional dollars of time for
resizing to N2 buckets. Thus, the load factor is always greater than 0.25
(except when n = 0, i.e. the table is enpty).

Ei ther way, a hash table that has _just_ been resized has n = N 2.
A newly constructed hash table has n = 0 itens and N = 1 buckets.

By trial and error, | cane up with the follow ng anortized costs.

insert: 5 dollars
renove: 5 dollars
find: 1 dol I ar

I's this accounting valid, or will we go broke?

The crucial insight is that at any time, we can look at a hash table and know a
| ower bound for how many dollars are in the bank fromthe values of n and N

We know that the last tine the hash table was resized, the nunber of itens n
was exactly V2. So if n!= N2, there have been subsequent insert/renpve
operations, and these have put noney in the bank.

We charge an anortized $5 for an insert or renpbve operation. Every insert or
renove operation costs one actual dollar (not counting resizing) and puts the
remaining $4 in the bank to pay for resizing. For every step n takes away from
N 2, we accunul ate another $4. So there nust be at least 4/n - N2| dollars
saved (or 4n dollars for a never-resized one-bucket hash table).

| MPORTANT: Note that 4|n - N 2| is a function of the data structure, and does
NOT depend on the history of hash table operations performed. In general, the
accounting method only works if you can tell how rmuch noney is in the bank (or,
nore commonly, a mnimum bound on that bank bal ance) just by |ooking at the
current state of the data structure--w thout knowi ng how the data structure
reached that state.

An insert operation only resizes the table if the nunber of items n reaches N

According to the fornula 4|n - N 2|, there are at least 2N dollars in the bank.
Resi zing the hash table from N to 2N buckets costs 2N dollars, so we can afford
it. After we resize, the bank bal ance m ght be zero again, but it isn't

negati ve.

A renpve operation only resizes the table if the nunmber of items n drops to

N 4. According to the formula 4/n - N 2|, there are at |least N dollars in the
bank. Resizing the hash table fromNto N2 buckets costs N dollars, so we can
afford it.

The bank bal ance never drops bel ow zero, so ny anortized costs above are valid.
Therefore, the anortized cost of all three operations is in Q(1).

Observe that if we alternate between inserting and del eting the same item over
and over, the hash table is never resized, so we save up a |ot of noney in the
bank. This isn't a problem it just means the algorithmis faster (spends
fewer dollars) than nmy anortized costs indicate.

37

Why Does Anortized Anal ysis Work?
Wiy does this netaphor about putting noney in the bank tell us anything about
the actual running tine of an algorithn?

Suppose our accountant keeps a |l edger with two colums: the total anortized
cost of all operations so far, and the total actual cost of all operations so
far. Qur bank balance is the sumof all the anortized costs in the left
colum, mnus the sumof all the actual costs in the right colum. [If the bank
bal ance never drops bel ow zero, the total actual cost is less than or equal to
the total anortized cost.

Total anortized cost | Total actual cost

$5 | $1

$1 | $1

$5 | $3

|

. | .

$5 | $1

$5 | $2, 049

$1 | $1

$12, 327 >= $10, 333

Therefore, the total running tine of all the actual operations is never |onger
than the total anortized cost of all the operations.

Anortized analysis (as presented here) only tells us an upper bound (big-Ch) on
the actual running tine, and not a | ower bound (big-Orega). It might happen
that we accunul ate a big bank bal ance and never spend it, and the total actual
running time mght be nmuch less than the anortized cost. For exanple, splay
tree operations take anortized Q(log n) time, where n is the nunber of items in
the tree, but if your only operation is to find the sane itemn tines in a row,
the actual average running tine is in (1).

If you want to see the anortized analysis of splay trees, Goodrich and Tanessia
have it. |If you take CS 170, you’' |l see an anortized analysis of disjoint
sets. | am saddened to report that both anal yses are too conplicated to
provide nmuch intuition about their running tinmes. (Especially the inverse
Ackermann function, which is ridiculously nonintuitive, though cool

nonet hel ess.)

