04/21/14
23:33:18

CS61B: Lecture 36
Wednesday, April 23, 2014

Today's reading: GCoodrich & Tamassia, Section 10.3.

SPLAY TREES

A splay tree is a type of balanced binary search tree. Structurally, it is
identical to an ordinary binary search tree; the only difference is in the
algorithms for finding, inserting, and deleting entries.

Al'l splay tree operations run in Q(log n) time _on_average_, where n is the
nunber of entries in the tree. Any single operation can take Theta(n) time in
the worst case. But any sequence of k splay tree operations, with the tree
initially enmpty and never exceeding n itenms, takes O k log n) worst-case tine.

Al though 2-3-4 trees make a stronger guarantee (_every_ operation on a 2-3-4
tree takes O(log n) tine), splay trees have several advantages. Splay trees
are sinpler and easier to program Because of their sinplicity, splay tree
insertions and deletions are typically faster in practice (sonetinmes by a
constant factor, sometinmes asynptotically). Find operations can be faster or
sl ower, dependi ng on circunstances.

Splay trees are designed to give especially fast access to entries that have
been accessed recently, so they really excel in applications where a small
fraction of the entries are the targets of npbst of the find operations.

Spl ay trees have become the nost wi dely used basic data structure invented in
the last 30 years, because they're the fastest type of bal anced search tree for
many applications.

Tree Rotations

Li ke many types of bal anced search Y X
trees, splay trees are kept bal anced I\ rotate left I\
with the help of structural changes X A S n Y
called _rotations_. There are two /v /IQa ITA [\
types--a left rotation and a right A R > NN
rotation--and each is the other’s / A/ B\ rotate right /B\/CQ

reverse. Suppose that X and Y are

binary tree nodes, and A, B, and C are subtrees. A rotation transfornms either
of the configurations illustrated above to the other. GCbserve that the binary
search tree invariant is preserved: Kkeys in A are less than or equal to X
keys in C are greater than or equal to Y; and keys in B are >= X and <= Y.

Rotations are also used in AVL trees and red-bl ack trees, which are discussed
by Goodrich and Tamassia, but are not covered in this course.

Unlike 2-3-4 trees, splay trees are not kept perfectly bal anced, but they tend
to stay reasonably well-bal anced nobst of the tine, thereby averaging Ol og n)
time per operation in the worst case (and sonetines achieving (1) average
running time in special cases).

Splay Tree Operations

[1] Entry find(Qbject k);

The find() operation in a splay tree begins just like the find() operation in
an ordinary binary search tree: we walk down the tree until we find the entry
with key k, or reach a dead end (a node from which the next |ogical step |eads
to a null pointer).

36

However, a splay tree isn't finished its job. Let X be the node where the
search ended, whether it contains the key k or not. W _splay_ X up the tree
through a sequence of rotations, so that X becones the root of the tree. Wy?
One reason is so that recently accessed entries are near the root of the tree,
and if we access the same few entries repeatedly, accesses will be very fast.
Anot her reason is because if X lies deeply down an unbal anced branch of the
tree, the splay operation will inprove the bal ance along that branch.

Wien we splay a node to the root of the tree, there are three cases that
determ ne the rotations we use.

-1- Xis the right child of a left G G X
child (or the left child of a right I\ I\ [\
child): let P be the parent of X p X A P G
and |l et G be the grandparent of X [\ /D ==> [\ /D ==> /NN
We first rotate X and P left, A X P AN A
and then rotate X and G right, as ITA N\ /I \/Q / A/ BVC\/ D\
illustrated at right. N N

/B\/CQ / A/ B\ Zi g- Zag

The mirror image of this case--

where X is a left child and Pis a right child--uses the sane rotations in
mrror image: rotate X and P right, then X and Gleft. Both the case
illustrated above and its mirror inmage are called the "zig-zag" case.

-2- Xis the left child of a left G P X
child (or the right child of a right / \ I\ !\
child): the ORDER of the rotations P 7 X G n P
is REVERSED from case 1. W [\ /D ==> [\ 1N => /A [\
start with the grandparent, X A AN AN NG
and rotate G and P right. I \/Q / A/ BVC\/ D IB\/ \
Then, we rotate P and X right. non A
/ A/ B\ Zig-Zig /CQ\/D

The nmirror inage of this case--

where X and P are both right children--uses the same rotations in mirror image:
rotate Gand P left, then P and X left. Both the case illustrated above and
its mirror image are called the "zig-zig" case.

We repeatedly apply zig-zag and zig-zig rotations to X; each pair of rotations
raises X two levels higher in the tree. Eventually, either X will reach the
root (and we're done), or X will become the child of

the root. One nore case handles the latter P X
ci rcunst ance. I\ I\
X n n P

-3- X s parent Pis the root: we rotate X and P I\ I ==> [A [\
so that X becormes the root. This is called the N NN
"zig" case. / A/ B\ Zig /B\/C
Here's an exanple of "find(7)". Note how the tree’ s bal ance inproves.

11 11 11 [7]

I\ I\ I\ I\

1 12 1 12 [71 12 1 11
/A /\ /\ /\ / o\
0o 9 0o 9 1 9 05 9 12
/\ /\ AR /AN
3 10 =zig-zig=> [7] 10 =zig-zag=> 0 58 10 =zig=> 3 68 10
I\ /\ I\ I\
2 5 5 8 3 6 2 4

/A /\ /A
4 [7] 3 6 2 4
/\ /\

6 8 2 4

04/21/14
23:33:18

By inspecting each of the three cases (zig-zig, zig-zag, and zig), you can
observe a few interesting facts. First, in none of these three cases does the
depth of a subtree increase by nore than

two. Second, every tine X takes two 9

steps toward the root (zig-zig or zig-zag), I\

every node in the subtree rooted at X noves 8 10

at | east one step closer to the root. /

As nmore and nore nodes enter X's subtree, 7

nmore of themget pulled closer to the root. /

A node that initially lies at depth d on / I\

the access path fromthe root to X noves 5 0 8

to a final depth no greater than 3 + d/2. / I\

In other words, all the nodes deep 4 6 9
down the search path have their / I\ \
dept hs roughly halved. This tendency 3 ==========> 4 7 10
of nodes on the access path to nove / find(1) I\

toward the root prevents a splay tree 2 2 5

from stayi ng unbal anced for |ong / \

(as the exanple at right illustrates). 1 3

[2] Entry min(); 0
Entry max();

These nethods begin by finding the entry with nininumor nmaxi rum key, just like
in an ordinary binary search tree. Then, they splay the node containing the
m ni mum or maxi mum key to the root.

[3] Entry insert(Object k, Object v);

insert() begins by inserting the newentry (k, v), just like in an ordinary
bi nary search tree. Then, it splays the new node to the root.

[4] Entry renove(Object k);

An entry having key k is renoved fromthe tree, just as with ordinary binary
search trees. Recall that the node containing k is removed if it has zero or
one children. If it has two children, the node with the next higher key is
renoved instead. In either case, let X be the node renbved fromthe tree.
After X is renopved, splay X' s parent to the root. Here's a sequence
illustrating the operation renpve(2).

2 4 5
[\ [\ [\
1 7 1 7 4 7
/ o\ ==> / o\ ==> / \
5 8 5 8 1 8

In this exanple, the key 4 noves up to replace the key 2 at the root. After
the node containing 4 is renmpbved, its parent (containing 5) splays to the root.

If the key k is not in the tree, splay the node where the search ended to the
root, just like in a find() operation.

36

Postscript: Babble about Splay Trees (not exam nable, but good for you)
It may inprove your understanding to watch the splay tree ani mati on at
http://ww. ibr.cs.tu-bs. de/ courses/ ss98/ audi i/ appl et s/ BST/ Spl ayTr ee- Exanpl e. ht nl

Splay trees can be rigorously shown to run in O(log n) average tinme per
operation, over any sequence of operations (assumng we start froman enpty
tree), where n is the largest size the tree grows to. However, the proof is
quite elaborate. It relies on an interesting algorithm analysis technique
called _anortized_anal ysis_, which uses a _potential _function_ to account for
the tinme saved by operations that execute nore quickly than expected. This
"saved-up time" can |later be spent on the rare operations that take |onger than
Q(log n) time to execute. By proving that the potential function is never
negative (that is, our "bank account" full of saved-up tinme never goes into the
red), we prove that the operations take Q(log n) tinme on average.

The proof is given in Goodrich & Tamassia Section 10.3.3 and in the brilliant
original paper in the Journal of the Association for Conputing Machinery,

vol une 32, nunber 3, pages 652-686, July 1985. Unfortunately, there’s not nuch
intuition for why the proof works. You crunch the equations and the result
comes out.

I'n 2000, Danny Sleator and Robert Tarjan won the ACM Kanel | akis Theory and
Practice Award for their papers on splay trees and anortized analysis. Splay
trees are used in Wndows NT (in the virtual nmenory, networking, and file
system code), the gcc conpiler and GNU C++ library, the sed string editor, Fore
Systems network routers, the nost popul ar inplenmentation of Unix malloc, Linux
| oadabl e kernel nodules, and in nuch other software.

When do operations occur that take nore than Q(log n) time? /
Consi der inserting a | ong sequence of nunbers in order: 1, 2, 3, 4
etc. The splay tree will beconme a long chain of left children (as /
illustrated at right). Now, find(1l) will take Theta(n) tine. 3
However, each of the n insert() operations before the find took Q1) /
tine, so the average for this exanple is (1) tine per operation. 2

/

1
The fastest inplenentations of splay trees don't use the bottomup splaying
strategy discussed here. Splay trees, like 2-3-4 trees, conme in bottomup and
top-down versions. Instead of doing one pass down the tree and anot her pass

up, top-down splay trees do just one pass down. This saves a constant factor
in the running tine.

There is an interesting conjecture about splay trees called the _dynamc_
_optimality_conjecture_: that splay trees are as asynptotically fast on _any_
sequence of operations as _any_ other type of search tree with rotations.

What does this nmean? Any sequence of splay tree operations takes anortized
Q(log n) time per operation, but sometines there are sequences of operations
that can be processed faster by a sufficiently snart data structure. One
exanpl e i s accessing the sane ten keys over and over again (which a splay tree
can do in anortized Q1) tine per access). The dynamic optimality conjecture
guesses that if _any_ search tree can exploit the structure of a sequence of
accesses to achieve asynptotically faster running tinme, so can splay trees.

The conj ecture has never been proven, but it’'s not clear whether it’'s been
di sproven, either.

One special case that has been proven is that if you performthe find operation
on each key in a splay tree in order fromthe smallest key to the |argest key,
the total time for all n operations is Q(n), and not Q(n log n) as you m ght
expect .

