04/18/14
21:22:43

CS 61B: Lecture 35
Monday, April 21, 2014

Today's reading: GCoodrich & Tamassia, Sections 11.3.2.

Counting Sort

If the itens we sort are naked keys, with no associ ated val ues, bucket sort
can be sinplified to become _counting_sort_. In counting sort, we use no
queues at all; we need nmerely keep a count of how many copi es of each key we
have encountered. Suppose we sort 6 73 031503 7:

When we are finished counting, it is straightforward to reconstruct the sorted
keys fromthe counts: 0013335677

Counting Sort with Conplete Itens

Now |l et’s go back to the case where we have conplete itens (key plus associated
value). W can use a nore el aborate version of counting sort. The trick is to
use the counts to find the right index to nove each itemto.

Let x be an input array of objects with keys (and perhaps other information).

0 1 2 3 4 5 6 7 8 9
x| | | | | I | | | |
D] RREEEE |-oe- RREEEE |-oe- RREEEE |-oe- RREEEE |-oe- |---

\% \ \% \ \% \ \% \ \% \

161 1701 131 1ol 13 111 I'5] 10] [3] [7]

Begi n by counting the keys in x.
for (i =0; i <x.length; i++) {

counts[x[i].key] ++;

Next, do a _scan_ of the "counts" array so that counts[i] contains the nunber
of keys _less_than_ i.

total = 0;

for (j =0; j < counts.length; j++) {
c = counts[j];
counts[j] = total;

total = total + c;
}
Let y be the output array, where we will put the sorted objects. counts[i]
tells us the first index of y where we should put itens with key i. Walk

through the array x and copy each itemto its final position iny. Wen you
copy an itemw th key k, you nust increnent counts[k] to nake sure that the
next itemw th key k goes into the next slot.

35

ime. If gisin Qn), then
counting sort is slightly
into the buckets.

_possi bl e_val ues_ for keys
linear-time performance.

for (i =0; i <x.length; i++) {
y[counts[x[i].key]l] = x[i];
counts[x[i].key] ++;
}
y|.|.|.|.|.|.|.|i|.|.| counts | 0| 2] 3
v
6
y|.|.|.|.|.|.|.|i|i|.| counts | 0| 2] 3
Y
6 7
y|.|.|.|i|.|.|.|i|i|.| counts | 0| 2] 3
v Y
3 6 7
y IiI-I-IiI-I-I-IiIiI-I counts | 1| 2] 3
v v Y
0 3 6 7
y ool 0111 counts | 1| 2] 3
SRR |-1----- |-1--= e
v A Y
0 33 6 7
y ool 0111 counts | 1| 3] 3
SRR R EEEEE |-1--= e
vV VVyV Y
0 133 6 7
yololbore a1 counts | 2| 3] 3
R R R R R R e e
VVVVVVVVVYV
0013335677
Bucket sort and counting sort both take O(q + n) t
they take Q(n) tine. |If you're sorting an array,
faster and takes | ess nenory than bucket sort, though it’s a little harder to
understand. If you're sorting a linked list, bucket sort is nore natural,
because you’ ve already got |istnodes ready to put
However, if g is not in Q(n)--there are many nore
than keys--we need a nore aggressive nethod to get

04/18/14
21:22:43

Radi x Sort

Suppose we want to sort 1,000 items in the range fromO to 99,999,999. If we
use bucket sort, we’'ll spend so nuch time initializing and concatenating enpty
queues we' Il wi sh we'd used sel ection sort instead.

Instead of providing 100 mllion buckets, let’s provide g = 10 buckets and sort
on the first digit only. (A nunber less than 10 nmillion is said to have a
first digit of zero.) W use bucket sort or counting sort, treating each item
as if its key is the first digit of its true key.

0 1 2 3 4 5 6 7 8 9
| | [[| [|
Seee e REEEECEERRERE REEEECEERRERE RRREES RRREES REEEECEERRERE |---

\Y \ \ \ \Y \ \
| 342 |1390| | 3950] | 5384| | 6395 |7394| | 9362]
| 9583| |5849| | 8883] | 2356] |1200| |2039] | 9193
N el e e -l -l

A" \" \' \'
| 59 | 3693] | 7104] | 9993|
| 2178] | 7834] | 2114] | 3949]

Once we’ve dealt all 1,000 items into ten queues, we could sort each queue
recursively on the second digit; then sort the resulting queues on the third
digit, and so on. Unfortunately, this tends to break the set of input itens
into smaller and smaller subsets, each of which will be sorted relatively
inefficiently.

Instead, we use a clever but counterintuitive idea: we'll keep all the nunbers
together in one big pile throughout the sort; but we'll sort on the _last_
digit first, then the next-to-last, and so on up to the nost significant digit.

The reason this idea works is because bucket sort and counting sort are stable.
Hence, once we’ve sorted on the last digit, the nunbers 55,555,552 and
55,555,558 will remain ever after in sorted order, because their other digits
will be sorted stably. Consider an exanple with three-digit nunbers:

Sort on 1s: 771 721 822 955 405 5 925 825 777 28 829
Sort on 10s: 405 5 721 822 925 825 28 829 955 771 777
Sort on 100s: 5 28 405 721 771 777 822 825 829 925 955

After we sort on the mddle digit, observe that the nunbers are sorted by their
last two digits. After we sort on the nost significant digit, the nunbers are
conpl etely sorted.

Returning to our eight-digit exanple, we can do better than sorting on one
decimal digit at a time. Wth 1,000 keys, sorting would likely be faster if

we sort on two digits at a tine (using a base, or _radix_, of g = 100) or even
three (using a radix of q = 1,000). Furthernore, there’'s no need to use
decimal digits at all; on conputers, it's nore natural to choose a power-of-two
radix like g = 256. Base-256 digits are easier to extract froma key, because
we can quickly pull out the eight bits that we need by using bit operators
(which you' Il study in detail in CS 61C).

Note that g is both the nunber of buckets we're using to sort, and the radix of
the digit we use as a sort key during one pass of bucket or counting sort.
"Radi x" is a synonymfor the base of a nunber, hence the name "radix sort."

35

How many passes nmust we perforn? Each pass inspects 1092 g bits of each key.
If all the keys can be represented in b bits, the nunmber of passes is
ceiling(b/ log2 q). So the running time of radix sort is in

& (n +q) ceiling(------)).

How shoul d we choose the nunber of queues q? Let’'s choose q to be in Q(n), so
each pass of bucket sort or counting sort takes Q(n) time. However, we want

g to be large enough to keep the nunber of passes small. Therefore, let’'s
choose q to be approximately n. Wth this choice, the nunber of passes is in
Q1+ b/ log2 n), and radix sort takes

For many kinds of keys we might sort (like ints), b is technically a constant,
and radi x sort takes linear time. Even if the key length b tends to grow
logarithmcally with n (a reasonabl e nodel in many applications), radix sort
runs in time linear in the total nunmber of bits in all the keys together.

A practical, efficient choice is to make q equal to n rounded down to the next
power of two. If we want to keep nmenory use | ow, however, we can neke g equal
to the square root of n, rounded to the nearest power of two. Wth this

choi ce, the nunber of buckets is far smaller, but we only double the nunber of
passes.

Postscript: Radix Sort Rocks (not exam nable)

Linear-time sorts tend to get |ess attention than conparison-based sorts in
nost conputer science classes and textbooks. Perhaps this is because the
theory behind linear-tine sorts isn't as interesting as for other algorithmns.
Neverthel ess, the library sort routines for machines |ike Crays use radix sort,
because it kicks major ass in the speed department.

Radi x sort can be used not only with integers, but with al nost any data that
can be conpared bitw se, like strings. The |EEE standard for floating-point
nunbers is designed to work with radi x sort conmbined with a sinple prepass and
postpass (to flip the bits, except the sign bit, of each negative nunber).

Strings of different |engths can be sorted in time proportional to the total
length of the strings. A first stage sorts the strings by their lengths. A
second stage sorts the strings character by character (or several characters at
a tinme), starting with the |ast character of the longest string and working
backward to the first character of every string. W don't sort every string
during every pass of the second stage; instead, a string is included in a pass
only if it has a character in the appropriate place.

For instance, suppose we're sorting the strings CC, BA, CCAAA BAACA, and
BAABA. After we sort themby | ength, the next three passes sort only the |ast
three strings by their last three characters, yielding CCAAA BAABA BAACA. The
fifth pass is on the second character of each string, so we prepend the
two-character strings to our list, yielding CC BA CCAAA BAABA BAACA. After
sorting on the second and first characters, we end with

BA BAABA BAACA CC CCAAA.
Observe that BA precedes BAABA and CC precedes CCAAA because of the stability

of the sort. That’'s why we put the two-character strings before the five-
character strings when we began the fifth pass.

