04/16/14
01:47:16

CS61B: Lecture 33
Wednesday, April 16, 2014

Today's reading: GCoodrich & Tamassia, Section 11.4.

DI SJO NT SETS

A _disjoint_sets_ data structure represents a collection of sets that are
disjoint: that is, noitemis found in nore than one set. The collection of
disjoint sets is called a _partition_, because the itenms are partitioned anong
the sets.

Moreover, we work with a _universe_ of items. The universe is nmade up of all
of the itens that can be a nenber of a set. Every itemis a menber of exactly
one set.

For exanpl e, suppose the items in our universe are corporations that still
exi st today or were acquired by other corporations. Qur sets are corporations
that still exist under their own nane. For instance, "Mcrosoft,"
"Forethought,” and "Web TV' are all nenbers of the "M crosoft" set.

We will Iimt ourselves to two operations. The first is called a _union_
operation, in which we nmerge two sets into one. The second is called a _find_
query, in which we ask a question like, "What corporation does Wb TV belong to
today?" More generally, a "find" query takes an itemand tells us which set it
isin. W will not support operations that break a set up into two or nore
sets (not quickly, anyway). Data structures designed to support these
operations are called _partition_ or _union/find_ data structures.

Applications of union/find data structures include maze generation (which
you' Il do in Honework 9) and Kruskal's algorithmfor conputing the nmininum
spanning tree of a graph (which you'll inplenent in Project 3).

Union/find data structures begin with every itemin a separate set.

| Piednont Air| |Enpire Air| |US Air| |Pacific Southwest| |Wb TV|] |Mcrosoft]|

The query "find(Empire Air)" returns "Enpire Air". Suppose we take the union
of Piednont Air and Enpire Air and called the resulting corporation Piednont
Air. Simlarly, we unite Mcrosoft with Web TV and US Air with Pacific SW

| Piednont Air| | Us Air | | Mcrosoft|
| Enpire Air | |Pacific Southwest| | Wb TV |
The query "find(Empire Air)" now returns "Piedmont Air". Suppose we further

unite US Air with Piednont Air.

| Us Air Pi ednont Air| |Mcrosoft]|
| Paci fic Southwest Enmpire Air | | Wb TV |

The query "find(Empire Air)" nowreturns "US Air". Wen Mcrosoft takes over
US Air, everything will be in one set and no further nmergers will be possible.

33

Li st-Based Disjoint Sets and the Quick-Find Al gorithm

The obvious data structure for disjoint sets |ooks like this.
- Each set references a list of the items in that set.

- Each itemreferences the set that contains it.

Wth this data structure, find operations take (1) tine; hence, we say that

l'i st-based disjoint sets use the _quick-find_ algorithm However, union
operations are slow, because when two sets are united, we nust wal k through one
set and relabel all the itens so that they reference the other set.

Tine prevents us fromanalyzing this algorithmin detail (but see Goodrich and
Tanmassia, Section 11.4.3). |Instead, let’'s nove on to the | ess obvious but
flatly superior _quick-union_ algorithm

Tree-Based Disjoint Sets and the Quick-Union Al gorithm

In tree-based disjoint sets, union operations take Q(1) tinme, but find
operations are slower. However, for any sequence of union and find operations,
the quick-union algorithmis faster overall than the quick-find algorithm

To support fast unions, each set is stored as a general tree. The quick-union
data structure conprises a _forest_ (a collection of trees), in which each
itemis initially the root of its own tree; then trees are nmerged by union
operations. The quick-union data structure is sinpler than the general tree
structures you have studied so far, because there are no child or sibling
references. Every node knows only its parent, and you can only wal k up the
tree. The true identity of each set is recorded at its root.

Union is a sinple Q(1) time operation: we sinply make the root of one set
becone a child of the root of the other set. For exanple, when we formthe
union of US Air and Piednont Air:

Us Air
Pi ednont Air US Air NN
N N |
| | Pi ednont Air Pacific Sout hwest
Enpire Air Paci fi ¢ Sout hwest ====> A
Enpire Air

US Air beconmes a set containing four nenbers. However, finding the set to
which a given itembelongs is not a constant-tine operation.

The find operation is perforned by followi ng the chain of parent references
froman itemto the root of its tree. For exanple, find(Enpire Air) wll
follow the path of references until it reaches US Air. The cost of this
operation is proportional to the items depth in the tree.

These are the basic union and find algorithns, but we'll consider two

optim zations that make finds faster. One strategy, called union-by-size,

hel ps the union operation to build shorter trees. The second strategy, called
path conpression, gives the find operation the power to shorten trees.

Union-by-size is a strategy to keep items fromgetting too deep by uniting
sets intelligently. At each root, we record the size of its tree (i.e. the

nunber of nodes in the tree). Wien we unite two trees, we make the smaller

tree a subtree of the larger one (breaking ties arbitrarily).

04/16/14
01:47:16

I npl enenting Quick-Union with an Array

Suppose the items are non-negative integers, nunbered fromzero. W'Il|l use an
array to record the parent of each item If an itemhas no parent, we'll
record the size of its tree. To distinguish it froma parent reference, we'll
record the size s as the negative nunber -s. Initially, every itemis the root
of its own tree, so we set every array element to -1.

01 2 3 45 6 7 8 9

The forest illustrated at left belowis represented by the array at right.

I\ 1\ | 1/-4/-1] 8] 5| 8 1| 3|-5 1]

[01 2 3 456 7 8 9

This is a slightly kludgy way to inplenent tree-based disjoint sets, but it’'s
fast (in terns of the constant hidden in the asynptotic notation).

Let rootl and root2 be two itens that are roots of their respective trees.
Here is code for the union operation with the union-by-size strategy.

public void union(int rootl, int root2) {
if (array[root2] < array[rootl]) { /1 root2 has larger tree
array[root2] += array[root1]; /] update # of items in root2's tree
array[rootl] = root2; /1 make root2 parent of rootl
} else { /'l rootl has equal or larger tree
array[rootl] += array[root2]; /] update # of items in rootl's tree
array[root2] = root1; /1 make rootl parent of root2

}
}

Pat h Conpr essi on

The find() nmethod is equally sinple, but we need one nore trick to obtain the
best possible speed. Suppose a sequence of union operations creates a tall
tree, and we performfind() repeatedly on its deepest leaf. Each tine we
performfind(), we walk up the tree fromleaf to root, perhaps at considerable
expense. When we performfind() the first tine, why not nove the |eaf up the
tree so that it becones a child of the root? That way, next tine we perform
find() on the sane leaf, it will run rmuch nore quickly. Furthernore, why not
do the sane for _every_ node we encounter as we wal k up to the root?

—

0
!
23 /
==f i nd(7) ==>

6 /

-
—
—

—
~

1
1
5

(o)
©— b
—

o)

4
I\
789

I'n the exanpl e above, find(7) walks up the tree from?7, discovers that 0 is the
root, and then makes 0 be the parent of 4 and 7, so that future find operations
on 4, 7, or their descendants will be faster. This technique is called

_pat h_conpression_.

33

Let x be an item whose set we wish to identify. Here is code for find, which
returns the identity of the itemat the root of the tree.

public int find(int x) {
if (array[x] < 0) {

return Xx; /!l x is the root of the tree; return it
} else {
/1 Find out who the root is; conpress path by naking the root x's parent
array[x] = find(array[x]);
return array[x]; /1 Return the root
}
}
Nami ng Sets

Uni on- by-si ze nmeans that if Mcrosoft acquires US Air, US Air will be the root
of the tree, even though the new conglonorate mght still be called Mcrosoft.
What if we want sone control over the nanes of the sets when we perform union()
operations?

The solution is to naintain an additional array that naps root itenms to set
names (and perhaps vice versa, depending on the application s needs). For
instance, the array "name" mght map O to Mcrosoft. W nust nodify the
union() method so that when it unites two sets, it assigns the union an
appropri ate nane.

For many applications, however, we don't care about the nane of a set at all;
we only want to know if two items x and y are in the same set. This is true in
both Homework 9 and Project 3. You only need to run find(x), run find(y), and
check if the two roots are the sane.

Runni ng Time of Quick-Union
Uni on operations obviously take Theta(l) tine. (Look at the code--no | oops or
recursion.)

If we use union-by-size, a single find operation can take Theta(l og u)
worst-case tinme, where u is the nunber of union operations that took place
prior to the find. Path conpression does not inprove this worst-case tine, but
it improves the _average_ running tine substantially--although a find operation
can take Theta(log u) time, path conpression will nake that operation fast if
you do it again. The average running tine of find and union operations in the
qui ck-union data structure is so close to a constant that it’s hardly worth
nentioning that, in a rigorous asynptotic sense, it's slightly slower.

The bottomline: a sequence of f find and u union operations (in any order and
possibly interleaved) takes Theta(u + f alpha(f + u, u)) time in the worst
case. alpha is an extrenely slowy-grow ng function known as the _inverse_
_Acker mann_function_.

Wien | say "extrenely slow y-growi ng function", |I nean "conically slowy-
growing function.”" The inverse Ackermann function is never larger than 4 for
any values of f and u you could ever use (though it does grow arbitrarily

| arge--for uni magi nably gigantic values of f and u). Hence, for all practical
purposes (but not on the Final Exanm), you should think of quick-union as having
find operations that run, on average, in constant tine.

