04/07/14
22:04:44

CS61B: Lecture 31
Wednesday, April 9, 2014

Qui cksort is a recursive divide-and-conquer algorithm |ike nmergesort.
Quicksort is in practice the fastest known conparison-based sort for arrays,
even though it has a Theta(n”2) worst-case running time. |If properly designed,
however, it virtually always runs in Q(n log n) tine. On arrays, this
asynptotic bound hides a constant smaller than nmergesort’s, but mergesort is
often slightly faster for sorting linked |ists.

G ven an unsorted list | of items, quicksort chooses a "pivot" itemv froml,

then puts each itemof | into one of two unsorted |ists, depending on whether
its key is less or greater than v's key. (ltens whose keys are equal to v's
key can go into either list; we'll discuss this issue later.)

Start with the unsorted list | of n input itemns.
Choose a pivot itemv froml.

Partition | into two unsorted lists 11 and |2.
- 11 contains all itens whose keys are snaller than v's key.
- 12 contains all items whose keys are larger than v's.

- Items with the same key as v can go into either list.

- The pivot v, however, does not go into either |ist.
Sort 11 recursively, yielding the sorted list Si.
Sort 12 recursively, yielding the sorted |ist S2.
Concatenate S1, v, and S2 together, yielding a sorted list S.

The recursion bottonms out at one-itemand zero-itemlists. (Zero-itemlists
can arise when the pivot is the snallest or largest iteminits list.) How
I ong does quicksort take? The answer is made apparent by exami ning several

possible recursion trees. In the illustrations below, the pivot v is always
chosen to be the first itemin the list.

) [41 71 1151 9] 3]0 [0 1] 3] 4]5] 7] 9|
V = PIVOL s ioiin oo
/ | \ /] \
* = enmpty list ----------- R T T P
21 31 0 14 |71 5] 9 oL 1] 31 415 7] 9
[B T 12 B R TR
/ | \ v | \ v/ \
e, e, | e e e oo -
I|0||1||3| 5l 171 19l * s 415 7] 9
v v v /| \
| e e
0o 1 3 4 5 7 9 * I3 |4 5] 7] 9|
In the exanple at left, we get lucky, and the pivot v/ \
always turns out to be the item having the nmedian key. [
Hence, each unsorted list is partitioned into two pieces * 4] |5 71 9|
of equal size, and we have a well-bal anced recursion B
tree. Just like in nmergesort, the tree has Q(log n) v/ \
levels. Partitioning a list is a linear-time operation, [
so the total running time is Q'n log n). * |5 |71 9|
The exanple at right, on the other hand, shows the Theta(n”"2) v /| \
performance we suffer if the pivot always proves to have the [o--- -
smal l est or largest key in the list. (You can see it takes * 17 |9
Orega(n”2) time because the first n/2 levels each process a |ist
of length n/2 or greater.) The recursion tree is as unbal anced \

as it can be. This exanple shows that when the input list |
happens to be already sorted, choosing the pivot to be the first itemof the
list is a disastrous policy.

31

Choosi ng a Pivot

We need a better way to choose a pivot. A respected, tine-tested nethod is to

randomy select an itemfroml| to serve as pivot.
expect "on average" to obtain a 1/4 - 3/4 split;

Wth a random pivot, we can
half the time we’'ll obtain a

worse split, half the tine better. Alittle nath (see Goodrich and Tanassi a
Section 11.2.1) shows that the average running time of quicksort with random
pivots is in Qnlog n). (W1l do the analysis late this senester in a

| ecture on "Random zed anal ysis.")

An even better way to choose a pivot (when n is larger than 50 or so) is called
the "nedi an-of-three" strategy. Select three randomitens froml, and then

choose the itemhaving the mddle key. Wth a |ot

of math, this strategy can

be shown to have a smaller constant (hidden in the Q'n log n) notation) than

the one-randomitem strategy.

Qui cksort on Linked Lists

| deliberately left unresolved the question of
what to do with items that have the same key as
the pivot. Suppose we put all the itens having
the same key as v into the list I'1. If we try to
sort a list in which every single itemhas the
same key, then _every_ itemwll go into list |1,
and qui cksort will have quadratic running tine!
(See illustration at right.)

Wien sorting a linked list, a far better solution

is to partition | into _three_ unsorted lists |1,
12, and Iv. |v contains the pivot v and all the
other itens with the same key. We sort 11 and [2
recursively, yielding S1 and S2. |v, of course,

does not need to be sorted. Finally, we
concatenate S1, lv, and S2 to yield S.

This strategy is quite fast if there are a | arge nunber of duplicate keys,
because the lists called "Iv" (at each level of the recursion tree) require no

further sorting or manipul ation.

Unfortunately, with linked lists, selecting a pivot

is annoying. Wth an

array, we can read a randonly chosen pivot in constant tine; with a linked |ist

we nust wal k hal f-way through the l'ist on average,

increasing the constant in

our running tine. However, if we restrict ourselves to pivots near the
begi nning of the linked list, we risk quadratic running time (for instance,
if | is already in sorted order, or nearly so), so we have to pay the price.
(If you are clever, you can speed up your inplenentation by choosing random
pivots during the partitioning step for the _next_ round of partitioning.)

04/07/14
22:04:44

Qui cksort on Arrays

Qui cksort shines for sorting arrays. |In-place quicksort is very fast. But
a fast in-place quicksort is tricky to code. It’s easy to wite a buggy or
quadratic version by mstake. Goodrich and Tanmassia did.

Suppose we have an array a in which we want to sort the itenms starting at
a[low] and ending at a[high]. W choose a pivot v and nove it out of the way
by swapping it with the last item a[high].

We enploy two array indices, i and j. i is initially "low- 1", andj is
initially "high", so that i and j sandwich the items to be sorted (not
including the pivot). W will enforce the follow ng invariants.

- Al itens at or left of index i have a key <= the pivot’s key.

- Al items at or right of index j have a key >= the pivot’s key.

To partition the array, we advance the index

i until it encounters an item whose key is |31 8] 0] 9] 5| 7| 4
greater than or equal to the pivot’s key; then — -----mmmmmmmm
we decrenment the index j until it encounters | ow v hi gh

an itemwhose key is less than or equal to
the pivot’s key. Then, we swap the itens at

i and j. We repeat this sequence until the |31 8] 0] 9] 4| 7] 5]
indices i and j nmeet in the mddle. Then, = -----cmmmmmm i
we nove the pivot back into the middle (by N n
swapping it with the itemat index i). i j

An exanple is given at right. The randomy

sel ected pivot, whose key is 5, is noved to |31 8] 0] 9] 4| 7] 5]

the end of the array by swapping it with the = -------ommmmt

last item The indices i and j are created. advance: i i

i advances until it reaches an item whose key

is > 5, and j retreats until it reaches an = = --------mmiiiii

item whose key is <= 5. The two itens are |31 4] 0] 9] 8] 7] 5]

swapped, and i advances and j retreats again. = @ -----------oo-ooooooooooo

After the second advance/retreat, i and j swap: i j

have crossed paths, so we do not swap their

items. Instead, we swap the pivot with the = -----mmmmma

itemat index i, putting it between the lists |31 4] 0] 9] 8] 7] 5]

11 and 12 where it belongs. e
advance: j i

What about itens having the sane key as the

pivot? Handling these is particularly — -eeemnnnn-- R R

tricky. We'd like to put themon a separate |31 4] 0] |5 |8 7] 9|

list (as we did for linked lists), but doing ~ =----------- T

that in place is too conplicated. As | noted 11 i 12

previously, if we put all these items into

the list 11, we'll have quadratic running tine when all the keys in the array

are equal, so we don’t want to do that either.

The solution is to make sure each index, i and j, stops whenever it reaches a

key equal to the pivot. Every key equal to the pivot (except perhaps one, if

we end with i = j) takes part in one swap. Swapping an itemequal to the pivot

may seem unnecessary, but it has an excellent side effect: if all the items in

the array have the same key, half these items will go into 11, and half into
12, giving us a well-balanced recursion tree. (To see why, try running the
pseudocode bel ow on paper with an array of equal keys.) WARNING The code on
page 530 of Goodrich and Tamassia gets this WRONG. Their inplenentation has
quadratic running tine when all the keys are equal .

31

public static void quicksort(Conparable[] a, int low, int high) {
/1 1f there’s fewer than two itenms, do not hing.
if (low < high) {
int pivotlndex = random nunber fromlow to high;
Conpar abl e pivot = a[pivotl|ndex];
a[pi vot I ndex] = a[high]; /Il Swap pivot with last item
a[hi gh] = pivot;

int i =low- 1;
int j = high;
do {

do { i++; } while (a[i].conpareTo(pivot) < 0);
do { j--; } while ((a[j].conpareTo(pivot) > 0) && (j > low));
if (i <j){

i

swap a[i] and a[j];
}
} while (i <j);

a[high] = a[i];
a[i] = pivot; // Put pivot in the mddle where it bel ongs
qui cksort(a, low, i - 1); /1 Recursively sort left list
qui cksort(a, i + 1, high); /1 Recursively sort right Iist
}
}

Can the "do { i++ }" loop walk off the end of the array and generate an out-of -
bounds exception? No, because a[high] contains the pivot, so i wll stop
advancing when i == high (if not sooner). There is no such assurance for j,
though, so the "do { j-- }" loop explicitly tests whether "j > |ow' before
retreating.

Post scri pt

The journal "Conputing in Science & Engineering" did a poll of experts to make
a list of the ten nost inportant and influential algorithns of the twentieth
century, and it published a separate article on each of the ten algorithmns.
Quicksort is one of the ten, and it is surely the sinplest algorithmon the
list. Quicksort’s inventor, Sir C. A R "Tony" Hoare, received the ACM Turing
Award in 1980 for his work on programming | anguages, and was conferred the
title of Knight Bachelor in March 2000 by Queen Elizabeth Il for his
contributions to "Conputing Science."

