04/11/14
19:06:29

CS 61B: Lecture 29
Monday, April 7, 2014

GRAPHS (conti nued)

Breadth-first search (BFS) is a little nore conplicated than depth-first
search, because it’s not naturally recursive. W use a queue so that vertices
are visited in order according to their distance fromthe starting vertex.

public void bfs(Vertex u) {
for (each vertex v in V) {
v.visited = fal se;

11 oV]) time

}
u.visit(null); /1 Do some unspecified thing to u
u.visited = true; /1 Mark the vertex u visited
q = new Queue(); /'l New queue. ..
g. enqueue(u); /1 ...initially containing u
while (q is not enpty) { /'l Wth adjacency list, O(|E) time
v = q.dequeue();
for (each vertex w such that (v, w) is an edge in E) {
if (!wvisited) {
W Visit(v);
w.visited = true;
g. enqueue(w) ;

/1 Do sone unspecified thing to w
/1 Mark the vertex w visited

}
} public class Vertex {
} protected Vertex parent;
protected int depth;
Notice that when we visit a vertex, protected bool ean visited;
we pass the edge’'s origin vertex
as a paraneter. This allows us to
do a conputation such as finding
the distance of the vertex from
the starting vertex, or finding

public void visit(Vertex origin) {
this.parent = origin;
if (origin ==null) {
this.depth = 0;

the shortest path between them } else {
The visit() method at right this.depth = origin.depth + 1;
acconpl i shes both these tasks. }
}
}

When an edge (v, w) is traversed to visit a Vertex w, the depth of wis set to
the depth of v plus one, and v is set to becone the _parent_ of w.

The sequence of figures bel ow shows BFS running on the city adjacency graph
(Al bany, Kensington, Enmeryville, Berkeley, Cakland, Piednont) froml ast
lecture, starting fromAlbany. A "V' is currently visited; a digit shows the
depth of a vertex that is marked visited; a "*" is a vertex which we try to
visit but discover has already been visited. Underneath each figure of the

graph, | depict the queue and the current value of the variable "v" in bfs().
V-K 0-v 0-1 *-1 0-1 *-1 O0-* 0-1 0-1 0-1 0-1 0-1 0-1 0-1 0-1 O0-1
\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
E-B EEB EV E1 E* E1 E1 V-1 2-1 2-* 2-1 *- 2-* 2-1 2-1 2-1
|/ |/ |/ |/ |/ |/ |/ |/ |/ |/ |/ |/ |/ |/ |/ |/
oP OP OP OP OP OP OP OP V-P 2-P *-P 2-P 2-P 2-V *-3 2-3
A K KB B B E EO O o P

v=A v=A v=K v=K v=B v=B v=B v=B v=E v=E v=0O v=0O v=0 v=P

29

After we finish, we can find the shortest path fromany vertex to the 0<--1
starting vertex by follow ng the parent pointers (right). These n
pointers forma tree rooted at the starting vertex. Note that they \
point in the direction _opposite_ the search direction that got us there. \
2-->1
Wiy does this work? The starting vertex is enqueued first, then all the n
vertices at a distance of 1 fromthe start, then all the vertices at a /
di stance of 2, and so on. Wiy? Wien the starting vertex is dequeued, /
all the vertices at a distance of 1 are enqueued, but no other vertex 2<--3

is. \Wen the depth-1 vertices are dequeued and processed, all the

vertices at a distance of 2 are enqueued, because every vertex at a distance of
2 nmust be reachable by a single edge fromsonme vertex at a distance of 1. No
other vertex is enqueued, because every vertex at a distance less than 2 has
been marked, and every vertex at a distance greater than 2 is not reachable by
a single edge fromsonme vertex at a distance of 1.

Recommendation: pull out a piece of paper, draw a graph and a program st ack,
and sinmulate BFS, with you acting as the conmputer and executing bfs() line by
line. You will understand it nuch better after taking the tine to do this.

BFS, like DFS, runs in (|V] + |E) time if you use an adjacency list;
Q| VI"2) time if you use an adjacency matrix.

Wei ght ed G aphs

A wei ghted graph is a graph in which each edge is |abeled with a nurerical
wei ght. A weight night express the distance between two nodes, the cost of
noving fromone to the other, the resistance between two points in an
electrical circuit, or many other things.

In an adjacency matrix, each weight is stored in the matrix. Whereas an

unwei ght ed graph uses an array of bool eans, a wei ghted graph uses an array of
ints, doubles, or sonme other nunerical type. Edges missing fromthe graph can
be represented by a special nunber like Integer. MN_VALUE, at the cost of
declaring that nunber invalid as an edge weight. (If you want to permit every
int to be a valid edge weight, you mght use an additional array of bool eans
as well.)

In an adjacency list, recall that each edge is represented by a |listnode. Each
i stnode nmust be enlarged to include a weight, in addition to the reference to
the destination vertex. (If you're using an array inplenentation of |ists,

you' Il need two separate arrays: one for weights, and one for destinations.)

There are two particularly conmon problens involving weighted graphs. One is
the _shortest_path_problem. Suppose a graph represents a hi ghway nmap, and
each road is labeled with the ambunt of time it takes to drive fromone
interchange to the next. What's the fastest way to drive fromBerkeley to Los
Angel es? A shortest path algorithmwll tell us. You'll learn several of
these algorithms if you take CS 170.

The second problemis constructing a _nini numspanning_tree_. Suppose that
you're wiring a house for electricity. Each node of the graph represents an
outlet, or the source of electricity. Every outlet needs to be connected to
the source, but not necessarily directly--possibly routed via another outlet.
The edges of the graph are labeled with the Iength of wire you' Il need to
connect one node to another. How do you connect all the nodes together with
the shortest length of wire?

04/11/14
19:06:29

Kruskal s Al gorithm for Finding M munum Spanning Trees

Let G= (V, E) be an undirected graph. A _spanning_tree_ T = (V, F) of Gis a
graph containing the same vertices as G and |V|] - 1 edges of Gthat form

a tree. (Hence, there is exactly one path between any two vertices of T.)

If Gis not connected, it has no spanning tree, but we can instead conpute a
_spanning_forest_, or collection of trees, having one tree for each connected
conmponent of G

If Gis weighted, then a _mninumspanning_tree_ T of Gis a spanning tree of G
whose total weight (summed over all edges of T) is mininmal. |In other words, no
ot her spanning tree of G has a snaller total weight.

Kruskal *s al gorithm conputes the mi m nmum spanning tree of G as follows.

[1] Create a new graph T with the sane vertices as G but no edges (yet).
[2] Make a list of all the edges in G
[3] Sort the edges by weight, fromleast to greatest.
[4] Iterate through the edges in sorted order.
For each edge (u, w:
[4a] If u and w are not connected by a path in T, add (u, w) to T.

Because this algorithmnever adds (u, w) if some path already connects u and w,
T is guaranteed to be a tree (if Gis connected) or a forest (if Gis not).

Wiy is T a mininumspanning tree in the end? Suppose the algorithmis

consi dering adding an edge (u, w) to T, and there is not yet a path connecting
utow Let Ube the set of vertices in T that are connected (so far) to u,
and let Wbe a set containing all the other vertices, including w. Let the
_bridge_edges_ be any edges in G that have one end vertex in U and one end
vertex in W Any spanning tree nust contain at |east one of these bridge
edges. As long as we choose a bridge edge with the | east weight, we are safe.
(There nay be several bridge edges with the same | east weight, in which case
it doesn’t matter which one we choose.)

Because we go through the edges of Gin order by weight, (u, w) nust have the
| east wei ght, because it's the first edge we encountered connecting Uto W
(See Goodrich and Tamassi a page 649 for a proof that choosing the bridge edge
with | east weight is always the right thing to do.)

What is the running tine of Kruskal’'s algorithn? As we’'ll discover in the next
two lectures, sorting | E|] edges takes O(|E| log |El) time. The tricky part is,
in [4a], determining whether u and w are already connected by a path. The
sinplest way to do this is by doing a depth-first search on T starting at u,
and seeing if we visit w. But if we do that, Kruskal’'s algorithmm ght take
Theta(|E| |V])) tinme.

We can do better. In Lecture 33, we’'ll learn how to solve that problem
quickly, so that all the iterations of [4a] together take |ess than
Q| El log | El) tine.

If we use an adjacency list, the running time is in Q(|Vl + |E log |E).
But |E] <|V|"2, solog |E] <2 log |V|]. Therefore, Kruskal’s algorithmruns
in |Vl +]E log |V]) tine.

If we use an adjacency natrix, the running tine is in Q(|V|*"2 + |E| log |El),
because it takes Theta(|V|"2) tine sinply to make a list of all the edges.

29

