CS 61B: Lecture 28
Wednesday, April 2, 2014

A graph Gis a set V of vertices (sonetines called nodes), and a set E of edges
(sonetimes called arcs) that each connect two vertices together. To confuse
you, mathematicians often use the notation G= (V, E). Here, "(V, E)" is an
_ordered_pair_ of sets. This isn't as deep and neani ngful as it sounds;

some people just love formalism The notation is convenient when you want to
di scuss several graphs with the sane vertices; e.g. G=(V, E) and T = (V, F).

Gaphs come in two types: _directed_ and _undirected_. In a directed graph
(or _digraph_ for short), every edge e is directed fromsome vertex v to sone
vertex w. W wite "e = (v, w)" (also an ordered pair), and draw an arrow
pointing fromv to w. The vertex v is called the _origin_ of e, and wis the
destination of e.

I'n an undirected graph, edges have no favored direction, so we draw a curve
connecting v and w. W still wite e = (v, w), but nowit’s an unordered pair,
whi ch neans that (v, w) = (w, V).

One application of a graph is to nodel a street map. For each intersection,
define a vertex that represents it. |f two intersections are connected by a
length of street with no intervening intersection, define an edge connecting
them W might use an undirected graph, but if there are one-way streets, a
directed graph is nore appropriate. W can npdel a two-way street with two
edges, one pointing in each direction. On the other hand, if we want a graph
that tells us which cities adjoin each other, an undirected graph nakes sense.

Bancroft --- e L T T R
| 1] <---mmmmmm - | 2] <---mmmmee-- | 3] | Al bany|------ | Kensi ngt on|
| A n \ /
Dana | Tel egraph | Bowditch | | --------mmnn e
v | v | | Emeryville|----- | Ber kel ey|
| 4] ---mmmmm e - >[5 ---mee - >| 6] \ /
Dur ant R R T T
| Cakl and| - ---- | Pi ednont |

Mil tiple copies of an edge are forbidden, ~ ---------
but a directed graph may contain both (v, w

and (w, v). Both types of graph can have _self-edges_ of the form (v, v),

whi ch connect a vertex to itself. (Many applications, like the two illustrated
above, don’'t use these.)

A _path_ is a sequence of vertices such that each adjacent pair of vertices is
connected by an edge. |If the graph is directed, the edges that formthe path
must all be aligned with the direction of the path. The _length_ of a path is
the nunber of edges it traverses. Above, <4, 5, 6, 3>is a path of length 3.
It is perfectly respectable to talk about a path of Ilength zero, such as <2>.
The _distance_ fromone vertex to another is the length of the shortest path
fromone to the other.

A graph is _strongly_connected_ if there is a path fromevery vertex to every
other vertex. (This is just called _connected_ in undirected graphs.) Both
graphs above are strongly connected.

The _degree_ of a vertex is the nunber of edges incident on that vertex.
(Sel f-edges count just once in 61B.) Hence, Berkeley has degree 4, and

Pi ednont has degree 1. A vertex in a directed graph has an _indegree_ (the
nunber of edges directed toward it) and an _outdegree_ (the nunber of edges
directed away). Intersection 6 above has indegree 2 and outdegree 1.

28

G aph Representations

There are two popul ar ways to represent a graph. The first is an _adjacency_
matrix, a |V|-by-|V| array of boolean values (where |V| is the nunber of
vertices in the graph). Each row and colum represents a vertex of the graph.
Set the value at rowi, colum j to true if (i, j) is an edge of the graph. |If
the graph is undirected (below right), the adjacency nmatrix is _symretric_:
rowi, colum j has the sane value as row j, colum i.

123456 Alb Ken Eme Ber Cak Pie
1---T- - Al bany - T - T - -
2T - - - - - Kensington T - - T - -
3-T---T Eneryville - - - T T -
4 - - - T - Berkeley T T T - T -
5-T---T Cakl and - - T T - T
6 --T- - - Pi ednont - - - - T -

It should be clear that the maxi mum possi bl e nunber of edges is |V|"2 for a
directed graph, and slightly nmore than half that for an undirected graph. In
many applications, however, the number of edges is much | ess than Theta(]|V|"2).
For instance, our maps above are _pl anar_graphs_ (graphs that can be drawn

wi t hout edges crossing), and all planar graphs have Q(|V|) edges. A graph is
called _sparse_if it has far fewer edges than the maxi mum possi bl e nunber.

(" Sparse" has no precise definition, but it usually inplies that the nunber of
edges is asynptotically smaller than |V|"2.)

For a sparse graph, an adjacency matrix representation is very wasteful.
A nore menory-efficient data structure for sparse graphs is the _adjacency_

list. An adjacency list is actually a collection of lists. Each vertex v
maintains a list of the edges directed out fromv. The standard |i st
representations all work--arrays (below left), linked lists (belowright), even

search trees (because you can traverse one in linear tine).

1].+->] 4| Al bany |.+-> | Ken. +-> | Ber*|

2 |.+->| 1|

Kensington |.+-> | Al b. +-> | Ber*|

4 .+->] 5| Berkeley |.+-> | Alb. +-> | Ken. +-> | Ene. +-> | Cak*|
5].+->] 2| 6| Gakl and |.+-> | Ene. +-> | Ber. +-> | Pi e*|
6 |.+>| 3| Pi ednont | . +-> | Cak*|

The total nenory used by all the lists is Theta(|V] + |El).

If your vertices have consecutive integer nanmes, you can declare an array of
lists, and find any vertex's list in Q(1) time. |f your vertices have nanes

l'i ke "Al bany," you can use a hash table to nap nanes to lists. Each entry in
the hash table uses a vertex name as a key, and a List object as the associated
value. You can find the list for any label in Q1) average tine.

An adj acency list is nore space- and tinme-efficient than an adjacency nmatrix
for a sparse graph, but less efficient for a _conplete_graph_. A conplete
graph is a graph having every possible edge; that is, for every vertex u and
every vertex v, (u, v) is an edge of the graph.

04/02/14
04:40:48

G aph Traversal s

W' Il look at two types of graph traversals, which can be used on either
directed or undirected graphs to visit each vertex once. Depth-first search
(DFS) starts at an arbitrary vertex and searches a graph as "deeply" as
possible as early as possible. For exanple, if your graph is an undirected
tree, DFS perforns a preorder (or if you prefer, postorder) tree traversal.

Breadth-first search (BFS) starts by visiting an arbitrary vertex, then visits
all vertices whose distance fromthe starting vertex is one, then all vertices
whose distance fromthe starting vertex is two, and so on. If your graph is an
undirected tree, BFS perfornms a |evel-order tree traversal.

In a graph, unlike a tree, there may be several ways to get fromone vertex to
anot her. Therefore, each vertex has a boolean field called "visited" that
tells us if we have visited the vertex before, so we don't visit it twce.
Wien we say we are "marking a vertex visited', we are setting its "visited"
field to true.

Assune that we are traversing a strongly connected graph, thus there is a path
fromthe starting vertex to every other vertex.

When DFS visits a vertex u, it checks every vertex v that can be reached by
some edge (u, v). If v has not yet been visited, DFS visits it recursively.

public class Gaph {
/1 Before calling dfs(), set every "visited" flag to false; takes Q(|V|) tine
public void dfs(Vertex u) {
u.visit(); /1 Do some unspecified thing to u
u.visited = true; // Mark the vertex u visited
for (each vertex v such that (u, v) is an edge in E) {
if (lv.visited) {
df s(v);
}
}
}
}

In this DFS pseudocode, a "visit()" nethod is defined that perforns sone action
on a specified vertex. For instance, if we want to count the total popul ation
of the city graph above, "visit()" mght add the popul ation of the visited city
to the grand total. The order in which cities are visited depends partly on
their order in the adjacency lists.

The sequence of figures bel ow shows the behavior of DFS on our street map,
starting at vertex 1. A "V' is currently visited; an "x" is marked visited;
a "*" is a vertex which we try to visit but discover has already been visited.

V<-2<-3 X<-2<-3 X<-2<-3 X<-V<-3 *<-V<-3 X<-Xx<-3 X<-X<-V X<-*<-V x<-x<-V
| N N I N N | N N I N N | N N I N N | N N I N N | N N
v | v v | v v | v v | v Vv | v Vv | v Vv | Vv Vv | v v | V
4->5->6 V->5->6 XxX->V->6 X->X->6 X->X->6 X->X->V X->X->X X->X->X X- >X->*

DFS runs in Q(|V] + |E) time if you use an adjacency list; Q(|V|"2) time if
you use an adjacency matrix. Hence, an adjacency list is asynptotically faster
if the graph is sparse.

What’ s an application of DFS? Suppose you want to determ ne whether there is
a path froma vertex u to another vertex v. Just do DFS fromu, and see if v
gets visited. (If not, you can’t there fromhere.)

1”1l discuss BFS in the next lecture.

28

More on the Running Time of DFS

Wiy does DFS on an adjacency list runin O(|V| + |E) tine?

The Q(|V|) conponent cones up sol ely because we have to initialize all the
"visited" flags to false (or at |east construct an array of flags) before we
start.

The O(| E|) conponent is trickier. Take a |look at the "for" loop of the dfs()
pseudocode above. How many tines does it iterate? |f the vertex u has
outdegree d(u), then the loop iterates d(u) tinmes. Different vertices have
different degrees. Let the total degree D be the sum of the outdegrees of all
the vertices in V.

D = sum d(v).
vinV

A call to dfs(u) takes Q(d(u)) tine, NOT counting the tine for the recursive
calls it nakes to dfs(). A depth-first search never calls dfs() nore than once
on the sane vertex, so the total running time of all the calls to dfs() is in
QD). Howlarge is D?

- If Gis a directed graph, then D = | E|, the nunmber of edges.

- If Gis an undirected graph with no self-edges, then D = 2| E|, because each
edge offers a path out of two vertices.

- If Gis an undirected graph with one or nore self-edges, then D < 2|F|.

In all three cases, the running time of depth-first search is in Q(|E), NOT
counting the tine required to initialize the "visited" flags.

