CS 61B: Lecture 27
Wednesday, April 2, 2014

Last lecture, we |earned about the Ordered Dictionary ADT, and we |earned one
data structure for inplementing it: binary search trees. Today we |earn
a faster one.

A 2-3-4 tree is a perfectly balanced tree. It has a big advantage over regul ar
bi nary search trees: because the tree is perfectly balanced, find, insert, and
renove operations take Q(log n) time, even in the worst case.

2-3-4 trees are thus named because every node has 2, 3, or 4 children, except
| eaves, which are all at the bottomlevel of the tree. Each node stores 1, 2,
or 3 entries, which determ ne how other entries are distributed anong its
children’s subtrees.

Each internal (non-leaf) node has one nore child than entries. For exanple,
a node with keys [20, 40, 50] has four children. Eack key k in the subtree
rooted at the first child satisfies k <= 20; at the second child,

20 <= k <= 40; at the third child, 40 <= k <= 50; and at the fourth child,

k >= 50.

WARNING The algorithns for insertion and deletion I’'Il discuss today are
different fromthose discussed by Goodrich and Tamassia. The text presents
"bottom up" 2-3-4 trees, so nanmed because the effects of node splits at the
bottom of the tree can work their way back up toward the root. 1’1l discuss
"top-down" 2-3-4 trees, in which insertion and deletion finish at the | eaves.
Top-down 2-3-4 trees are usually faster than bottomup ones, because both trees
search down fromthe root to the | eaves, but only the bottomup trees sonetines
go back up to the root. Goodrich and Tanmassia call 2-3-4 trees "(2, 4) trees".

2-3-4 trees are a type of B-tree, which you may | earn about sonmeday in
connection with fast disk access for database systens. B-trees on disks
usual |y use the top-down insertion/deletion algorithms, because accessing
a disk track is slow, so you'd rather not revisit it multiple tines.

[1] Entry find(Object k);

Finding an entry is straightforward. = ==========
Start at the root. At each node,
check for the key k; if it’s not
present, nove down to the /---1 I\ \----- \
appropriate child chosen by

conparing k agai nst the keys. | 14| | 32] | 43|

Continue until k is found,

or k is not found at a I\ I\ I\

| eaf node. For exanple, B I R ==== ----
find(74) visits the | 10| | 18] |25 |33| |42| |47| |57 62 66| +74+ |81|
doubl e-1ined boxes at right. ---- ---- ---- oo oo oo oo ==== ----

Incidentally, you can define an inorder traversal on 2-3-4 trees anal ogous to
that on binary trees, and it visits the keys in sorted order.

27

[2] Entry insert(Cbject k, Object e);

insert(), like find(), walks down the tree in search of the key k. If it finds
an entry with key k, it proceeds to that entry’s "left child" and continues.

Unlike find(), insert() sonetines nodifies e

nodes of the tree as it wal ks down. | 20| | 11 20|
Specifically, whenever insert() encounters e
a 3-key node, the middle key is ejected, I\ => [
and is placed in the parent node instead. ========== ----
Since the parent was previously treated the +10 11 12+ | 30| | 10| | 12| |30|

same way, the parent has at nost two keys, S========= - - -
and al ways has roomfor a third. The other

two keys in the 3-key node are split into two separate 1-key nodes, which are
di vi ded underneath the old mddle key (as the figure illustrates).

For exanpl e, suppose we

insert 60 into the tree | 40|

depicted in [1]. The f------ \

first node visited is [---1 \----\

the root, which has three

keys; so we kick the | 20| | 50|

m ddl e key (40) upstairs. e \

Since the root node has / \ / \

no parent, a new node B

is created to hold 40 | 14| | 32| | 43| |62 70 79|

and becones the root. EE
Simlarly, 62 is kicked I\ I\ I\ /| \
upstairs when insert() R T T
finds the node containing |10| |18| |25 |33] |42| |47| |57 60| |66] |74| |81
it. This ensures us that ---- ---- ---n —omn comn il alon
when we arrive at the |eaf

(labeled 57 in this exanple), there’s roomto add the new key 60.

Observe that along the way, we created a new 3-key node "62 70 79". W do not
kick its mddle key upstairs until the next tinme it is visited.

Again, the reasons why we split every 3-key node we encounter (and nove its

m ddl e key up one level) are (1) to make sure there’s roomfor the new key in
the leaf node, and (2) to make sure that above the |eaves, there’s roomfor any
key that gets kicked upstairs. Sonetines, an insertion operation increases the
hei ght of the tree by one by creating a new root.

04/02/14
04:44:35

[3] Entry renmove(Object k);

2-3-4 tree renove() is simlar to renove() on binary search trees: you find

the entry you want to renove (having key k). If it’s in a leaf, you renove it.
If it’s in an internal node, you replace it with the entry with the next higher
key. That entry is always in a leaf. |In either case, you renove an entry from

a leaf in the end.

Li ke insert(), remove() changes nodes of the tree as it wal ks down. \Wereas
insert() elimnates 3-key nodes (noving keys up the tree) to nake room for new
keys, renove() elimnates 1-key nodes (pulling keys down the tree) so that a
key can be renmpoved froma leaf without leaving it enpty. There are three ways
1-key nodes (except the root) are elimninated.

(1) Wen renove() encounters a 1l-key ------- -------

node (except the root), it tries | 20 40| | 20 50|

to steal a key froman adjacent ~ ------- ooo----
sibling. But we can’t just steal /A => / | \

the sibling s key without N e
violating the search tree | 10| +30+ |50 51 52| | 10| |30 40| |51 52|
invariant. This figure shows S EESE aaaeaa---- T
renove’ s action, called a /\ /\ A I A /\ I]\ /] \
"rotation", when it reaches "30". S S

We nove a key fromthe sibling to

the parent, and we nove a key fromthe parent to the 1-key node. W also nove
a subtree S fromthe sibling to the 1-key node (now a 2-key node).

Goodrich & Tamassia call rotations "transfer" operations. Note that we can't
steal a key froma non-adjacent sibling.

(2) If no adjacent sibling has nore than one -------
key, a rotation can't be used. In this case, | 20 40| | 40|
the 1-key node steals a key fromits parent. -------
Since the parent was previously treated the /] N\ => I\
sane way (unless it’s the root), it has at B
| east two keys, and can spare one. The +10+ | 30| | 50| | 10 20 30| | 50|
sibling is also absorbed, and the 1-key node ==== ---- ---- = .-
becomes a 3-key node. The figure illustrates

renmove’ s action when it reaches "10". This is called a "fusion" operation.

(3) If the parent is the root and contains only one key, and the sibling
contains only one key, then the current 1-key node, its 1-key sibling, and the
1-key root are fused into one 3-key node that serves as the new root. The

hei ght of the tree decreases by one.

Eventually we reach a leaf. After we process the leaf, it has at |east two
keys (if there are at |least two keys in the tree), so we can del ete the key
and still have one key in the |eaf.

For exanpl e, suppose we

remove 40 fromthe |arge | 20 xx 50|

tree depicted in [2]. The = Jeceemmmmmnmnnnann- \

root node contains 40, /--1 / \ \oe--- \
which we mark "xx" to B
remind us that we plan to | 14| | 32| | 43| |62 70 79|
replace it with the S e
smal | est key in the root I\ I\ I\ /A \

node’s right subtree. TO ---- ---- ---n cmmn il il aaon
find that key, we nove on |10| |18| |25] |33| |42| |47| |57 60| |66] |74| |81|
to the 1-key node labeled ---- ---- ---- ---- ---- ---- -------
50. Followi ng our rules

for 1-key nodes, we fuse 50 with its sibling and parent to create a new 3-key

root |abeled "20 xx 50".

27

Next, we visit the node
| abel ed 43. Again
followi ng our rules for
1-key nodes, we rotate [----1 / \ \----- \

62 froma sibling to the B
root, and nove 50 from | 14] | 32] | 43 50| | 70 79|
the root to the node B
containing 43. I\ I\ / | \ /A

| 10| | 18] [25] |33| |42] |47| |57 60| |66] |74 |81]

Finally, we nove down to
the node | abeled 42. A
different rule for 1-key /2 \

nodes requires us to [----1 I\ | [p—— \

fuse the nodes | abel ed B / \emeeee oo
42 and 47 into a 3-key | 14| | 32| | 50| | 70 79|
node, stealing 43 from ceee e
the parent node. I\ [\ I\ /] N\

| 10| | 18] |25 |33| |42 43 47| |57 60| |66] |74 |81]

The last step is to renpve 42 fromthe leaf and replace "xx" with 42.

Runni ng Ti mes

A 2-3-4 tree with height h has between 2”h and 4"h leaves. If nis the total
nunber of entries (including entries in internal nodes), then n >= 2°(h+l) - 1.
By taking the logarithmof both sides, we find that his in Q(log n).

The tine spent visiting a 2-3-4 node is typically longer than in a binary
search tree (because the nodes and the rotation and fusion operations are
conplicated), but the time per node is still in Q(1).

The nunber of nodes visited is proportional to the height of the tree. Hence,
the running times of the find(), insert(), and renove() operations are in Q'h)
and hence in O(log n), even in the worst case.

Conpare this with the Theta(n) worst-case tine of ordinary binary search trees.

Anot her Approach to Duplicate Keys

Rat her than have a separate node for each entry, we mght wish to collect all
the entries that share a cormon key in one node. In this case, each node’'s
entry becones a list of entries. This sinplifies the inplenmentation of
findAIl (), which finds all the entries with a specified key. 1t also speeds up
ot her operations by leaving fewer nodes in the tree data structure. Cbviously,
this is a change in the inplenentation, but not a change in the dictionary ADT.

This idea can be used with hash tables, binary search trees, and 2-3-4 trees.

