03/28/14
23:41:15

CS 61B: Lecture 26
Monday, March 31, 2014

Today's reading: GCoodrich & Tamassia, Section 10.1.

Representing Binary Trees

Recal | that a binary tree is a rooted tree wherein no node has nore than
two children. Additionally, every child is either a _left_child_ or

a _right_child_ of its parent, even if it is its parent’s only child.

In the nost popular binary tree representation, each tree node has three
references to neighboring tree nodes: a "parent" reference, and "left" and
"right" references for the two children. (For some algorithms, the "parent"
references are unnecessary.) Each node also has an "itent reference.

public class BinaryTreeNode { | public class BinaryTree {
bj ect item | Bi naryTr eeNode root;
Bi naryTr eeNode parent; | int size;
Bi naryTreeNode |eft; |}
Bi naryTr eeNode ri ght; |

public void inorder() {
if (left I'=null) {
left.inorder();
}
this.visit();
if (right '=null) {
right.inorder();

}
}
}
+ BINARY TREE | ------------mmmmmnn +
—============== | - R +
+ |].|root sizel7]| | +
+ | - +- --- +
+ B +
+ v BinaryTree object +
+ e +
+ | * +
+ eeeee eeeeaeaaaaa- +
+ Root node => |add| | parent | +
+ eeeee e +
+ [-1-1 [item | +
+ [---\ e +
+ /oA |left|right] +
+ v [\ v e +
+ e L structure of +
+ | | | Bi naryTr eeNodes +
3 +
+ | sub] | div]| +
L . +
+ R I R R +
+ I l--1- -]--\\ +
+ | [~ Vv +
+ /v | v v| v\ +
+ B T R B T T +
+ +
+ +
+ +
+ +
+ +
+ +

26

Bl NARY SEARCH TREES

An _ordered_dictionary_ is a dictionary in which the keys have a total order,
just like in a heap. You can insert, find, and renpbve entries, just as with a
hash table. But unlike a hash table, you can quickly find the entry with

m ni mum or maxi mum key, or the entry nearest another entry in the total order.
An ordered dictionary does anything a dictionary or binary heap can do and
nore, albeit nore slowy.

A sinple inplenmentation of an ordered dictionary is a binary search tree,
wherein entries are maintained in a (somewhat) sorted order.

18 The _left_subtree_ of a node is the subtree rooted at the
I\ node’s left child; the _right_subtree_is defined simlarly.
12 25 A binary search tree satisfies the _binary_search_tree_
I\ [\ _invariant_: for any node X, every key in the left subtree

4 15 25 30 of Xis less than or equal to X s key, and every key in the

[\ / right subtree of X is greater than or equal to X' s key. You
1 13 17 28 can verify this in the search tree at left: for instance,
Vo \ the root is 18, its left subtree (rooted at 12) contains

3 14 29 nunbers from1l to 17, and its right subtree (rooted at 25)

contai ns nunbers from 25 to 30.

When a node has only one child, that child is either a left child or a right
child, depending on whether its key is smaller or larger than its parent’s key.
(A key equal to the parent’s key can go into either subtree.)

An inorder traversal of a binary search tree visits the nodes in sorted order.
In this sense, a search tree maintains a sorted list of entries. However,
operations on a search tree are usually nore efficient than the same operations
on a sorted linked Iist.

Let’s replace the "Cbject item" declaration in each node with "Entry entry;"
where each Entry object stores a key and an associ ated value. The keys

i npl ement the Conparable interface, and the key.conpareTo() nethod induces a
total order on the keys (e.g. al phabetical or nunerical order).

[1] Entry find(Object k);

public Entry find(Object k) {
Bi naryTr eeNode node = root; /1 Start at the root.
while (node !'= null) {
int conp = ((Conparable) k).conpareTo(node.entry. key());
if (conmp < 0) { /| Repeatedly conpare search

node = node. |l eft; /1 key k with current node; if
} else if (conp > 0) { /1 kis snaller, go to the left
node = node. right; /1 child; if kis larger, go to
} else { /* The keys are equal */ // the right child. Stop when
return node.entry; /1 we find a match (success;
} // return the entry) or reach
} /1 a null pointer (failure;
return null; /1 return null).

}

This nethod only finds exact matches. What if we want to find the snallest key
greater than or equal to k, or the largest key less than or equal to k?
Fortunately, when searching downward through the tree for a key k that is not
inthe tree, we are certain to encounter both
- the node containing the snallest key greater than k (if any key is greater)
- the node containing the largest key less than k (if any key is |ess).
See Footnote 1 for an expl anati on why.

03/28/14
23:41:15

+- -+ For instance, suppose we search for the key 27 in the tree
| 18] at left. A ong the way, we encounter the keys 25 and 28,
[--\--+ which are the keys closest to 27 (bel ow and above).

12 |25

[\ + -\ -+ Here's how to inplenent a nmethod smal |l est KeyNot Snal | er (k) :
4 15 25 |30]| search for the key k in the tree, just like in find().
/ I\ +-/++ As you go down the tree, keep track of the smallest key

1 13 17 | 28| not smaller than k that you' ve encountered so far. If you
N +\+ find the key k, you can return it imediately. If you reach
3 14 29 a null pointer, return the best key you found on the path.

You can inpl enent |argestKeyNotLarger (k) symetrically.

[2] Entry nmin();
Entry max();

mn() is very sinple. |If the tree is enpty, return null. GQherw se, start at
the root. Repeatedly go to the left child until you reach a node with no |eft
child. That node has the mi ni mum key.

max() is the same, except that you repeatedly go to the right child. In the
tree above, observe the locations of the mininum (1) and naxi num (30) keys.

[3] Entry insert(Object k, Object v);

insert() starts by followi ng the same path through the tree as find(). (find()
wor ks _because_ it follows the same path as insert().) Wen it reaches a null

reference, replace that null with a reference to a new node storing the entry

(k, v).

Duplicate keys are allowed. |If insert() finds a node that already has the
key k, it puts the new entry in the left subtree of the ol der one.
(We could just as easily choose the right subtree; it doesn't matter.)

[4] Entry renove(Object k);

remove() is the nost difficult operation. First, find a node with key k using
the sane algorithmas find(). Return null if k is not in the tree; otherw se,
let n be the first node with key k.

If n has no children, we easily detach it fromits parent and throw it away.

If n has one child, nove n's child up to take n's place. n’s parent becones
the parent of n’s child, and n’s child beconmes the child of n's parent.
Di spose of n.

If n has two children, however, we have to be a bit nore clever. Let x be the
node in n's right subtree with the snallest key. Renobve x; since x has the
mnimum key in the subtree, x has no left child and is easily renoved.
Finally, replace n's entry with x’s entry. x has the key closest to k that

isn't smaller than k, so the binary search tree invariant still holds.
18 18 18
I\ I\ I\
12 25 12 25 12 25
I\ I\ I\ I\ I\ I\
4 15 25 30 -insert(2)-> 4 15 25 30 -renpve(30)-> 4 15 25 28
I\ / I\ / I\ \
1 13 17 28 1 13 17 28 1 13 17 29
N \ W \ W
3 14 29 3 14 29 3 14
/ /
2 2

26

18 18
+-/ \ I\
|12] 25 13 25
[-\+ |\ /\ [\
-renove(12)-> 4 15 25 28 -> 4 15 25 28
[+-1+\ \ I\ \
1 |13] 17 29 1 14 17 29
\+-\ + \
3 14 3
/ /
2 2
To ensure you understand the binary search tree operations, especially
remove(), | recommend you inspect Goodrich and Tanassia's code on page 446.
Be aware that Goodrich and Tamassia use sentinel nodes for the | eaves of
their binary trees; | think these waste an unjustifiably |arge anpbunt of space.

Runni ng Ti mes of Binary Search Tree Operations

.. 1
o} In a perfectly balanced binary tree (left) with \
I\ hei ght h, the nunber of nodes n is 27(h+1l) - 1. 2
o] o] (See Footnote 2.) Therefore, no node has depth \
I\ I\ greater than log_2 n. The running tines of 3
oo 0o find(), insert(), and renove() are all proportional \
/\ I\ /\ I\ to the depth of the last node encountered, so they all run 4
00 00 00 00 in O(log n) worst-case tine on a perfectly bal anced tree. \
5
On the other hand, it’'s easy to forma severely inbalanced tree |ike \
the one at right, wherein these operations will usually take linear tine. 6

There’s a vast middle ground of binary trees that are reasonably well-bal anced,
al beit certainly not perfectly balanced, for which search tree operations will
run in Q(log n) time. You may need to resort to experinment to determ ne

whet her any particular application will use binary search trees in a way that
tends to generate sonmewhat bal anced trees or not. |f you create a binary
search trees by inserting keys in a randomy chosen order, or if the keys are
generated by a random process fromthe same distribution, then with high
probability the tree will have height O(log n), and operations on the tree
will take Q(log n) tine.

Unfortunately, there are occasions where you mght fill a tree with entries
that happen to be already sorted. In this circunstance, you'll create the

di sastrously inbal anced tree depicted at right. Technically, all operations on
bi nary search trees have Theta(n) worst-case running tine.

For this reason, researchers have devel oped a variety of algorithnms for keeping
search trees bal anced. Prominent exanples include 2-3-4 trees (which we'll
cover next lecture), splay trees (in one nonth), and B-trees (in CS 186).

Footnote 1: When we search for a key k not in the binary search tree, why are
we guaranteed to encounter the two keys that bracket it? Let x be the snallest
key in the tree greater than k. Because k and x are "adjacent" keys, the
result of conparing k with any other key y in the tree is the same as conparing
X with y. Hence, find(k) will follow exactly the sane path as

find(x) until it reaches x. (After that, it may continue downward.)

The sanme argunent applies to the largest key less than k.

Footnote 2: A perfectly balanced binary tree has 2"i nodes at depth i, where
h i h+1
0 <= i <= h. Hence, the total nunber of nodes is Sum2 = 2 - 1.

i =0

