03/05/14
22:10:55

CS 61B: Lecture 20
Monday, March 10, 2014

Today's reading: Coodrich & Tamassia, Chapter 4 (especially 4.2 and 4.3).

ASYMPTOTI C ANALYSI S (bounds on running tine or nenory)

Suppose an algorithmfor processing a retail store’s inventory takes:

- 10,000 milliseconds to read the initial inventory fromdisk, and then

- 10 mlliseconds to process each transaction (itenms acquired or sold).
Processing n transactions takes (10,000 + 10 n) ns. Even though 10,000 >> 10,
we sense that the "10 n" termw |l be nore inportant if the number of
transactions is very large.

We al so know that these coefficients will change if we buy a faster conputer or
disk drive, or use a different |anguage or conpiler. W want a way to express
the speed of an algorithmindependently of a specific inplenentation on a
speci fic machine--specifically, we want to ignore constant factors (which get
smal | er and smaller as technol ogy inproves).

Bi g- Ch Notation (upper bounds on a function’s grow h)

Bi g- Ch notation conpares how quickly two functions grow as n -> infinity.

Let n be the size of a programis _input_ (in bits or data words or whatever).
Let T(n) be a function. For now, T(n) is the algorithm s precise running tinme

in mlliseconds, given an input of size n (usually a conplicated expression).
Let f(n) be another function--preferably a sinple function like f(n) = n.

We say that T(n) is in O f(n)) IFANDONLY IF T(n) <=c f(n)
VWHENEVER n 1S BIG FOR SOVE LARGE CONSTANT c.

* HOWBIGIS "BIG'? Big enough to make T(n) fit under c¢ f(n).
* HOWLARGE IS c? Large enough to make T(n) fit under c f(n).

EXAMPLE: | nventory

Let’s consider the function T(n) = 10,000 + 10 n, from our exanpl e above.
Let’s try out f(n) = n, because it’'s sinple. W can choose c as large as we
want, and we’'re trying to nake T(n) fit underneath c f(n), so pick c = 20.

c f(n) =20 n **

N / * %

| | / * %

I I / * %

| | / *

| | / ** T(n) = 10,000 + 10 n
30,000 + | / **

| | / *

| | / * %

I I/**
20,000 + *

| |

I **/ I

| * / |
10,000 ** / |

- |

|/ |

[/ |

O------ [™ >n

1, 000

As these functions extend forever to the right, their asynptotes will never
cross again. For large n--any n bigger than 1,000, in fact--T(n) <= c f(n).
% THEREFORE, T(n) is in Q(f(n)). *

20

Next, you must |earn how to express this idea rigorously. Here is the
central |esson of today’'s |ecture, which will bear on your entire career as
a professional conmputer scientist, however abstruse it may seem now.

FORMALLY: Q(f(n)) is the SET of ALL functions T(n) that satisfy:

T(n) <= c f(n)

| |
| |
| |
| There exist positive constants ¢ and N such that, for all n >= N, |
| |
| |

Pay close attention to ¢ and N. In the graph above, ¢ = 20, and N = 1, 000.

Think of it this way: if you're trying to prove that one function is
asynptotically bounded by another [f(n) is in O(g(n))], you're allowed to

nmul tiply themby positive constants in an attenpt to stuff one underneath the
other. You're also allowed to nove the vertical line (N) as far to the right
as you like (to get all the crossings onto the left side). W're only
interested in how the functions behave as n shoots off toward infinity.

EXAMPLES: Sonme | nportant Corollaries
[1] 1,000,000 n is in Qn). Proof: set c¢ = 1,000,000, N = 0.
-> Therefore, Big-Oh notation doesn’t care about (nost) constant factors.
W generally | eave constants out; it’s unnecessary to wite Q(2n),
because O(2n) = Q(n). (The 2 is not wong; just unnecessary.)

[2] n isin Qn*3). [That’'s n cubed]. Proof: set ¢ =1, N= 1.
-> Therefore, Big-Ch notation can be msleading. Just because an algorithnis
running time is in Qn*"3) doesn’t nmean it’'s slow, it mght also be in
Q(n). Big-Ch notation only gives us an UPPER BOUND on a function.

c f(n) =n"3

N *
I * /
| * / T(n) =n
I o
I *
I *
I *
I *I

1+ *
I 1*
I I
I I
[
A
[
[/
[0 R S >n

N=1
[3] n*3 +n*2 +n isin Qn"3). Proof: set ¢ =3, N=1.

-> Big-Oh notation is usually used only to indicate the dom nating (Iargest
and nost displeasing) termin the function. The other terms becone
insignificant when nis really big.

Here's a table to help you figure out the dominating term

03/05/14
22:10:55

Tabl e of Inportant Big-Ch Sets

Arranged fromsnallest to | argest, happiest to saddest, in order of increasing
domi nation:

function common nane

q 1) const ant
is a subset of log n) logarithm c
is a subset of O log"2 n) I og-squared [that’s (log n)"2]
is a subset of O root(n)) root-n [that's the square root]
is a subset of n) I'i near
is a subset of O nlogn) nlog n
is a subset of n"2) quadratic
is a subset of n"3) cubi c
is a subset of n™4) quartic
is a subset of 27n) exponenti al
is a subset of ern) exponential (but nore so)

Al gorithms that run in Q(n log n) tine or faster are considered efficient.
Al gorithns that take n*7 tine or nore are usually considered useless. In the
regi on between n log n and n"7, the useful ness of an al gorithm depends on the

typical input sizes and the associated constants hidden by the Big-Ch notation.

If you're not thoroughly confortable with [ogarithms, read Sections 4.1.2 and
4.1.7 of Goodrich & Tamassia carefully. Conputer scientists need to know
logarithms in their bones.

20

[3l

[4]

War ni ngs

Here’s a fallacious proof:

n"2 is in Qn), because if we choose c = n, we get n*"2 <= n"2.
WRONG ¢ nust be a constant; it cannot depend on n.

The big-Ch notation expresses a rel ationship between functions.

I T DOES NOT SAY WHAT THE FUNCTI ONS MEAN. In particular, the function on
the left does not need to be the worst-case running time, though it often
is. The nunmber of enmils you send to your Momas a function of time m ght
be in (t"2). |In that case, not only are you a very good child; you re an
increasingly good child.

I'n binary search on an array,

- the worst-case running tinme is in Q(log n),

- the best-case running time is in (1),

- the menory use is in Q(n), and

- 47 + 18 log n - 3/nis in Qthe worst-case running tine).

Every semester, a few students get the wong idea that "big-Ch" always
means "worst-case running tinme." Their brains short out when an exam
question uses it sonme other way.

"e"3n is in Q(e*n) because constant factors don’t natter."”

"10”n is in Q2"n) because constant factors don't matter."

WRONG | said that Big-Oh notation doesn’t care about (npst) constant
factors. Here are sone of the exceptions. A constant factor in an
exponent is not the same as a constant factor in front of a term

e”3n is not bigger than e”n by a constant factor; it’s bigger by a factor
of e”2n, which is damm big. Likew se, 10"n is bigger than 2”n by a factor
of 5”n.

Bi g- Ch notation doesn’t tell the whole story, because it |eaves out the
constants. |If one algorithmruns in time T(n) = n log_2 n, and another
algorithmruns in tine Un) = 100 n, then Big-Oh notation suggests you
shoul d use U(n), because T(n) dom nates U(n) asynptotically. However,

U(n) is only faster than T(n) in practice if your input size is greater
than current estimates of the nunber of subatomic particles in the

uni verse. The base-two logarithmlog_2 n < 50 for any input size n you
are ever likely to encounter.

Neverthel ess, Big-Ch notation is still a good rule of thumb, because the
hi dden constants in real-world algorithms usually aren’t that big.

