03/05/14
00:39:27

CS 61B: Lecture 19
Wednesday, March 5, 2014

Today’s reading: Sierra & Bates, p. 664.

ENCAPSULATED LI STS (a case study in encapsul ation)

Homewor ks 3, 4, and 5 introduced you to three different inplenentations of
linked lists, each fundanentally different.

Wth the Homework 3 lists, if an application witer wants to query the identity
of every itemin the list without nodifying the list, it takes tine
proportional to the square of n, the nunber of itenms in the list (i.e.,
Theta(n”2) time), because you have to use nth(i) to identify each itemin tine
proportional to i.

The lists in Honeworks 4 and 5 allow an application to directly hold a node in
a list. By alternating between the next() method and the itemfield or nethod,
you can query all the list’s itens in Theta(n) tine. Sinilarly, if an
application holds a node in the middle of a list, it can insert or delete c
items there in time proportional to c, no matter how long the list is.

The Homework 5 lists (SList and DList) are well-encapsul ated, whereas the
Homework 4 DList has flaws. | will discuss these flaws today to illustrate wy
designing the really good list ADTs of Homework 5 was tricky. Let’'s ask sone
questions about how lists shoul d behave.

(1) What happens if we invoke |.remove(n)--but the node nis in a different
list than | ?

In Homework 4, Part |1 asks whether it is possible for an application to
break the DList invariants. One way to do this is to msnmatch nodes and
lists in nethod calls. Wen an application does this, the "size" field of
the wong list is updated, thereby breaking the invariant that a list’'s
size field should be correct. How can we fix this?

ADT interface answer: The nethods renove(), insertAfter(), etc. should
al ways update the right list’'s "size" field.

I npl enentation answer: |It’s unacceptably slow to wal k through a whol e
list just to see if the node nis really inthe list |I. Instead, every
node shoul d keep a reference to the list that contains it. |n Homework 5,

each ListNode has a "nyList" field.
(2) Should insertAfter(), remove(), etc. be nmethods of List or ListNode?

Normal 'y, we expect the nethods that nodify a data structure (like a List)
to be methods within that data structure’s class. However, if we define
methods |ike insertAfter() and renove() in the ListNode class, rather than
the List class, we conpletely avoid the question of what happens if
they’'re invoked for a node that’s not in "this" list. This way, the
interface is nore el egant.

ADT interface answer: the |ist methods are divided anpng List and
Li st Node.

Sone net hods of List Sone net hods of ListNode

|
publ i c bool ean i sEnpty() | public Object item()
public void insertFront(Object item) | public ListNode next()
public ListNode front() | public void insertAfter(Cbject item
I npl enentati on answer: again, each node has a "nyList" field so we can
update a list's "size" field when we call n.renove(), n.insertAfter(),
etc.

What happens if we invoke |.remove(n), then |.insertAfter(i, n)?

Another way to trash the DList invariants is to treat a node that’s been
renoved froma list as if it’s still active. If we call insertAfter on a
node we' ve al ready renoved, we nay mangle the pointers.

AARGHH! ! |
>|n|<->|y| --remove()-> |X|<----- >ly| --insertAfter()-> |x|---------- >yl
N N N N
- e e]
\---|n|---/ \--|n|<->| |<-/
The result violates the invariant that if x.next ==y, then y.prev == x.
We woul d prevent the pointer mangling if remove(n) set n's pointers to
null, but that wouldn’t stop insertAfter() fromincrementing the list’'s

"size" field (or throwing a Null PointerException), which is not a
reasonabl e resul t.

Calling remove(n) twice on the same node al so corrupts "size".
How can we fix this?

ADT interface answer: After n.renpve() is executed, removing n fromthe
list, nis considered to be an "invalid" node. Any attenpt to use n,
except to call n.isValidNode(), throws an exception.

Wiy do we change the node, rather than erasing the reference to it?

First, the renove() nmethod can’'t erase the reference, which is passed by
val ue. Second, there might be lots of other references to the sane node,
and we need to erase all of themtoo! Al those other references could be
used to corrupt the data structure if the node itself isn't neutralized.

I npl enent ation answer: Wen an itemis renoved froma list, the
correspondi ng ListNode's "nyList" reference is set to null. This is just
a convenient way to mark a node as "invalid". The "next" and "prev"
references are also set to null. These steps elininate opportunities for
accidentally corrupting a list as illustrated above. (Also, they help
Java’'s garbage collection to reclai munused DLi st Nodes. We'|l discuss
garbage collection near the end of the senmester.)

Any Li st Node whose "nyList" reference is null is considered "invalid",
and any attenpt to use it will incite an exception.

03/05/14
00:39:27

(4)

What happens if we walk off the end of a list? (Using the next() method.)

ADT interface answer: |In Homework 4, if you invoke next() on the |ast
node in alist, it returns null. In Homework 5, it returns an invalid
node instead. There are two reasons for this change. First, it provides
consi stency, because invoking next() at the end of a list yields the sanme
result as renmpving a node. Second, if you call a nethod on the result--
for instance, n.next().item()--it throws an |nvali dNodeException instead
of a Null Poi nterException. This elimnates anbiguity; you can catch an

I nval i dNodeException w thout wondering why it was thrown, whereas nany

di fferent bugs can cause Nul | Poi nt er Exceptions.

I npl enentation answer: Recall that our inplenmentation uses a doubly-,
circularly-linked list with a sentinel node. Any sentinel is considered
an invalid node. This sinplifies the inplenmentations of the next() and
prev() nethods in the DList class.

However, if you apply next() to a sentinel, you won't get the first node
of the list; you'll get an InvalidNodeException. Wiy? Wen nis the |ast
node in a list, why not let n.next().next() be the first node? First, the
fact that the inplenentation uses a sentinel should be conpletely hidden
fromthe application. Second, we want to be able to change the

i npl ement ati on without breaking the application. Suppose we switch from
DLists to SLists that don't have sentinels. W would need to "fix" SList
so that n.next().next() still behaves the way it does with DLists. It’s
better not to allow applications to take advantage of such quirks fromthe
start.

19

(5) How do we access an iten?

ADT interface answer: |In Homework 4, each node’s "item field is public.
In Honework 5, we neke the "itent field protected; applications nust use
the item() and setlten() nmethods to access it. Wy? To nake sure that
applications can't store items in del eted nodes or sentinels. Any attenpt
to invoke item() or setlten() on an invalid node causes an exception.
Why? So that the inplenentation can be changed w thout breaking an
application. Suppose, for instance, that an application stores items in
sentinel nodes. Wbuld the application still work the same way if you
switched fromDLists to SLists, which don’t have sentinel nodes?

This may seemlike a strange justification. But in real-world

programmi ng, progranmers often take advantage of undocunented quirks, |ike
being able to store itenms in sentinel nodes. Once applications have been
witten that depend on these quirks, the quirks become "features" that
must be preserved in any new List inplenentation. That's why ADTs shoul d
never do _nore_ than what the docunentation says they do.

I'n Frederick P. Brooks, Jr.’s fampbus book on software engineering, "The
Mt hi cal Man- Mont h" (page 65), he wites

Invalid syntax al ways produces sonme result; in a policed systemthat
result is an invalidity indication _and_nothing_nore_. |n an unpoliced
systemall kinds of side effects nay appear, and these may have been
used by programmers. When we undertook to enul ate the | BM 1401

[processor] on Systeni 360 [an operating systen], for exanple, it

devel oped that there were 30 different "curios"--side effects of
supposedly invalid operations--that had come into w despread use and had
to be considered as part of the definition. The inplenentation as a
definition [of the functionality] overprescribed; it not only said what
the machine nmust do, it also said a great deal about how it had to do
it.

By ensuring that an inplenentation does not produce any result not
specified in the interface--even for invalid inputs--a programer nekes it
easy to fix bugs, optimze performance, and add new features without
conprom sing existing applications.

This lecture’s lesson is that design decisions can be conplicated and have
unexpect ed repercussi ons.

Qur design decisions for the Homework 5 lists, described above, will carry over
to our tree interfaces, which you Il encounter in an upcom ng assignment.

One final thought. Wy don't we sinply keep a boolean "valid" flag in each

Li st Node, and use that to distinguish valid nodes frominvalid ones? It would
make the inplenmentation clearer, and therefore nore maintainable. However, it
woul d al so nake each ListNode occupy nore nmenory. | chose reduced nmenory use
over readability, but this was an arbitrary choi ce.

