
03/05/14
00:39:27 119

 CS 61B: Lecture 19
 Wednesday, March 5, 2014

Today’s reading: Sierra & Bates, p. 664.

ENCAPSULATED LISTS (a case study in encapsulation)
==================
Homeworks 3, 4, and 5 introduced you to three different implementations of
linked lists, each fundamentally different.

With the Homework 3 lists, if an application writer wants to query the identity
of every item in the list without modifying the list, it takes time
proportional to the square of n, the number of items in the list (i.e.,
Theta(n^2) time), because you have to use nth(i) to identify each item in time
proportional to i.

The lists in Homeworks 4 and 5 allow an application to directly hold a node in
a list. By alternating between the next() method and the item field or method,
you can query all the list’s items in Theta(n) time. Similarly, if an
application holds a node in the middle of a list, it can insert or delete c
items there in time proportional to c, no matter how long the list is.

The Homework 5 lists (SList and DList) are well-encapsulated, whereas the
Homework 4 DList has flaws. I will discuss these flaws today to illustrate why
designing the really good list ADTs of Homework 5 was tricky. Let’s ask some
questions about how lists should behave.

(1) What happens if we invoke l.remove(n)--but the node n is in a different
 list than l?

 In Homework 4, Part II asks whether it is possible for an application to
 break the DList invariants. One way to do this is to mismatch nodes and
 lists in method calls. When an application does this, the "size" field of
 the wrong list is updated, thereby breaking the invariant that a list’s
 size field should be correct. How can we fix this?

 ADT interface answer: The methods remove(), insertAfter(), etc. should
 always update the right list’s "size" field.

 Implementation answer: It’s unacceptably slow to walk through a whole
 list just to see if the node n is really in the list l. Instead, every
 node should keep a reference to the list that contains it. In Homework 5,
 each ListNode has a "myList" field.

(2) Should insertAfter(), remove(), etc. be methods of List or ListNode?

 Normally, we expect the methods that modify a data structure (like a List)
 to be methods within that data structure’s class. However, if we define
 methods like insertAfter() and remove() in the ListNode class, rather than
 the List class, we completely avoid the question of what happens if
 they’re invoked for a node that’s not in "this" list. This way, the
 interface is more elegant.

 ADT interface answer: the list methods are divided among List and
 ListNode.

 Some methods of List | Some methods of ListNode
 |
 public boolean isEmpty() | public Object item()
 public void insertFront(Object item) | public ListNode next()
 public ListNode front() | public void insertAfter(Object item)

 Implementation answer: again, each node has a "myList" field so we can
 update a list’s "size" field when we call n.remove(), n.insertAfter(),
 etc.

(3) What happens if we invoke l.remove(n), then l.insertAfter(i, n)?

 Another way to trash the DList invariants is to treat a node that’s been
 removed from a list as if it’s still active. If we call insertAfter on a
 node we’ve already removed, we may mangle the pointers.

 AARGHH!!!
--- --- --- --- --- --- ---
|x|<->|n|<->|y| --remove()-> |x|<----->|y| --insertAfter()-> |x|---------->|y|
--- --- --- --- --- --- ---
 ^ ^ ^ ^
 | --- | | --- --- |
 \---|n|---/ \--|n|<->| |<-/
 --- --- ---

 The result violates the invariant that if x.next == y, then y.prev == x.
 We would prevent the pointer mangling if remove(n) set n’s pointers to
 null, but that wouldn’t stop insertAfter() from incrementing the list’s
 "size" field (or throwing a NullPointerException), which is not a
 reasonable result.

 Calling remove(n) twice on the same node also corrupts "size".

 How can we fix this?

 ADT interface answer: After n.remove() is executed, removing n from the
 list, n is considered to be an "invalid" node. Any attempt to use n,
 except to call n.isValidNode(), throws an exception.

 Why do we change the node, rather than erasing the reference to it?
 First, the remove() method can’t erase the reference, which is passed by
 value. Second, there might be lots of other references to the same node,
 and we need to erase all of them too! All those other references could be
 used to corrupt the data structure if the node itself isn’t neutralized.

 Implementation answer: When an item is removed from a list, the
 corresponding ListNode’s "myList" reference is set to null. This is just
 a convenient way to mark a node as "invalid". The "next" and "prev"
 references are also set to null. These steps eliminate opportunities for
 accidentally corrupting a list as illustrated above. (Also, they help
 Java’s garbage collection to reclaim unused DListNodes. We’ll discuss
 garbage collection near the end of the semester.)

 Any ListNode whose "myList" reference is null is considered "invalid",
 and any attempt to use it will incite an exception.

03/05/14
00:39:27 219

(4) What happens if we walk off the end of a list? (Using the next() method.)

 ADT interface answer: In Homework 4, if you invoke next() on the last
 node in a list, it returns null. In Homework 5, it returns an invalid
 node instead. There are two reasons for this change. First, it provides
 consistency, because invoking next() at the end of a list yields the same
 result as removing a node. Second, if you call a method on the result--
 for instance, n.next().item()--it throws an InvalidNodeException instead
 of a NullPointerException. This eliminates ambiguity; you can catch an
 InvalidNodeException without wondering why it was thrown, whereas many
 different bugs can cause NullPointerExceptions.

 Implementation answer: Recall that our implementation uses a doubly-,
 circularly-linked list with a sentinel node. Any sentinel is considered
 an invalid node. This simplifies the implementations of the next() and
 prev() methods in the DList class.

 However, if you apply next() to a sentinel, you won’t get the first node
 of the list; you’ll get an InvalidNodeException. Why? When n is the last
 node in a list, why not let n.next().next() be the first node? First, the
 fact that the implementation uses a sentinel should be completely hidden
 from the application. Second, we want to be able to change the
 implementation without breaking the application. Suppose we switch from
 DLists to SLists that don’t have sentinels. We would need to "fix" SList
 so that n.next().next() still behaves the way it does with DLists. It’s
 better not to allow applications to take advantage of such quirks from the
 start.

(5) How do we access an item?

 ADT interface answer: In Homework 4, each node’s "item" field is public.
 In Homework 5, we make the "item" field protected; applications must use
 the item() and setItem() methods to access it. Why? To make sure that
 applications can’t store items in deleted nodes or sentinels. Any attempt
 to invoke item() or setItem() on an invalid node causes an exception.
 Why? So that the implementation can be changed without breaking an
 application. Suppose, for instance, that an application stores items in
 sentinel nodes. Would the application still work the same way if you
 switched from DLists to SLists, which don’t have sentinel nodes?

 This may seem like a strange justification. But in real-world
 programming, programmers often take advantage of undocumented quirks, like
 being able to store items in sentinel nodes. Once applications have been
 written that depend on these quirks, the quirks become "features" that
 must be preserved in any new List implementation. That’s why ADTs should
 never do _more_ than what the documentation says they do.

 In Frederick P. Brooks, Jr.’s famous book on software engineering, "The
 Mythical Man-Month" (page 65), he writes

 Invalid syntax always produces some result; in a policed system that
 result is an invalidity indication _and_nothing_more_. In an unpoliced
 system all kinds of side effects may appear, and these may have been
 used by programmers. When we undertook to emulate the IBM 1401
 [processor] on System/360 [an operating system], for example, it
 developed that there were 30 different "curios"--side effects of
 supposedly invalid operations--that had come into widespread use and had
 to be considered as part of the definition. The implementation as a
 definition [of the functionality] overprescribed; it not only said what
 the machine must do, it also said a great deal about how it had to do
 it.

 By ensuring that an implementation does not produce any result not
 specified in the interface--even for invalid inputs--a programmer makes it
 easy to fix bugs, optimize performance, and add new features without
 compromising existing applications.

This lecture’s lesson is that design decisions can be complicated and have
unexpected repercussions.

Our design decisions for the Homework 5 lists, described above, will carry over
to our tree interfaces, which you’ll encounter in an upcoming assignment.

One final thought. Why don’t we simply keep a boolean "valid" flag in each
ListNode, and use that to distinguish valid nodes from invalid ones? It would
make the implementation clearer, and therefore more maintainable. However, it
would also make each ListNode occupy more memory. I chose reduced memory use
over readability, but this was an arbitrary choice.

