02/15/14
05:35:51

CS 61B: Lecture 12
Wednesday, February 19, 2014

Today's reading: Sierra & Bates, Chapter 8.

ABSTRACT CLASSES

An abstract class is a class whose sole purpose is to be extended.

public abstract class List {
protected int size;

public int length() {
return size;

}

public abstract void insertFront(Qoject item;

}

Abstract classes don’t allow you to create objects directly. You can declare a
variable of type List, but you can't create a List object.

Li st nyList;
nyList = new List();

/1 Right on.
/1 COWPI LE- TI ME ERROR.

However, abstract classes can be extended in the same way as ordinary cl asses,
and the subcl asses are usually not abstract. (They can be, but usually they're
normal subcl asses with conplete inplenentations.)

The abstract List class above includes an abstract method, insertFront. An
abstract method | acks an inplenmentation. One purpose of an abstract method is
to guarantee that every non-abstract subclass will inplement the nethod.
Specifically, every non-abstract subclass of List nust have an inplenentation
for the insertFront method.

public class SList extends List {
Il inherits the "size" field.
protected SListNode head;

/1 inherits the "l ength" nethod.

public void insertFront(Object item {
head = new SLi st Node(item head);
Si ze++;
}
}

If you | eave out the inplenmentation of insertFront in SList, the Java conpiler
wi Il conplain that you nust provide one. A non-abstract class nay never
contain an abstract nethod, nor inherit one without providing an

i npl ement ation.

Because SList is not abstract, we can create SList objects; and because SLists
are Lists, we can assign an SList to a List variable.

List myList = new SList(); /1 Right on.
nyLi st.insertFront(obj); /1 Right on.

12

What are abstract classes good for? |It’s all about the interface.

| An abstract class lets you define an interface |
| - for multiple classes to share, |
| - without defining any of themyet. |

Let’ s consider the List class. Although the List class is abstract, it is an
ADT- -even without any inplenentation!-- because it has an interface with public
net hod prototypes and wel | -defined behaviors. W can inplenment an
algorithm-for exanple, a list sorter--based on the List interface, w thout
ever knowing how the lists will be inplemented. One |ist sorter can sort every
ki nd of List.

public void listSort(List I') { ... }

In another part of the universe, your project partners can build lots of

subcl asses of List: SList, DList, TaillList, and so on. They can also build
speci al -case List subclasses: for exanple, a TinedList that records the anmpunt
of time spent doing List operations, and a TransactionList that |logs all
changes nade to the list on a disk so that all information can be recovered if
a power outage occurs. A library catal ogue application that uses DLists can
send themto your listSort algorithmto be sorted. An airline flight database
that uses TransactionLists can send themto you for sorting, too, and you don’t
have to change a line of sorting code. You may have witten your list sorter
years before TransactionLists were ever thought of.

————————————————— The list sorter is built on the foundation of a I|ist

| Application | ADT, and the application is built on the foundation of

----------------- the list sorter. However, it’s the application, and
not the list sorter, that gets to choose what kind of

| calls list is actually used, and thereby obtains special

\Y features like transaction logging. This is a big
————————————————— advant age of object-oriented | anguages |ike Java.
| List Sorter |

| calls

v
| Li st ADT |

02/15/14
05:35:51

JAVA | NTERFACES

Java has an "interface" keyword which refers to something quite different than
the interfaces | defined in Lecture 8, even though the two interfaces are

related. Henceforth, when |I say "interfaces" | nean public fields, public
met hod prototypes, and the behaviors of public methods. Wen | say "Java
interfaces" | nean Java' s "interface" keyword.

A Java interface is just like an abstract class, except for two differences.

(1) In Java, a class can inherit fromonly one class, even if the superclass
is an abstract class. However, a class can "inplenent" (inherit from as
many Java interfaces as you |ike.

(2) A Java interface cannot inplenment any nethods, nor can it include any
fields except "final static" constants. It only contains nethod
prototypes and constants.

public interface Nukeable { /1 1'n Nukeabl e.java
public void nuke();

}

public interface Conparable { /1 In java.lang
public int conpareTo(Object 0);

}

public class SList extends List inplenents Nukeabl e, Conparable {
[Previous stuff here.]

public void nuke() {
head = null;
size = 0;

}

public int conpareTo(Object o) {
[Returns a nunber < 0 if this < o,
0 if this.equals(o),
>0 if this > o0.]
}
}

Observe that the nmethod prototypes in a Java interface may be declared w thout
the "abstract" keyword, because it woul d be redundant; a Java interface cannot
contain a nmethod inpl ementation.

The distinction between abstract classes and Java interfaces exists because of
techni cal reasons that you m ght begin to understand if you take CS 164
(Compilers). Sone |anguages, like C++, allow "multiple inheritance," so that a
subcl ass can inherit fromseveral superclasses. Java does not allow nultiple
inheritance in its full generality, but it offers a sort of crippled form of

mul tiple inheritance: a class can "inplenment” multiple Java interfaces.

Wiy does Java have this linitation? Miltiple inheritance introduces a |ot of

problens in both the definition of a |anguage and the efficient inplenentation
of a language. For exanple, what should we do if a class inherits fromtwo

di fferent superclasses two different methods or fields with the same nanme?

Mil tiple inheritance is responsible for sone of the scariest tricks and traps

of the C++ | anguage, subtleties that cause much wailing and gnashing of teeth.
Java interfaces don’t have these probl ens.

12

Because an SList is a Nukeable and a Conparable, we can assign it to variables
of these types.

Nukeabl e n = new SLi st ();
Conpar abl e ¢ = (Conparable) n;

The cast is required because not every Nukeable is a Conparable.
"Conparabl e" is a standard interface in the Java library. By having a class
i npl ement Conparabl e, you inmrediately gain access to Java's sorting library.
For instance, the Arrays class in java.util includes a nethod that sorts arrays
of Conparabl e obj ects.
public static void sort(Cbject[] a) /1l In java.util

The paraneter’s type is Cbject[], but a run-tine error will occur if any item
stored in a is not a Conparable.

Interfaces can be extended with subinterfaces. A subinterface can have
nul tiple superinterfaces, so we can group several interfaces into one.

public interface NukeAndConpare extends Nukeabl e, Conparable { }

We coul d al so add nore nethod prototypes and constants, but in this exanple
| don’'t.

