02/12/14
04:29:14

CS 61B: Lecture 10
Wednesday, February 12, 2014

Today's reading: Al of Chapter 7, plus pp. 28-33, 250-257.

I NHERI TANCE

In Lab 3, you nodified several nethods in the SList class so that a "tail"
reference could keep track of the end of the list, thereby speeding up the
insertEnd() nethod.

We coul d have acconplished the same result w thout nodifying SList--by creating
a new class that inherits all the properties of SList, and then changing only
the nethods that need to change. Let’'s create a new class called TaillList that
inherits the fields and nethods of the original SList class.

public class TailList extends SList {
/'l The "head" and "size" fields are inherited from SList.
private SListNode tail;

This code declares a TailList class that behaves just |ike the SList class, but
has an additional field "tail" not present in the SList class. TailList is
said to be a _subclass_ of SList, and SList is the _superclass_ of TaillList.

A TailList has three fields: head, size, and tail.

A subclass can nodify or augnent a superclass in at |east three ways:
(1) It can declare new fields.

(2) It can declare new nethods.

(3) It can override old nethods with new i npl enmentations.

W’ ve already seen an exanple of the first. Let’'s try out the third. The
advantage of TailList is that it can performthe insertEnd() method nuch nore
quickly than a tail-less SList can. So, let’'s wite a new insertEnd() for
Tai |l List, which will _override_ SList’s old, slowinsertEnd() nethod.

public void insertEnd(Object obj) {
/1 Your solution to Lab 3 goes here.
}

The i sEnpty(), length(), nth(), and toString() nethods of SList do not need any
changes on account of the tail reference. These nmethods are inherited from
SList, and there’s no need to rewite them

I nheritance and Constructors

What happens when we construct a TailList? Java executes a Tail List
constructor, as you woul d expect, but _first_ it executes the code in the
SList() constructor. The TaillList constructor should initialize fields unique
to TailList. It can also nodify the work done by SList() if appropriate.

public TailList() {
/1 SList() constructor called autonatically; sets size = 0, head = null
tail = null;

}

10

The zero-parameter SList() constructor is always called by default, regardless
of the paranmeters passed to the TailList constructor. To change this default
behavi or, the TailList constructor can explicitly call any constructor for its
supercl ass by using the "super" keyword.

public TailList(int x) {

super (x);
tail = null;
}
The call to "super()" nust be the first statement in the constructor. If a

constructor has no explicit call to "super”, and its (nearest) superclass has
no zero-paraneter constructor, a conpile-tine error occurs. There is no way to
tell Java not to call a superclass constructor. You have only the power to
choose whi ch of the superclass constructors is called.

I nvoki ng Overridden Met hods

Sonetimes you want to override a nethod, yet still be able to call the method
i npl emented in the superclass. The follow ng exanpl e shows how to do this.
Bel ow, we want to reuse the code in SList.insertFront, but we also need to
adj ust the tail reference.

public void insertFront(Object obj) {

super.insertFront (obj); /1l Insert at the front of the Ilist.
if (size == 1) { /1l 1f necessary,

tail = head; I adj ust the tail reference.
}

}
}

Unli ke superclass constructor invocations, ordinary superclass nethod
invocations need not be the first statement in a nethod.

The "protected" Keyword

I lied when | said that we don't need to nodify SList. One change is
necessary. The "head" and "size" fields in SList nust be declared "protected",
not "private".

public class SList {
protected SListNode head;
protected int size;

[Met hod definitions.]

}
"protected" is a level of protection somewhere between "public" and "private".
A "protected" field is visible to the declaring class and all its subclasses,
but not to other classes. "private" fields aren’'t even visible to the

subcl asses.

If "head" and "size" are declared private, the nmethod Tail List.insertFront
can’t access themand won’t conpile. |If they' re declared protected,
insertFront can access them because TailList is a subclass of SList.

Wien you wite an ADT, if you think sonebody mi ght soneday want to wite a
subclass of it, declare its vulnerable fields "protected", unless you have a
reason for not wanting subcl asses to see them Hel per nethods often should be
decl ared "protected" as well.

02/12/14
04:29:14

Class Hierarchies

Subcl asses can have subcl asses. Subclassing is transitive: if Proletariat is
a subclass of Worker, and Student is a subclass of Proletariat, then Student is
a subcl ass of Worker. Furthernore, _every_ class is a subclass of the bject
class (including Java's built-in classes |like String and BufferedReader.)

Object is at the top of every class hierarchy.

oj ect
/ \
String Worker
/ \
Prol etariat Bourgeoisie
/ \
Student TA Professor

Super cl asses appear above their subcl asses.

That’s why the "itent field in each listnode is of type Object: it can
reference any object of any class. (It can't reference a prinitive type,
t hough.)

Dynam ¢ Met hod Lookup

Here’'s where inheritance gets interesting. Any TaillList can nasquerade as an
SList. An object of class TailList can be assigned to a variable of type
SList--but the reverse is not true. Every TaillList is an SList, but not every

SList is a TailList. It nerits repeating:
>>>1 11 *** Every TailList *IS* an SList. ***lll<<< For exanpl e:
SList s = new TailList(); /1 G oovy.

TailList t = new SList(); /1 COWPI LE- TI ME ERROR.
Menorize the followi ng two definitions.

_Static_type_: The type of a variable.

_Dynamic_type_: The class of the object the variable references.

In the code above, the static type of s is SList, and the dynamc type of s is
Tail List. Henceforth, I will often just say "type" for static type and "cl ass"
for dynanmic type.

When we invoke an overridden nethod, Java calls the nethod for the object’s
dynamic type, regardless of the variable's static type.

SList s = new TailList();
s.insertEnd(obj);

s = new SList();
s.insertEnd(obj);

/1 Calls TaillList.insertEnd()
// Calls SList.insertEnd()

This is called _dynam c_net hod_| ookup_, because Java autonatically |ooks up the
right nethod for a given object at run-time. Wy is it interesting?

VHY DYNAM C METHOD LOOKUP MATTERS (Worth readi ng and rereadi ng)

Suppose you have a method (in any class) that sorts an SList using only
SLi st nethod calls (but doesn’t construct any SLists). Your nethod now
sorts TailLists too, with no changes.

Suppose you've witten a class--let’s call it RunLengthEncodi ng--that uses
SLists extensively. By changing the constructors so that they create

Tai |l Lists instead of SLists, your class imrediately realizes the
performance inprovenent that TailLists provide--wthout changing anything
el se in the RunLengthEncodi ng cl ass.

10

Subtl eties of Inheritance

(1) Suppose we wite a new nethod in the TaillList class called eatTail (). W
can’t call eatTail on an SList. W can’t even call eatTail on a variable of
type SList that references a TaillList.

TailList t = new TailList();

t.eatTail (); /1 Groovy.

SList s = new TailList(); /| Groovy--every Taillist is an SList.
s.eatTail (); /1 COWPI LE- TI ME ERROR

Why? Because not every object of class SList has an "eatTail ()" nethod, so
Java can’'t use dynamic nethod | ookup on the variable s.

But if we define eatTail () in SList instead, the statenents above conpile and
run without errors, even if no eatTail () nmethod is defined in class Tail List.
(TailList inherits eatTail() from SList.)

(2) | pointed out earlier that you can’'t assign an SList object to a TailList
variable. The rules are nore conplicated when you assign one variable to
anot her .

SLi st s;

TailList t = new TailList();

s =t; /1 G oovy.

t =s; /1 COWPI LE- TI ME ERROR.

t = (Taillist) s; /'l Groovy.

s = new SList();

t = (TaillList) s; /1 RUN-TIME ERROR Cl assCast Excepti on.

Wiy does the conpiler reject "t = s", but accept "t = (TailList) s"? It
refuses "t = s" because not every SList is a TailList, and it wants you to
confirmthat you're not making a thoughtless mistake. The cast in the latter
statement is your way of reassuring the conpiler that you' ve designed the
programto make sure that the SList s will always be a TailList.

If you re wong, Java will find out when you run the program and will crash
with a "Cl assCast Exception" error nessage. The error occurs only at run-tine
because Java cannot tell in advance what class of object s will reference.

Recal | that SLists store items of type Qbject. Wien they’'re recovered, they
usual |y have to be cast back to a nore specific type before they can be used.
Suppose we have a list of Integers. Recall that nth() returns type Object.

int x
inty

t.nth(1).intValue(); /| COWPI LE- TI ME ERROR.
((Integer) t.nth(l)).intValue(); // Goovy.

Sone net hods are defined on every Object, though.
String z = t.nth(1).toString(); /1 Groovy.

(3) Java has an "instanceof" operator that tells you whether an object is of
a specific class. WARNING The "o" in "instanceof" is not capitalized.

if (s instanceof TaillList) {
t = (TaillList) s;
}

Thi s instanceof operation will return false if s is null or doesn't reference
a TailList. It returns true if s references a TailList object--even if it’'s
a subcl ass of Tail List.

